THE (3 + 1)-FREE CONJECTURE OF CHROMATIC SYMMETRIC FUNCTIONS

Steph van Willigenburg
University of British Columbia

Alberta-Montana Combinatorics and Algorithms Days at BIRS June 23-25 2023

Chromatic polynomial: Birkhoff 1912

Given G with vertices $V(G)$ a proper colouring κ of G in k colours is

$$
\kappa: V(G) \rightarrow\{1,2,3, \ldots, k\}
$$

so if $u, v \in V(G)$ are joined by an edge then

$$
\kappa(u) \neq \kappa(v) .
$$

Example

Chromatic polynomial: Birkhoff 1912

Given G the chromatic polynomial $\chi_{G}(k)$ is the number of proper colourings with k colours.

Chromatic polynomial: Birkhoff 1912

Given G the chromatic polynomial $\chi_{G}(k)$ is the number of proper colourings with k colours.

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G-\epsilon$.

Contract ϵ : shrink edge $\epsilon+$ identify vertices to get G / ϵ.

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G-\epsilon$.

Contract ϵ : shrink edge $\epsilon+$ identify vertices to get G / ϵ.

Theorem (Deletion-contraction)

$$
\chi_{G}(k)-\chi_{G-\epsilon}(k)+\chi_{G / \epsilon}(k)=0
$$

Chromatic symmetric function: Stanley 1995

Given G with vertices $V(G)$ a proper colouring κ of G is

$$
\kappa: V(G) \rightarrow\{1,2,3, \ldots\}
$$

so if $u, v \in V(G)$ are joined by an edge then

$$
\kappa(u) \neq \kappa(v) .
$$

Example

Chromatic symmetric function: Stanley 1995

Given a proper colouring κ of vertices $v_{1}, v_{2}, \ldots, v_{N}$ associate a monomial in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)} .
$$

Example

(A)-(B) gives $x_{1} x_{2}$.
(A)-(B) gives $x_{2} x_{1}=x_{1} x_{2}$.
(A)-(B) gives $x_{1} x_{3}$.

Chromatic symmetric function: Stanley 1995

Given G with vertices $v_{1}, v_{2}, \ldots, v_{N}$ the chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

where the sum over all proper colourings κ.

Chromatic symmetric function: Stanley 1995

(1) (®) has $X_{G}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{1} x_{3}$.
(A)
(B)
(A)
(B)
(A)
(B)
(A)
(B)
(A)
(B)
(A)
(B)
(A) (B)
(A)
(B)
(A)
(B)

Multi-DEletion

Theorem (Triple-deletion: Orellana-Scott 2014)
Let G be such that $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ form a triangle. Then

$$
X_{G}-X_{G-\left\{\epsilon_{1}\right\}}-X_{G-\left\{\epsilon_{2}\right\}}+X_{G-\left\{\epsilon_{1}, \epsilon_{2}\right\}}=0 .
$$

Multi-DElETION

Theorem (Triple-deletion: Orellana-Scott 2014)
Let G be such that $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ form a triangle. Then

$$
X_{G}-X_{G-\left\{\epsilon_{1}\right\}}-X_{G-\left\{\epsilon_{2}\right\}}+X_{G-\left\{\epsilon_{1}, \epsilon_{2}\right\}}=0 .
$$

Theorem (k-Deletion: Dahlberg-vW 2018)
Let G be such that $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}$ form a k-cycle for $k \geq 3$. Then

$$
\sum_{S \subseteq[k-1]}(-1)^{|S|} X_{G-U_{i \in S}\left\{\epsilon_{i}\right\}}=0 .
$$

Deletion-contraction weighted X_{G} : Crew-Spirkl 2020.

Symmetric functions

A symmetric function is a formal power series f in commuting variables x_{1}, x_{2}, \ldots such that for all permutations π

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

Symmetric functions

A symmetric function is a formal power series f in commuting variables x_{1}, x_{2}, \ldots such that for all permutations π

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

X_{G} is a symmetric function.

$x_{1}^{2} x_{2}$

Let

$$
\Lambda=\bigoplus_{N \geq 0} \wedge^{N} \subset \mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]
$$

be the algebra of symmetric functions with Λ^{N} spanned by ...

CLASSICAL BASIS: POWER SUM

A partition $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.

