The (3+1)-free conjecture of Chromatic symmetric functions

Steph van Willigenburg University of British Columbia

Alberta-Montana Combinatorics and Algorithms Days at BIRS
June 23 - 25 2023

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G with vertices V(G) a proper colouring κ of G in k colours is

$$\kappa: V(G) \to \{1, 2, 3, \dots, k\}$$

so if $u, v \in V(G)$ are joined by an edge then

$$\kappa(u) \neq \kappa(v)$$
.

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial $\chi_G(k)$ is the number of proper colourings with k colours.

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial $\chi_G(k)$ is the number of proper colourings with k colours.

 \bigcirc has $\chi_G(k) = k(k-1)(k-2)$.

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G - \epsilon$.

Contract ϵ : shrink edge ϵ + identify vertices to get G/ϵ .

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G - \epsilon$.

Contract ϵ : shrink edge ϵ + identify vertices to get G/ϵ .

THEOREM (DELETION-CONTRACTION)

$$\chi_{G}(k) - \chi_{G-\epsilon}(k) + \chi_{G/\epsilon}(k) = 0$$

Given G with vertices V(G) a proper colouring κ of G is

$$\kappa: V(G) \to \{1, 2, 3, \ldots\}$$

so if $u, v \in V(G)$ are joined by an edge then

$$\kappa(u) \neq \kappa(v)$$
.

Given a proper colouring κ of vertices v_1, v_2, \ldots, v_N associate a monomial in commuting variables x_1, x_2, x_3, \ldots

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_N)}.$$

- \bigcirc B gives x_1x_2 .
- B gives $x_2x_1 = x_1x_2$.
- \bigcirc B gives x_1x_3 .

Given G with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_N)}$$

where the sum over all proper colourings κ .

$$\circ$$
 \circ has $X_G(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$.

- A
- B

- A
- B

- A
- E

- A
- B

- A
- B

- A
- B

- A
- B

- A
- B

- A
- B

MULTI-DELETION

THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that $\epsilon_1, \epsilon_2, \epsilon_3$ form a triangle. Then

$$X_G - X_{G - \{\epsilon_1\}} - X_{G - \{\epsilon_2\}} + X_{G - \{\epsilon_1, \epsilon_2\}} = 0.$$

MULTI-DELETION

THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that $\epsilon_1, \epsilon_2, \epsilon_3$ form a triangle. Then

$$X_G - X_{G - \{\epsilon_1\}} - X_{G - \{\epsilon_2\}} + X_{G - \{\epsilon_1, \epsilon_2\}} = 0.$$

THEOREM (k-DELETION: DAHLBERG-VW 2018)

Let G be such that $\epsilon_1, \epsilon_2, \dots, \epsilon_k$ form a k-cycle for $k \geq 3$. Then

$$\sum_{S\subseteq [k-1]} (-1)^{|S|} X_{G-\cup_{i\in S}\{\epsilon_i\}} = 0.$$

Deletion-contraction weighted X_G : Crew-Spirkl 2020.

SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting variables x_1, x_2, \ldots such that for all permutations π

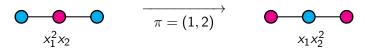
$$f(x_1, x_2,...) = f(x_{\pi(1)}, x_{\pi(2)},...).$$

SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting variables x_1, x_2, \ldots such that for all permutations π

$$f(x_1, x_2, \ldots) = f(x_{\pi(1)}, x_{\pi(2)}, \ldots).$$

 X_G is a symmetric function.



Let

$$\Lambda = \bigoplus_{N \geq 0} \Lambda^N \subset \mathbb{Q}[[x_1, x_2, \ldots]]$$

be the algebra of symmetric functions with Λ^N spanned by ...

CLASSICAL BASIS: POWER SUM

A partition $\lambda = \lambda_1 \ge \cdots \ge \lambda_\ell > 0$ of N is a list of positive integers whose sum is N: $3221 \vdash 8$.

