Values, Temperatures, and Enumeration of Placement Games

Svenja Huntemann

Dept. Mathematical \& Physical Sciences
Concordia University of Edmonton
Joint work with Neil McKay, Lexi Nash, and Craig Tennenhouse

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Examples

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

- Two players are called Left (female, positive, bLue) and Right (male, negative, Red)

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)
- Number theory

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)
- Number theory
- Set theory

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)
- Number theory
- Set theory
- Algebra

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)
- Number theory
- Set theory
- Algebra
- Computational complexity

Combinatorial Game Theory

- Nim was solved in 1902 by Bouton
- Sprague-Grundy theory in 1930s
- Berlekamp, Conway, and Guy discovered the algebraic structure of combinatorial games in the 1970s
- This started modern combinatorial game theory
- Connections to:
- Combinatorics (graph theory, design theory, etc.)
- Number theory
- Set theory
- Algebra
- Computational complexity
- Artificial intelligence and machine learning

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Placement Games

- Domineering: Played on a grid, players place dominoes, Left vertically and Right horizontally

- Col: Played on any finite graph, players claim (colour) vertices, no two vertices of the same player may be adjacent

Strong Placement Games

- Strong Placement Game (SP-Game):

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles,

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles,

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles,

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles, Nim, Hex

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles, Nim, Hex
- Independence game: Minimal forbidden formations are all pairs

Strong Placement Games

- Strong Placement Game (SP-Game):
- Players place pieces on empty spaces of the board according to the rules.
- Pieces are not moved or removed once placed.
- Every sequence of moves leading to a legal position consists of only legal moves.
- Examples: Snort, NoGo, Arc Kayles, Nim, Hex
- Independence game: Minimal forbidden formations are all pairs
- Distance game: Placement of pieces restricted by sets of forbidden distances

Combinatorial Game Theory

- Write \{Left options | Right options $\}$

Combinatorial Game Theory

- Write \{Left options | Right options\}
- Winning conditions:

Combinatorial Game Theory

- Write \{Left options | Right options\}
- Winning conditions:
- Normal Play: Lose if unable to move

Combinatorial Game Theory

- Write \{Left options | Right options\}
- Winning conditions:
- Normal Play: Lose if unable to move
- Misère Play: Win if unable to move

Combinatorial Game Theory - Disjunctive Sum

Combinatorial Game Theory - Disjunctive Sum

Definition

Given two combinatorial games G, H, their disjunctive sum $G+H$ is the game in which the player on their turn chooses either G or H and makes a legal move in that game.

Combinatorial Game Theory - Disjunctive Sum

Definition

Given two combinatorial games G, H, their disjunctive sum $G+H$ is the game in which the player on their turn chooses either G or H and makes a legal move in that game.

- Can get non-alternating play in one component

Outcome Classes and Addition

Main Question 1: Which player wins the game?

Outcome Classes and Addition

Main Question 1: Which player wins the game?

- Outcome classes:
- \mathscr{N} : First player wins
- \mathscr{P} : Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- \mathscr{R} : Right wins, no matter who goes first

Outcome Classes and Addition

Main Question 1: Which player wins the game?

- Outcome classes:
- \mathscr{N} : First player wins
- $\mathscr{P}:$ Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- \mathscr{R} : Right wins, no matter who goes first
- Finding the outcome class of a large game is difficult
- Analyze components separately and combine results
- Issue: sums don't give unique answer

Outcome Classes and Addition

Main Question 1: Which player wins the game?

- Outcome classes:
- \mathscr{N} : First player wins
- $\mathscr{P}:$ Second player wins
- \mathscr{L} : Left wins, no matter who goes first
- \mathscr{R} : Right wins, no matter who goes first
- Finding the outcome class of a large game is difficult
- Analyze components separately and combine results
- Issue: sums don't give unique answer

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class

Game Values

Main Question 2: How much of an advantage does the winning

 player have?- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class
- Some game values:

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class
- Some game values:
- Integers

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class
- Some game values:
- Integers
- Dyadic rationals

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class
- Some game values:
- Integers
- Dyadic rationals
- $*=\{0 \mid 0\}$

Game Values

Main Question 2: How much of an advantage does the winning player have?