The i-th power sum symmetric function is

$$
p_{i}=x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+\cdots
$$

and for $\lambda=\lambda_{1} \cdots \lambda_{\ell}$

$$
p_{\lambda}=p_{\lambda_{1}} \cdots p_{\lambda_{\ell}} .
$$

Example

$$
p_{21}=p_{2} p_{1}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right)
$$

Classical basis: POWER SUM

Given $S \subseteq E(G), \lambda(S)$ is the partition determined by the connected components of G restricted to S.

Example

$$
G \text { restricted to } S=\left\{\epsilon_{2}\right\} \text { is } \bigcirc \bigcirc{ }^{\epsilon_{1}} \bigcirc-\epsilon_{2}^{\epsilon_{2}} \bigcirc \text { and } \lambda(S)=21 .
$$

Theorem (Stanley 1995)

$$
X_{G}=\sum_{S \subseteq E(G)}(-1)^{|S|} p_{\lambda(S)}
$$

Classical basis: POWER SUM

$$
G=O \stackrel{\epsilon_{1}}{-}-{ }_{-}^{\epsilon_{2}}
$$

G restricted to

- $S=\left\{\epsilon_{1}, \epsilon_{2}\right\}$ is $\bigcirc \stackrel{\epsilon_{1}}{\multimap} \stackrel{\epsilon_{2}}{-}$ and $\lambda(S)=3$
- $S=\left\{\epsilon_{1}\right\}$ is $\bigcirc \overbrace{}^{\epsilon_{1}}{ }^{\epsilon_{2}} \bigcirc$ and $\lambda(S)=21$
- $S=\left\{\epsilon_{2}\right\}$ is $\bigcirc^{\epsilon_{1}} \bigcirc \stackrel{\epsilon_{2}}{ } \bigcirc$ and $\lambda(S)=21$
- $S=\emptyset$ is $\bigcirc^{\epsilon_{1}} \bigcirc^{\epsilon_{2}} \bigcirc$ and $\lambda(S)=111$.

$$
X_{G}=p_{3}-2 p_{21}+p_{111}
$$

Classical Basis: ELEMENTARY

The i-th elementary symmetric function is

$$
e_{i}=\sum_{j_{1}<\cdots<j_{i}} x_{j_{1}} \cdots x_{j_{i}}
$$

and for $\lambda=\lambda_{1} \cdots \lambda_{\ell}$

$$
e_{\lambda}=e_{\lambda_{1}} \cdots e_{\lambda_{\ell}} .
$$

Example

$$
\begin{gathered}
e_{21}=e_{2} e_{1}=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right) \\
G=\bigcirc \quad x_{G}=3 e_{3}+e_{21}
\end{gathered}
$$

CLASSICAL BASIS: ELEMENTARY

Theorem (Stanley 1995)

If

$$
X_{G}=\sum_{\lambda} c_{\lambda} e_{\lambda}
$$

then

$$
\sum_{\lambda \text { with } k \text { parts }} c_{\lambda}=\text { number of acyclic orientations with } k \text { sinks. }
$$

Example

$$
G=\bigcirc-\bigcirc \quad X_{G}=3 e_{3}+e_{21}
$$

CLASSICAL BASIS: ELEMENTARY

Theorem (Stanley 1995)
If

$$
X_{G}=\sum_{\lambda} c_{\lambda} e_{\lambda}
$$

then
$\sum c_{\lambda}=$ number of acyclic orientations with k sinks.
λ with k parts

Example

$$
G=\longleftrightarrow X_{G}=3 e_{3}+e_{21}
$$

CLASSICAL BASIS: ELEMENTARY

Theorem (Stanley 1995)
If

$$
X_{G}=\sum_{\lambda} c_{\lambda} e_{\lambda}
$$

then
$\sum c_{\lambda}=$ number of acyclic orientations with k sinks.
λ with k parts

Example

$$
G=\backsim \longleftrightarrow \quad X_{G}=3 e_{3}+e_{21}
$$

CLASSICAL BASIS: ELEMENTARY

Theorem (Stanley 1995)
If

$$
X_{G}=\sum_{\lambda} c_{\lambda} e_{\lambda}
$$

then
$\sum c_{\lambda}=$ number of acyclic orientations with k sinks.
λ with k parts