The *i*-th power sum symmetric function is

$$p_i = x_1^i + x_2^i + x_3^i + \cdots$$

and for $\lambda = \lambda_1 \cdots \lambda_\ell$

$$p_{\lambda}=p_{\lambda_1}\cdots p_{\lambda_\ell}$$
.

$$p_{21} = p_2 p_1 = (x_1^2 + x_2^2 + x_3^2 + \cdots)(x_1 + x_2 + x_3 + \cdots)$$

CLASSICAL BASIS: POWER SUM

Given $S \subseteq E(G)$, $\lambda(S)$ is the partition determined by the connected components of G restricted to S.

EXAMPLE

$$G=\bigcirc \stackrel{\epsilon_1}{\longrightarrow} \bigcirc \stackrel{\epsilon_2}{\bigcirc} \bigcirc$$

$$G \text{ restricted to } S=\{\epsilon_2\} \text{ is } \bigcirc \stackrel{\epsilon_1}{\bigcirc} \bigcirc \bigcirc \bigcirc \bigcirc$$
 and $\lambda(S)=21.$

THEOREM (STANLEY 1995)

$$X_G = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda(S)}$$

CLASSICAL BASIS: POWER SUM

$$G = \bigcirc^{\epsilon_1} \bigcirc^{\epsilon_2} \bigcirc$$

G restricted to

•
$$S=\{\epsilon_1,\epsilon_2\}$$
 is $\overset{\epsilon_1}{\bigcirc}\overset{\epsilon_2}{\bigcirc}$ and $\lambda(S)=3$

•
$$S = \{\epsilon_1\}$$
 is $\bigcirc^{\epsilon_1}\bigcirc^{\epsilon_2}\bigcirc$ and $\lambda(S) = 21$

•
$$S = \{\epsilon_2\}$$
 is $O \longrightarrow O$ and $\lambda(S) = 21$

•
$$S=\emptyset$$
 is $\overset{\epsilon_1}{\bigcirc}\overset{\epsilon_2}{\bigcirc}$ $\overset{\epsilon_2}{\bigcirc}$ and $\lambda(S)=111.$

$$X_G = p_3 - 2p_{21} + p_{111}$$

The *i*-th elementary symmetric function is

$$e_i = \sum_{j_1 < \dots < j_i} x_{j_1} \cdots x_{j_i}$$

and for $\lambda = \lambda_1 \cdots \lambda_\ell$

$$e_{\lambda}=e_{\lambda_1}\cdots e_{\lambda_\ell}.$$

$$e_{21} = e_2 e_1 = (x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots)(x_1 + x_2 + x_3 + \cdots)$$

$$G = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc X_G = 3e_3 + e_{21}$$

THEOREM (STANLEY 1995)

If

$$X_G = \sum_{\lambda} c_{\lambda} e_{\lambda}$$

then

$$\sum_{\lambda \ \textit{with k parts}} c_{\lambda} = \ \textit{number of acyclic orientations with k sinks}.$$

$$G = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc X_G = 3e_3 + e_{21}$$

THEOREM (STANLEY 1995)

If

$$X_G = \sum_{\lambda} c_{\lambda} e_{\lambda}$$

then

$$\sum_{\lambda \text{ with k parts}} c_{\lambda} = \text{ number of acyclic orientations with k sinks.}$$

$$G = \longrightarrow X_G = 3e_3 + e_{21}$$

THEOREM (STANLEY 1995)

lf

$$X_G = \sum_{\lambda} c_{\lambda} e_{\lambda}$$

then

$$\sum_{\lambda \text{ with k parts}} c_{\lambda} = \text{ number of acyclic orientations with k sinks}.$$

THEOREM (STANLEY 1995)

If

$$X_G = \sum_{\lambda} c_{\lambda} e_{\lambda}$$

then

$$\sum_{\lambda \text{ with k parts}} c_{\lambda} = \text{ number of acyclic orientations with k sinks.}$$

$$G =$$
 $\propto X_G = 3e_3 + e_{21}$

THEOREM (STANLEY 1995)

