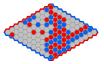
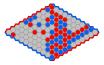
Values, Temperatures, and Enumeration of Placement Games

Svenja Huntemann

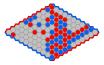
Dept. Mathematical & Physical Sciences Concordia University of Edmonton

Joint work with Neil McKay, Lexi Nash, and Craig Tennenhouse





• Two players are called Left (female, positive, bLue) and Right (male, negative, Red)



 $\bullet~\mathrm{NiM}$ was solved in 1902 by Bouton

- $\bullet~\mathrm{N{\scriptstyle IM}}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)
 - Number theory

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)
 - Number theory
 - Set theory

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)
 - Number theory
 - Set theory
 - Algebra

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)
 - Number theory
 - Set theory
 - Algebra
 - Computational complexity

- $\bullet~\mathrm{NIM}$ was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
 - This started modern combinatorial game theory
- Connections to:
 - Combinatorics (graph theory, design theory, etc.)
 - Number theory
 - Set theory
 - Algebra
 - Computational complexity
 - Artificial intelligence and machine learning

Strong Placement Games

• Strong Placement Game (SP-Game):

Strong Placement Games

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES,

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES,

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES,

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES, NIM, HEX

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES, NIM, HEX
- Independence game: Minimal forbidden formations are all pairs

- Strong Placement Game (SP-Game):
 - Players place pieces on empty spaces of the board according to the rules.
 - Pieces are not moved or removed once placed.
 - Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: SNORT, NOGO, ARC KAYLES, NIM, HEX
- Independence game: Minimal forbidden formations are all pairs
- Distance game: Placement of pieces restricted by sets of forbidden distances

• Write {Left options | Right options}

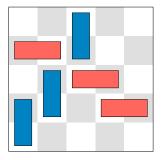
- Write {Left options | Right options}
- Winning conditions:

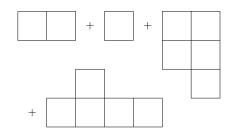
- Write {Left options | Right options}
- Winning conditions:
 - Normal Play: Lose if unable to move

- Write {Left options | Right options}
- Winning conditions:
 - Normal Play: Lose if unable to move
 - Misère Play: Win if unable to move

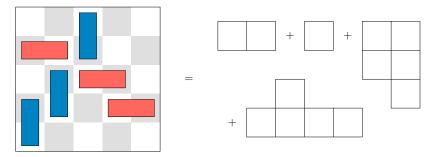
Combinatorial Game Theory - Disjunctive Sum

=





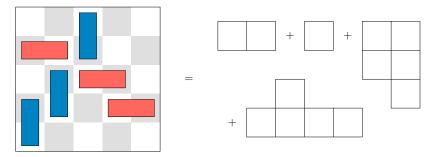
Combinatorial Game Theory - Disjunctive Sum



Definition

Given two combinatorial games G, H, their disjunctive sum G + H is the game in which the player on their turn chooses either G or H and makes a legal move in that game.

Combinatorial Game Theory - Disjunctive Sum



Definition

Given two combinatorial games G, H, their disjunctive sum G + H is the game in which the player on their turn chooses either G or H and makes a legal move in that game.

• Can get non-alternating play in one component

• Outcome classes:

- \mathcal{N} : First player wins
- \mathscr{P} : Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- R: Right wins, no matter who goes first

• Outcome classes:

- \mathcal{N} : First player wins
- \mathscr{P} : Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- R: Right wins, no matter who goes first
- Finding the outcome class of a large game is difficult
 - Analyze components separately and combine results
 - Issue: sums don't give unique answer

• Outcome classes:

- \mathcal{N} : First player wins
- \mathscr{P} : Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- R: Right wins, no matter who goes first
- Finding the outcome class of a large game is difficult
 - Analyze components separately and combine results
 - Issue: sums don't give unique answer

• For this we use game values

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class
 - Some game values:

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class
 - Some game values:
 - Integers

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class
 - Some game values:
 - Integers
 - Dyadic rationals

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class
 - Some game values:
 - Integers
 - Dyadic rationals
 - ▶ $* = \{0 \mid 0\}$

- For this we use game values
 - G = H: Can switch in disjunctive sum without changing who wins
 - Value of a game: its equivalence class
 - Some game values:
 - Integers
 - Dyadic rationals

•
$$* = \{0 \mid 0\}$$

▶
$$\pm 1 = \{1 \mid -1\}$$

Determine all possible values of a fixed SP-game.