Example

$$
G=\propto \longleftrightarrow \alpha \quad X_{G}=3 e_{3}+e_{21}
$$

CLASSICAL BASIS: ELEMENTARY

Theorem (Stanley 1995)
If

$$
X_{G}=\sum_{\lambda} c_{\lambda} e_{\lambda}
$$

then
$\sum c_{\lambda}=$ number of acyclic orientations with k sinks.
λ with k parts

Example

$$
G=\longleftrightarrow \quad X_{G}=3 e_{3}+e_{21}
$$

PARTITIONS AND DIAGRAMS

A partition $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ of N is a list of positive integers whose sum is N : $3221 \vdash 8$.

The diagram $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ is the array of boxes with λ_{i} boxes in row i from the top.

Semi-standard Young tableaux

A semi-standard Young tableau (SSYT) T of shape λ is a filling with $1,2,3, \ldots$ so rows weakly increase and columns increase.

1	1	1
2	4	
4	5	
6		

Given an SSYT T we have

$$
\begin{gathered}
x^{\top}=x_{1}^{\# 1 s} x_{2}^{\# 2 s} x_{3}^{\# 3 s} \cdots \\
x_{1}^{3} x_{2} x_{4}^{2} x_{5} x_{6}
\end{gathered}
$$

Classical basis: Schur

The Schur function is

$$
s_{\lambda}=\sum_{T \text { SSYT of shape } \lambda} x^{T}
$$

Example
$s_{21}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}+\cdots$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 1 & 1 & 1 & 3 & 2 & 2 & 2 & 3 & 1 & 2 & 1 & 3 \\
\hline 2 & & 2 & & 3 & & & \\
\hline 3 & & & 3 & & & 3 & & & \\
\hline 3 & & & 2 & \\
\hline
\end{array} \\
& G=\bigcirc-\bigcirc \quad X_{G}=s_{21}+4 s_{111}
\end{aligned}
$$

(Wang-Wang 2020) Intricate formula for X_{G}.

e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
G is Schur-positive if X_{G} is a positive linear combination of s_{λ}.

e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
G is Schur-positive if X_{G} is a positive linear combination of s_{λ}.

e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
G is Schur-positive if X_{G} is a positive linear combination of s_{λ}.

has

$$
\begin{aligned}
& X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \boldsymbol{X} \\
& X_{G}=8 s_{1111}+5 s_{211}-s_{22}+s_{31} \boldsymbol{X}
\end{aligned}
$$

e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X_{G} is a positive linear combination of e_{λ}.
G is Schur-positive if X_{G} is a positive linear combination of s_{λ}.

has

$$
\begin{aligned}
& X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \boldsymbol{X} \\
& X_{G}=8 s_{1111}+5 s_{211}-s_{22}+s_{31} \boldsymbol{X}
\end{aligned}
$$

K_{13} : Smallest graph that is not e-positive. Smallest graph that is not Schur-positive.

e-POSITIVITY AND SCHUR-POSITIVITY

For $\lambda=\lambda_{1} \cdots \lambda_{\ell}$

$$
e_{\lambda}=\sum_{\mu} K_{\mu \lambda} s_{\mu^{t}}
$$

where $K_{\mu \lambda}=\#$ SSYTs of shape μ filled with $\lambda_{1} 1 \mathrm{~s}, \ldots, \lambda_{\ell} \ell \mathrm{s}$, and μ^{t} is the transpose of μ along the downward diagonal.

Hence $K_{\mu \lambda} \geq 0$ and
e-positivity implies Schur-positivity.
Example

$$
e_{21}=s_{21}+s_{111}
$$

Why e-POSITIVITY AND SCHUR-POSITIVITY?

- If e-positive, then it is related to permutation representations.
- We have e-positivity implies Schur-positivity.
- If Schur-positive, then it arises as the Frobenius image of some representation of a symmetric group.
- If Schur-positive, then it arises as the character of a polynomial representation of a general linear group.
- The Stanley-Stembridge conjecture.

e-POSITIVITY AND SCHUR-POSITIVITY

Conjecture (Stanley-Stembridge 1993)
If G is an incomparability graph of a $(3+1)$-free poset then X_{G} is e-positive.

e-POSITIVITY AND SCHUR-POSITIVITY

Conjecture (Stanley-Stembridge 1993)
If G is an incomparability graph of a $(3+1)$-free poset then X_{G} is e-positive.

e-POSITIVITY AND SCHUR-POSITIVITY

Conjecture (Stanley-Stembridge 1993)

If G is an incomparability graph of a $(3+1)$-free poset then X_{G} is e-positive.