If

$$X_G = \sum_{\lambda} c_{\lambda} e_{\lambda}$$

then

$$\sum_{\lambda \text{ with k parts}} c_{\lambda} = \text{ number of acyclic orientations with k sinks.}$$

PARTITIONS AND DIAGRAMS

A partition $\lambda = \lambda_1 \ge \cdots \ge \lambda_\ell > 0$ of N is a list of positive integers whose sum is N: $3221 \vdash 8$.

The diagram $\lambda = \lambda_1 \ge \cdots \ge \lambda_\ell > 0$ is the array of boxes with λ_i boxes in row i from the top.

Semi-standard Young Tableaux

A semi-standard Young tableau (SSYT) T of shape λ is a filling with $1, 2, 3, \ldots$ so rows weakly increase and columns increase.

1	1	1
2	4	
4	5	
6		

Given an SSYT T we have

$$x^T = x_1^{\#1s} x_2^{\#2s} x_3^{\#3s} \cdots$$

$$x_1^3 x_2 x_4^2 x_5 x_6$$

CLASSICAL BASIS: SCHUR

The Schur function is

$$s_{\lambda} = \sum_{T \text{ SSYT of shape } \lambda} x^{T}.$$

EXAMPLE

$$s_{21} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3 + \cdots$$

$$G = O - O - O$$
 $X_G = s_{21} + 4s_{111}$

(Wang-Wang 2020) Intricate formula for X_G .

G is e-positive if X_G is a positive linear combination of e_{λ} .

G is Schur-positive if X_G is a positive linear combination of s_λ .

G is e-positive if X_G is a positive linear combination of e_{λ} .

G is Schur-positive if X_G is a positive linear combination of s_{λ} .

O has
$$X_G = e_{21} + 3e_3$$
 \checkmark $X_G = 4s_{111} + s_{21}$ \checkmark

G is e-positive if X_G is a positive linear combination of e_{λ} .

G is Schur-positive if X_G is a positive linear combination of s_λ .

O—O has
$$X_G = e_{21} + 3e_3$$
 \checkmark $X_G = 4s_{111} + s_{21}$ \checkmark

has
$$X_G = e_{211} - 2e_{22} + 5e_{31} + 4e_4 \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{21} + s_{21}$$

G is e-positive if X_G is a positive linear combination of e_{λ} .

G is Schur-positive if X_G is a positive linear combination of s_{λ} .

O has
$$X_G = e_{21} + 3e_3$$
 \checkmark $X_G = 4s_{111} + s_{21}$ \checkmark

has
$$X_G = e_{211} - 2e_{22} + 5e_{31} + 4e_4 \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \times X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{21} + s_{21}$$

 K_{13} : Smallest graph that is not *e*-positive. Smallest graph that is not Schur-positive.

For
$$\lambda=\lambda_1\cdots\lambda_\ell$$

$$e_\lambda=\sum_\mu {\cal K}_{\mu\lambda} s_{\mu^t}$$

where $K_{\mu\lambda}=\#$ SSYTs of shape μ filled with λ_1 1s, ..., λ_ℓ ℓ s, and μ^t is the transpose of μ along the downward diagonal.

Hence $K_{\mu\lambda} \geq 0$ and

e-positivity implies Schur-positivity.

$$e_{21} = s_{21} + s_{111}$$
 $\begin{vmatrix} 1 & 1 \\ 2 & \end{vmatrix}$

- If *e*-positive, then it is related to permutation representations.
- We have *e*-positivity implies Schur-positivity.
- If Schur-positive, then it arises as the Frobenius image of some representation of a symmetric group.
- If Schur-positive, then it arises as the character of a polynomial representation of a general linear group.
- The Stanley-Stembridge conjecture.