• Very little is known for which game values are possible for placement games

- Very little is known for which game values are possible for placement games
- COL only has numbers or numbers plus *

- Very little is known for which game values are possible for placement games
- COL only has numbers or numbers plus *
- \bullet Lexi Nash generalized and showed that many ${\rm COL}\xspace$ -like games also only have those values

- Very little is known for which game values are possible for placement games
- COL only has numbers or numbers plus *
- $\bullet\,$ Lexi Nash generalized and showed that many ${\rm COL}\xspace$ like games also only have those values
- DOMINEERING has received a lot of attention, but still unknown

Research Problem 1.2

Are SP-games universal?

Research Problem 1.2

Are SP-games universal?

• Yes: Every combinatorial game is equal to an SP-game

Research Problem 1.2

Are SP-games universal?

- Yes: Every combinatorial game is equal to an SP-game
- No: Might be able to simplify game value calculations for SP-games

What are the values of SP-games under misère play?

What are the values of SP-games under misère play?

• SP-games likely to be good restricted universe

What are the values of SP-games under misère play?

- SP-games likely to be good restricted universe
- Recent advances for DOMINEERING by Dwyer, Milley, and Willette

Main Question 3: How urgent is it to move in a certain component?

• For this we use temperature

- For this we use temperature
 - Temperature: urgency of making a move

- For this we use temperature
 - Temperature: urgency of making a move
 - Boiling point: maximum temperature for a set of games

- For this we use temperature
 - Temperature: urgency of making a move
 - Boiling point: maximum temperature for a set of games
 - But calculating temperature is difficult

- For this we use temperature
 - Temperature: urgency of making a move
 - Boiling point: maximum temperature for a set of games
 - But calculating temperature is difficult
 - Try to find approximations and bounds to simplify this

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature
 - Temperature: urgency of making a move
 - Boiling point: maximum temperature for a set of games
 - But calculating temperature is difficult
 - Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J, K be two non-negative numbers. If for all $G \in S$, we have $\ell(G) \leq K$ and for all G^L and G^R that $\ell(G^L), \ell(G^R) \leq J$, then

$$BP(S) \le \frac{K}{2} + J.$$

What is the boiling point of distance games?

What is the boiling point of distance games?

• For COL it is 0

What is the boiling point of distance games?

- For COL it is 0
- For SNORT it is infinite in general

What is the boiling point of distance games?

- For COL it is 0
- For SNORT it is infinite in general
 - Appears that for specific board it is bounded by polynomial in degree and 2-degree

Is the boiling point of DOMINEERING 2?

• Conjectured by Berlekamp in 1970s

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?
 - Working with McKay and Tennenhouse on PARTIZAN ARCKAYLES

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?
 - Working with McKay and Tennenhouse on PARTIZAN ARCKAYLES
 - Using a genetic algorithm, we found a position with temperature $5/2\,$

• Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)

- Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)
- Second player win: Hetyei (2009), Nowakowski et al. (2013)

- Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)
- Second player win: Hetyei (2009), Nowakowski et al. (2013)
- On paths: Brown et al. (2019)

• To estimate this, we enumerate all possible positions

- To estimate this, we enumerate all possible positions
- Polynomial profile

- To estimate this, we enumerate all possible positions
- Polynomial profile
 - Bivariate: $P_G(x,y) = \sum_{i,j} f_{i,j} x^i y^j$

- To estimate this, we enumerate all possible positions
- Polynomial profile
 - Bivariate: $P_G(x,y) = \sum_{i,j} f_{i,j} x^i y^j$
 - Can be used to find the number of positions both in purely alternating play and in non-alternating play

Determine the bipartite independence polynomial of graph products.

• Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- \bullet For games such as ${\rm COL}$ or ${\rm SNORT}$ the auxiliary board is a graph product

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- For games such as COL or SNORT the auxiliary board is a graph product
- Brown et al. (2019) determined generating function for polynomial profile of COL and SNORT on paths

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- \bullet For games such as COL or SNORT the auxiliary board is a graph product
- Brown et al. (2019) determined generating function for polynomial profile of ${
 m COL}$ and ${
 m SNORT}$ on paths
 - Generalized with Lexi Nash to other distance games and other boards

Problem 3.2

Enumerate bipartite matchings.

Problem 3.2

Enumerate bipartite matchings.

Theorem (–, McKay, 2021)

The polynomial profile of DOMINEERING on an $m \times n$ board is the (1,1) entry of $G_{0,n}^m$ where

$$G_{0,q+1} = \begin{bmatrix} G_{0,q} & xG_{0,q} \\ +yG_{1,q} & & \\ &$$

n	Number of play positions	Ratio of play positions
1	1	1
2	5	0.71428
3	75	0.57251
4	4,632	0.46264
5	1,076,492	0.38299
6	963,182,263	0.32222
7	3,317,770,165,381	0.27774
8	43,809,083,383,524,391	0.24367
9	2,209,112,327,971,366,587,064	0.21689
10	424,273,291,301,040,427,702,718,109	0.19532

Snort and Col on Complete Bipartite

m/n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	3	9	27	81	243	729	2187	6561	19683	59049	177147	531441	1594323
1	3	7	17	43	113	307	857	2443	7073	20707	61097	181243	539633	
2	9	17	35	77	179	437	1115	2957	8099	22757	65195	189437		
3	27	43	77	151	317	703	1637	3991	10157	26863	73397			
4	81	113	179	317	611	1253	2699	6077	14291					
5	243	307	437	703	1253	2407	4877	10303						
6	729	857	1115	1637	2699	4877	9395							
7	2187	2443	2957	3991	6077	10303								
8	6561	7073	8099	10157	14291									
9	19683	20707	22757	26863										
10	59049	61097	65195	73397										
11	177147	181243	189437											
12	531441	539633												
13	1594323													

Conjecture (-, Nash, 2022)

The number of positions when playing COL or SNORT on the complete bipartite graph $K_{m,n}$ are recursively given by

$$P_{\text{COL},K_{m,n}}(1) = 5P_{\text{COL},K_{m,n-1}}(1) - 6P_{\text{COL},K_{m,n-2}}(1) + c_m$$

with c_m given by the OEIS sequence A260217 (first few terms are $c_2 = 4$, $c_3 = 24$, $c_4 = 100$, $c_5 = 360$, and $c_6 = 1204$).

• Games played on designs (with Melissa Huggan and Brett Stevens)

- Games played on designs (with Melissa Huggan and Brett Stevens)
- Computational complexity of sums and thermographs (with Kyle Burke, Matt Ferland, and Shanghua Teng)

References

- J.I. Brown, D. Cox, A. Hoefel, N. McKay, R. Milley, R.J. Nowakowski, A.A. Siegel. A Note on Polynomial Profiles of Placement Games. *Games* of No Chance 5, volume 70 of MSRI Publications, pages 21–33, Cambridge University Press, 2019.
- A. Dwyer, R. Milley, M. Willette. Domineering under misère play. To appear in *Integers*.
- S. Faridi, S. Huntemann, R.J. Nowakowski. Games and Complexes I: Transformation via Ideals. *Games of No Chance 5*, volume 70 of MSRI Publications, pages 293–304, Cambridge University Press, 2019.
- S. Faridi, S. Huntemann, R.J. Nowakowski. Simplicial Complexes are Game Complexes. *Electron. J. Combin.*, 26(3):P3.34, 2019.
- S. Huntemann, N.A. McKay. Counting Domineering Positions. Journal of Integer Sequences 24:21.4.8, 2021.
- S. Huntemann, L.A. Nash. The Polynomial Profile of Distance Games on Paths and Cycles. *Integers* 22:#G4, 2022.
- S. Huntemann, R.J. Nowakowski, C. Santos. Bounding game temperature using confusion intervals. *Theoret. Comput. Sci.*,855:43–60, 2021.