Theorem (Gasharov 1996)
If G is an incomparability graph of a $(3+1)$-free poset then X_{G} is Schur-positive.

e-POSITIVITY AND SCHUR-POSITIVITY

Guay-Paquet showed enough to prove it for unit interval graphs, namely a connected intersection of complete graphs in a row.

Conjecture (Stanley-Stembridge 1993)
If G is a connected intersection of complete graphs then G is e-positive.

Example

Known CASES OF e-POSITIVE GRAPHS

- 1993 Stanley-Stembridge: two complete graphs intersecting.
- 1995 Stanley: complete graphs K_{2} intersecting at vertices

making a path.
- 2001 Gebhard-Sagan: complete graphs intersecting only at vertices.

- 2018 Dahlberg: complete graphs K_{3} intersecting only at edges.

Results: Aliniaeifard, Wang, vW 2021

Note: We can draw the complete graph as follows.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).

Note: This is an intersection of complete graphs.

Results: Aliniaeifard, Wang, vW 2021

We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).

Note: This is an intersection of complete graphs.

New cases of Stanley-Stembridge

Theorem (Aliniaeifard-Wang-vW 2021)

If G is a connected intersection at the rightmost and leftmost vertex of any combination of

- ice cream scoops
- snowy peaks
- peaky snows
- complete graphs
- triangular ladders
then G is e-positive.
Example

Widen the conjecture - Part 1

 e-positivity of trees: Dahlberg, She, vW 2020

N	1	2	3	4	5	6	7	8	9	10	11	12	13
trees	1	1	1	2	3	6	11	23	47	106	235	551	1301
e-pos	1	1	1	1	2	1	3	1	2	2	5	1	4

e-POSITIVITY OF TREES

Theorem (Dahlberg-She-vW 2020)
Any tree with N vertices and a vertex of degree

$$
d \geq \log _{2} N+1
$$

is not e-positive.

ExAMPLE

is not e-positive.

e-POSITIVITY OF TREES

Conjecture (Dahlberg-She-vW 2020)

Any tree with N vertices and a vertex of degree

$$
d \geq 4
$$

is not e-positive.
(Zheng 2020) True for $d \geq 6$.

ExAMPLE

is not e-positive.

e-Positivity test of Wolfgang III 1997

A graph has a connected partition of type $\lambda=\lambda_{1} \cdots \lambda_{\ell}$ if we can find disjoint subsets of vertices $V_{1}, \ldots, V_{\ell} \in V(G)$ so

- $V_{1} \cup \cdots \cup V_{\ell}=V(G)$
- restricting edges to each V_{i} gives connected
 components with λ_{i} vertices.

Example

has connected partitions of type 4, 31, 211 and 1111

but is missing a connected partition of type 22.

Theorem (Wolfgang III 1997)

If a connected graph G with N vertices is e-positive, then G has a connected partition of type λ for every partition $\lambda \vdash N$.

Test: If G does not have a connected partition of some type then G is not e-positive.

ExAMPLE

does not have a connected partition of type 22. Hence it is not e-positive.

Schur-Positivity of trees

Theorem (Dahlberg-She-vW 2020)

Any tree with N vertices and a vertex of degree

$$
d>\left\lceil\frac{N}{2}\right\rceil
$$

is not Schur-positive.

Example

is not Schur-positive.

Conjectures

A spider

$$
S(i, j, k, \ldots)
$$

consists of disjoint paths $P_{i}, P_{j}, P_{k}, \ldots$ and a central vertex joined to a leaf in each path.

Example
$S(6,2,1)$

(1) Any tree with a vertex of degree 4 or 5 is not e-positive.
(2) The family of spiders $S(2(2 m+1), 2 m, 1)$ is e-positive. More generally, $S(n(n!m+1), n!m, 1)$ is e-positive.
(3) If a spider is e-positive, then its line graph is as well.