Conjecture (Stanley-Stembridge 1993)

If G is an incomparability graph of a (3+1)-free poset then X_G is e-positive.

Conjecture (Stanley-Stembridge 1993)

If G is an incomparability graph of a (3+1)-free poset then X_G is e-positive.

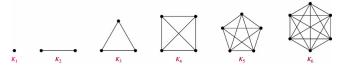
Conjecture (Stanley-Stembridge 1993)

If G is an incomparability graph of a (3+1)-free poset then X_G is e-positive.

THEOREM (GASHAROV 1996)

If G is an incomparability graph of a (3+1)-free poset then X_G is Schur-positive.

Guay-Paquet showed enough to prove it for unit interval graphs, namely a connected intersection of complete graphs in a row.



Conjecture (Stanley-Stembridge 1993)

If G is a connected intersection of complete graphs then G is e-positive.

Known cases of e-positive graphs

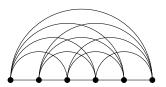
- 1993 Stanley-Stembridge: two complete graphs intersecting.
- 1995 Stanley: complete graphs K_2 intersecting at vertices

making a path.

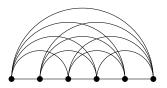
 2001 Gebhard-Sagan: complete graphs intersecting only at vertices.

• 2018 Dahlberg: complete graphs K_3 intersecting only at edges.

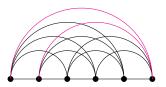
Note: We can draw the complete graph as follows.



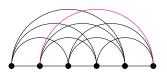
We have *e*-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).



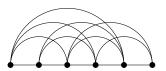
We have *e*-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).



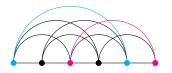
We have *e*-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).



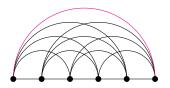
We have *e*-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).



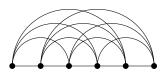
We have *e*-positivity for ice cream scoops: Take the complete graph and melt edges away from the right (or left).



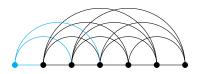
We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).



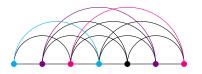
We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).



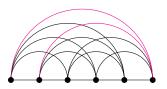
We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).



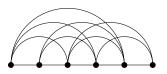
We have e-positivity for snowy peaks: Take the complete graph and melt one edge away and add dribbles from the right (or left).



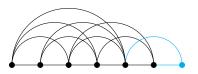
We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).



We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).



We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).



We have e-positivity for peaky snows: Take the complete graph and melt edges away and add one dribble from the right (or left).

NEW CASES OF STANLEY-STEMBRIDGE

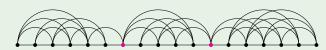
THEOREM (ALINIAEIFARD-WANG-VW 2021)

If G is a connected intersection at the rightmost and leftmost vertex of any combination of

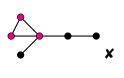
- ice cream scoops
- snowy peaks
- peaky snows
- complete graphs
- triangular ladders

then G is e-positive.

EXAMPLE



Widen the conjecture - Part 1 e-positivity of trees: Dahlberg, She, vW 2020



	N	1	2	3	4	5	6	7	8	9	10	11	12	13
-	trees	1	1	1	2	3	6	11	23	47	106	235	551	1301
-	<i>e</i> -pos	1	1	1	1	2	1	3	1	2	2	5	1	4

e-POSITIVITY OF TREES

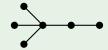
THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

$$d \ge \log_2 N + 1$$

is not e-positive.

EXAMPLE



is not e-positive.

e-POSITIVITY OF TREES

CONJECTURE (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

$$d \ge 4$$

is not e-positive.

(Zheng 2020) True for $d \ge 6$.

EXAMPLE

is not e-positive.

e-positivity test of Wolfgang III 1997

A graph has a connected partition of type $\lambda = \lambda_1 \cdots \lambda_\ell$ if we can find disjoint subsets of vertices $V_1, \ldots, V_\ell \in V(G)$ so

- $V_1 \cup \cdots \cup V_\ell = V(G)$
- restricting edges to each V_i gives connected components with λ_i vertices.