- For this we use game values
- $G=H$: Can switch in disjunctive sum without changing who wins
- Value of a game: its equivalence class
- Some game values:
- Integers
- Dyadic rationals
- $*=\{0 \mid 0\}$
- $\pm 1=\{1 \mid-1\}$

Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

- Very little is known for which game values are possible for placement games

Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

- Very little is known for which game values are possible for placement games
- Col only has numbers or numbers plus *

Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

- Very little is known for which game values are possible for placement games
- Col only has numbers or numbers plus *
- Lexi Nash generalized and showed that many Col-like games also only have those values

Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

- Very little is known for which game values are possible for placement games
- Col only has numbers or numbers plus *
- Lexi Nash generalized and showed that many Col-like games also only have those values
- Domineering has received a lot of attention, but still unknown

Game Values

- A universal (class of) games takes on all possible game values

Game Values

- A universal (class of) games takes on all possible game values

Research Problem 1.2

Are SP-games universal?

Game Values

- A universal (class of) games takes on all possible game values

Research Problem 1.2

Are SP-games universal?

- Yes: Every combinatorial game is equal to an SP-game

Game Values

- A universal (class of) games takes on all possible game values

Research Problem 1.2

Are SP-games universal?

- Yes: Every combinatorial game is equal to an SP-game
- No: Might be able to simplify game value calculations for SP-games

Game Values

Research Problem 1.3

What are the values of SP-games under misère play?

Game Values

Research Problem 1.3

What are the values of SP-games under misère play?

- SP-games likely to be good restricted universe

Game Values

Research Problem 1.3

What are the values of SP-games under misère play?

- SP-games likely to be good restricted universe
- Recent advances for Domineering by Dwyer, Milley, and Willette

Temperature

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature

Temperature

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature
- Temperature: urgency of making a move

Temperature

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature
- Temperature: urgency of making a move
- Boiling point: maximum temperature for a set of games

Temperature

Main Question 3: How urgent is it to move in a certain

 component?- For this we use temperature
- Temperature: urgency of making a move
- Boiling point: maximum temperature for a set of games
- But calculating temperature is difficult

Temperature

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature
- Temperature: urgency of making a move
- Boiling point: maximum temperature for a set of games
- But calculating temperature is difficult
- Try to find approximations and bounds to simplify this

Temperature

Main Question 3: How urgent is it to move in a certain component?

- For this we use temperature
- Temperature: urgency of making a move
- Boiling point: maximum temperature for a set of games
- But calculating temperature is difficult
- Try to find approximations and bounds to simplify this

Theorem (-, Nowakowski, Santos, 2021)

Let S be a class of short games and J, K be two non-negative numbers. If for all $G \in S$, we have $\ell(G) \leq K$ and for all G^{L} and G^{R} that $\ell\left(G^{L}\right), \ell\left(G^{R}\right) \leq J$, then

$$
B P(S) \leq \frac{K}{2}+J
$$

Temperature

Research Problem 2.1

What is the boiling point of distance games?

Temperature

Research Problem 2.1

What is the boiling point of distance games?

- For Col it is 0

Temperature

Research Problem 2.1

What is the boiling point of distance games?

- For Col it is 0
- For Snort it is infinite in general

Temperature

Research Problem 2.1

What is the boiling point of distance games?

- For Col it is 0
- For Snort it is infinite in general
- Appears that for specific board it is bounded by polynomial in degree and 2-degree

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?
- Working with McKay and Tennenhouse on Partizan ArcKayles

Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

- Conjectured by Berlekamp in 1970s
- Study positions with temperature (close to) 2
- Snakes are interesting
- Grid structure of the board at core of this?
- Working with McKay and Tennenhouse on Partizan ArcKayles
- Using a genetic algorithm, we found a position with temperature $5 / 2$

Enumeration of Positions

- Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)

Enumeration of Positions

- Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)
- Second player win: Hetyei (2009), Nowakowski et al. (2013)

Enumeration of Positions

- Go: Farr (2003), Tromp and Farnebäck (2007), Farr and Schmidt (2008)
- Second player win: Hetyei (2009), Nowakowski et al. (2013)
- On paths: Brown et al. (2019)

Enumeration

Main Question 4: How complex is a complete analysis of a game?

- To estimate this, we enumerate all possible positions

Enumeration

Main Question 4: How complex is a complete analysis of a game?

- To estimate this, we enumerate all possible positions
- Polynomial profile

Enumeration

Main Question 4: How complex is a complete analysis of a game?

- To estimate this, we enumerate all possible positions
- Polynomial profile
- Bivariate: $P_{G}(x, y)=\sum_{i, j} f_{i, j} x^{i} y^{j}$

Enumeration

Main Question 4: How complex is a complete analysis of a game?

- To estimate this, we enumerate all possible positions
- Polynomial profile
- Bivariate: $P_{G}(x, y)=\sum_{i, j} f_{i, j} x^{i} y^{j}$
- Can be used to find the number of positions both in purely alternating play and in non-alternating play

Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph products.

Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph products.

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile

Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph products.

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- For games such as Col or Snort the auxiliary board is a graph product

Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph products.

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- For games such as Col or Snort the auxiliary board is a graph product
- Brown et al. (2019) determined generating function for polynomial profile of Col and SNORT on paths

Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph products.

- Independence games: can construct "auxiliary board" whose independence polynomial is the polynomial profile
- For games such as Col or Snort the auxiliary board is a graph product
- Brown et al. (2019) determined generating function for polynomial profile of Col and SNORT on paths
- Generalized with Lexi Nash to other distance games and other boards

Enumeration of Positions

Problem 3.2

Enumerate bipartite matchings.

Enumeration of Positions

Problem 3.2

Enumerate bipartite matchings.

Theorem (-, McKay, 2021)

The polynomial profile of Domineering on an $m \times n$ board is the $(1,1)$ entry of $G_{0, n}^{m}$ where
$G_{0, q+1}=\left[\begin{array}{cc}G_{0, q} & x G_{0, q} \\ +y G_{1, q} & \\ G_{0, q} & \mathbf{0}\end{array}\right] G_{1, q+1}=\left[\begin{array}{ll}G_{0, q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right]$

Play Positions

n	Number of play positions	Ratio of play positions
1	1	1
2	5	0.71428
3	75	0.57251
4	4,632	0.46264
5	$1,076,492$	0.38299
6	$963,182,263$	0.32222
7	$3,317,770,165,381$	0.27774
8	$43,809,083,383,524,391$	0.24367
9	$2,209,112,327,971,366,587,064$	0.21689
10	$424,273,291,301,040,427,702,718,109$	0.19532

Snort and Col on Complete Bipartite

m / n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	3	9	27	81	243	729	2187	6561	19683	59049	177147	531441	1594323
1	3	7	17	43	113	307	857	2443	7073	20707	61097	181243	539633	
2	9	17	35	77	179	437	1115	2957	8099	22757	65195	189437		
3	27	43	77	151	317	703	1637	3991	10157	26863	73397			
4	81	113	179	317	611	1253	2699	6077	14291					
5	243	307	437	703	1253	2407	4877	10303						
6	729	857	1115	1637	2699	4877	9395							
7	2187	2443	2957	3991	6077	10303								
8	6561	7073	8099	10157	14291									
9	19683	20707	22757	26863										
10	59049	61097	65195	73397										
11	177147	181243	189437											
12	531441	539633												
13	1594323													

Conjecture (-, Nash, 2022)

The number of positions when playing Col or Snort on the complete bipartite graph $K_{m, n}$ are recursively given by

$$
P_{\mathrm{CoL}, K_{m, n}}(1)=5 P_{\mathrm{CoL}, K_{m, n-1}}(1)-6 P_{\mathrm{CoL}, K_{m, n-2}}(1)+c_{m}
$$

with c_{m} given by the OEIS sequence A260217 (first few terms are $c_{2}=4, c_{3}=24, c_{4}=100, c_{5}=360$, and $c_{6}=1204$).

Other Research Projects

- Games played on designs (with Melissa Huggan and Brett Stevens)

Other Research Projects

- Games played on designs (with Melissa Huggan and Brett Stevens)
- Computational complexity of sums and thermographs (with Kyle Burke, Matt Ferland, and Shanghua Teng)

Thank you!

References

- J.I. Brown, D. Cox, A. Hoefel, N. McKay, R. Milley, R.J. Nowakowski, A.A. Siegel. A Note on Polynomial Profiles of Placement Games. Games of No Chance 5, volume 70 of MSRI Publications, pages 21-33, Cambridge University Press, 2019.
- A. Dwyer, R. Milley, M. Willette. Domineering under misère play. To appear in Integers.
- S. Faridi, S. Huntemann, R.J. Nowakowski. Games and Complexes I: Transformation via Ideals. Games of No Chance 5, volume 70 of MSRI Publications, pages 293-304, Cambridge University Press, 2019.
- S. Faridi, S. Huntemann, R.J. Nowakowski. Simplicial Complexes are Game Complexes. Electron. J. Combin., 26(3):P3.34, 2019.
- S. Huntemann, N.A. McKay. Counting Domineering Positions. Journal of Integer Sequences 24:21.4.8, 2021.
- S. Huntemann, L.A. Nash. The Polynomial Profile of Distance Games on Paths and Cycles. Integers 22:\#G4, 2022.
- S. Huntemann, R.J. Nowakowski, C. Santos. Bounding game temperature using confusion intervals. Theoret. Comput. Sci.,855:43-60, 2021.