Widen the conjecture - Part 2
 Stanley's widening: Dahlberg, Foley, vW JEMS 2020

Stanley 1995:
We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

Widen the conjecture - Part 2
 Stanley's widening: Dahlberg, Foley, vW JEMS 2020

Stanley 1995:
We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.
We do.

The Claw aka K_{13}

The claw aka K_{13}

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

A Picture speaks 1000 Words

Stanley 1995:
We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

Claw-Contractible-Free: Brouwer-Veldman 1987

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

Example

Claw-Contractible-Free: Brouwer-Veldman 1987

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

Example

...WITH CHROMATIC SYMMETRIC FUNCTION

$2 e_{222}-6 e_{33}+26 e_{42}+28 e_{51}+102 e_{6}$
$2 e_{321}-6 e_{33}+24 e_{42}+40 e_{51}+120 e_{6}$
$2 e_{222}-12 e_{33}+30 e_{42}+24 e_{51}+186 e_{6}$
$2 e_{321}-6 e_{33}+20 e_{42}+32 e_{51}+228 e_{6}$

...WITH CHROMATIC SYMMETRIC FUNCTION

$2 e_{222}-6 e_{33}+26 e_{42}+28 e_{51}+102 e_{6}$
$2 e_{321}-6 e_{33}+24 e_{42}+40 e_{51}+120 e_{6}$
$2 e_{222}-12 e_{33}+30 e_{42}+24 e_{51}+186 e_{6}$
$2 e_{321}-6 e_{33}+20 e_{42}+32 e_{51}+228 e_{6}$

Smallest counterexamples to Stanley's statement.

Infinite family: SALTIRE GRAPHS

The saltire graph $S A_{n, n}$ for $n \geq 3$ is given by

with $S A_{3,3}$ on the left.

Infinite family: SALTIRE GRAPHS

Theorem (Dahlberg-Foley-vW 2020)
$S A_{n, n}$ for $n \geq 3$ is claw-contractible-free and

$$
\left[e_{n n}\right] X_{S A_{n, n}}=-n(n-1)(n-2) .
$$

CCF:

For any n: AUGMENTED SALTIRE GRAPHS

The augmented saltire graphs $A S_{n, n}, A S_{n, n+1}$ for $n \geq 3$.

Theorem (Dahlberg-Foley-vW 2020)
$A S_{n, n}$ and $A S_{n, n+1}$ for $n \geq 3$ are claw-contractible-free and

$$
\left[e_{n n}\right] X_{A S_{n, n}}=\left[e_{(n+1) n}\right] X_{A S_{n, n+1}}=-n(n-1)(n-2) .
$$

Claw-free: Beineke 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.

x

Claw-free: Beineke 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.

x

Claw-free: Beineke 1970

G is claw-free if there exists an edge partition giving complete graphs, every vertex in at most two.

\checkmark
x

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph $T T_{n, n, n}$ for $n \geq 3$ is given by

with $T T_{3,3,3}$ on the left.

And CLAW-FREE: TRIANGULAR TOWER GRAPHS

Theorem (Dahlberg-Foley-vW 2020)
$T T_{n, n, n}$ for $n \geq 3$ is claw-contractible-free, claw-free and

$$
\left[e_{n n n}\right] X_{T T_{n, n, n}}=-n(n-1)^{2}(n-2) .
$$

$C C F+C F:$

Conjectures

(1) Bloated $K_{3,3}$:

with $3 n$ vertices has

$$
-\left(3 \times 2^{n}\right) e_{3^{n}}
$$

(2) No G exists that is connected, claw-contractible-free, claw-free and not e-positive with 10, 11 vertices.

Scarcity

- $N=6$: 4 of 112 connected graphs ccf and not e-positive.
- $N=7: 7$ of 853 connected graphs ccf and not e-positive.
- $N=8: 27$ of 11117 connected graphs ccf and not e-positive.
- Of 293 terms in $T T_{7,7,7}$ only -ve at e_{777}.
- Of 564 terms in $T T_{8,8,8}$ only -ves at e_{888} and $-1944 e_{444444}$.
- Of 1042 terms in $T T_{9,9,9}$ only -ves at $e_{999},-768 e_{333333333}$.

A Picture speaks 1000 Words

A Picture speaks 1000 Words

In general, e-positivity has nothing to do with the claw.

Thank you very much!