EXAMPLE

has connected partitions of type 4, 31, 211 and 1111

but is missing a connected partition of type 22.

e-positivity test of Wolfgang III 1997

THEOREM (WOLFGANG III 1997)

If a connected graph G with N vertices is e-positive, then G has a connected partition of type λ for every partition $\lambda \vdash N$.

Test: If *G* does not have a connected partition of some type then *G* is not *e*-positive.

EXAMPLE

does not have a connected partition of type 22. Hence it is not *e*-positive.

SCHUR-POSITIVITY OF TREES

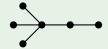
THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

$$d > \left\lceil \frac{N}{2} \right\rceil$$

is not Schur-positive.

EXAMPLE



is not Schur-positive.

Conjectures

A spider

$$S(i,j,k,\ldots)$$

consists of disjoint paths P_i, P_j, P_k, \ldots and a central vertex joined to a leaf in each path.

EXAMPLE S(6, 2, 1)

- Any tree with a vertex of degree 4 or 5 is not e-positive.
- ② The family of spiders S(2(2m+1), 2m, 1) is *e*-positive. More generally, S(n(n!m+1), n!m, 1) is *e*-positive.
- If a spider is e-positive, then its line graph is as well.

WIDEN THE CONJECTURE - PART 2 STANLEY'S WIDENING: DAHLBERG, FOLEY, VW JEMS 2020

Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

WIDEN THE CONJECTURE - PART 2 STANLEY'S WIDENING: DAHLBERG, FOLEY, VW JEMS 2020

Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not *e*-positive.

We do.

The claw aka K_{13}

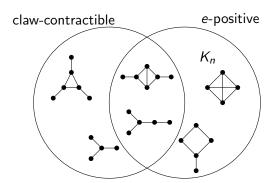
The claw aka K_{13}

Contracts to the claw: shrinking edges + identifying vertices + removing multiple edges = claw.

A PICTURE SPEAKS 1000 WORDS

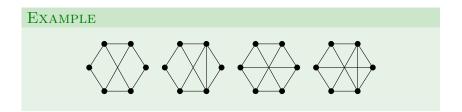
Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.



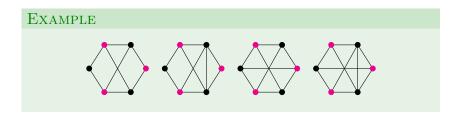
CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN 1987

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

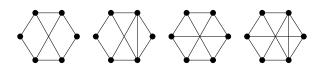


CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN 1987

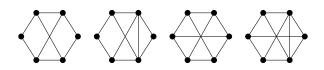
G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.



...WITH CHROMATIC SYMMETRIC FUNCTION



...WITH CHROMATIC SYMMETRIC FUNCTION

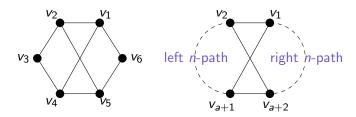


$$2e_{222}$$
 - $6e_{33}$ + $26e_{42}$ + $28e_{51}$ + $102e_{6}$
 $2e_{321}$ - $6e_{33}$ + $24e_{42}$ + $40e_{51}$ + $120e_{6}$
 $2e_{222}$ - $12e_{33}$ + $30e_{42}$ + $24e_{51}$ + $186e_{6}$
 $2e_{321}$ - $6e_{33}$ + $20e_{42}$ + $32e_{51}$ + $228e_{6}$

Smallest counterexamples to Stanley's statement.

Infinite family: Saltire graphs

The saltire graph $SA_{n,n}$ for $n \ge 3$ is given by



with $SA_{3,3}$ on the left.

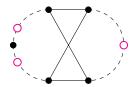
Infinite family: Saltire graphs

THEOREM (DAHLBERG-FOLEY-VW 2020)

 $SA_{n,n}$ for $n \ge 3$ is claw-contractible-free and

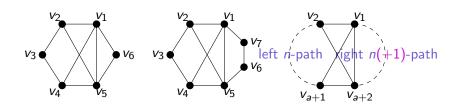
$$[e_{nn}]X_{SA_{n,n}} = -n(n-1)(n-2).$$

CCF:



FOR ANY n: AUGMENTED SALTIRE GRAPHS

The augmented saltire graphs $AS_{n,n}$, $AS_{n,n+1}$ for $n \ge 3$.



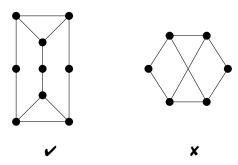
THEOREM (DAHLBERG-FOLEY-VW 2020)

 $AS_{n,n}$ and $AS_{n,n+1}$ for $n \geq 3$ are claw-contractible-free and

$$[e_{nn}]X_{AS_{n,n}} = [e_{(n+1)n}]X_{AS_{n,n+1}} = -n(n-1)(n-2).$$

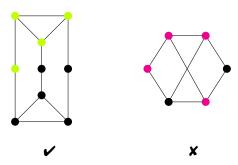
CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.



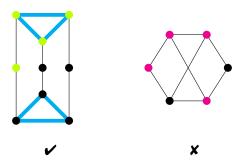
CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.



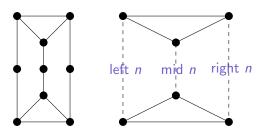
CLAW-FREE: BEINEKE 1970

G is claw-free if there exists an edge partition giving complete graphs, every vertex in at most two.



AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph $TT_{n,n,n}$ for $n \ge 3$ is given by



with $TT_{3,3,3}$ on the left.

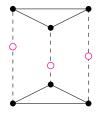
AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

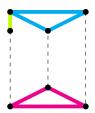
THEOREM (DAHLBERG-FOLEY-VW 2020)

 $TT_{n,n,n}$ for $n \ge 3$ is claw-contractible-free, claw-free and

$$[e_{nnn}]X_{TT_{n,n,n}} = -n(n-1)^2(n-2).$$

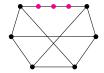
CCF+CF:





Conjectures

• Bloated $K_{3,3}$:



with 3n vertices has

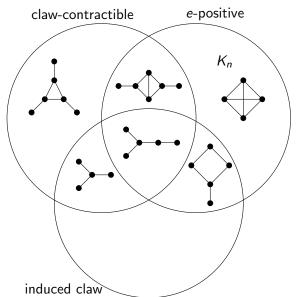
$$-(3\times 2^n)e_{3^n}$$
.

② No *G* exists that is connected, claw-contractible-free, claw-free and not *e*-positive with 10, 11 vertices.

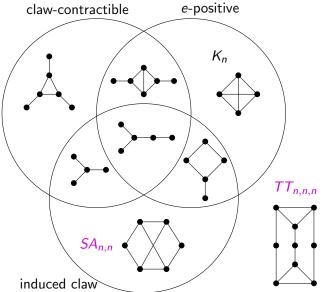
SCARCITY

- N = 6: 4 of 112 connected graphs ccf and not *e*-positive.
- N = 7: 7 of 853 connected graphs ccf and not e-positive.
- N = 8: 27 of 11117 connected graphs ccf and not *e*-positive.
- Of 293 terms in $TT_{7,7,7}$ only —ve at e_{777} .
- Of 564 terms in $TT_{8,8,8}$ only -ves at e_{888} and -1944 e_{444444} .
- Of 1042 terms in $TT_{9,9,9}$ only -ves at e_{999} , -768 $e_{3333333333}$.

A PICTURE SPEAKS 1000 WORDS



A PICTURE SPEAKS 1000 WORDS



In general, e-positivity has nothing to do with the claw.

Thank you very much!