Time periodic solutions near shear/radial flows for 2D Euler

New Trends in Fluids and Collective Dynamics
July 23-28, Banff, 2023

DANIEL LEAR

Joint work with Ángel Castro

2D Euler

The incompressible Euler eqn's are the following PDE's for (\mathbf{v}, p) :

$$
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\nabla p=0, \quad \nabla \cdot \mathbf{v}=0 .
$$

2D Euler

The incompressible Euler eqn's are the following PDE's for (\mathbf{v}, p) :

$$
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\nabla p=0, \quad \nabla \cdot \mathbf{v}=0 .
$$

Vorticity formulation ($w=: \nabla^{\perp} \cdot \mathbf{v}$):

$$
\partial_{t} w+\nabla^{\perp} \psi \cdot \nabla w=0, \quad \Delta \psi=w .
$$

2D Euler

The incompressible Euler eqn's are the following PDE's for (\mathbf{v}, p) :

$$
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\nabla p=0, \quad \nabla \cdot \mathbf{v}=0
$$

Vorticity formulation $\left(w=: \nabla^{\perp} \cdot \mathbf{v}\right)$:

$$
\partial_{t} w+\nabla^{\perp} \psi \cdot \nabla w=0, \quad \Delta \psi=w .
$$

- Global existence of classical solutions for 2D Euler \checkmark
- Qualitative behaviour of 2D Euler for long times x

2D Euler and shear/radial flows

Two important classes of steady states for 2D Euler:
Shear flows in a strip-type domain $(\mathbb{T} \times \mathbb{R}$ or $\mathbb{T} \times[0,1])$

$$
\mathbf{v}(\mathbf{x})=(U(y), 0), \quad \omega(\mathbf{x})=-U^{\prime}(y)
$$

2D Euler and shear/radial flows

Two important classes of steady states for 2D Euler:
Shear flows in a strip-type domain $(\mathbb{T} \times \mathbb{R}$ or $\mathbb{T} \times[0,1])$

$$
\mathbf{v}(\mathbf{x})=(U(y), 0), \quad \omega(\mathbf{x})=-U^{\prime}(y)
$$

Radial flows in a circular-type domain (disc or annulus)

$$
\mathbf{v}(\mathbf{x})=V(|\mathbf{x}|) \frac{\mathbf{x}^{\perp}}{|\mathbf{x}|}, \quad \omega(|\mathbf{x}|)=\frac{V(|\mathbf{x}|)}{|\mathbf{x}|}+V^{\prime}(|\mathbf{x}|)
$$

2D Euler and shear/radial flows

Two important classes of steady states for 2D Euler:
Shear flows in a strip-type domain $(\mathbb{T} \times \mathbb{R}$ or $\mathbb{T} \times[0,1])$

$$
\mathbf{v}(\mathbf{x})=(U(y), 0), \quad \omega(\mathbf{x})=-U^{\prime}(y)
$$

Radial flows in a circular-type domain (disc or annulus)

$$
\mathbf{v}(\mathbf{x})=V(|\mathbf{x}|) \frac{\mathbf{x}^{\perp}}{|\mathbf{x}|}, \quad \omega(|\mathbf{x}|)=\frac{V(|\mathbf{x}|)}{|\mathbf{x}|}+V^{\prime}(|\mathbf{x}|)
$$

Some remarkable examples:

$$
\begin{gathered}
U_{C}(y)=y, \quad U_{P}(y)=y^{2}, \quad U_{K}(y)=\sin (y) \\
V_{T C}(|\mathbf{x}|)=|\mathbf{x}|+|\mathbf{x}|^{-1}, \quad V_{G}(r)=e^{-|\mathbf{x}|^{2}}
\end{gathered}
$$

Arnold's stability

Any steady Euler flow $\mathbf{v}=\nabla^{\perp} \psi$ satisfies

$$
\nabla^{\perp} \psi \cdot \nabla \Delta \psi=0 .
$$

Arnold's stability

Any steady Euler flow $\mathbf{v}=\nabla^{\perp} \psi$ satisfies

$$
\nabla^{\perp} \psi \cdot \nabla \Delta \psi=0 .
$$

Hence, if

$$
\Delta \psi=F(\psi), \quad F \in C^{1},
$$

then ψ is a steady solution.

Arnold's stability

Any steady Euler flow $\mathbf{v}=\nabla^{\perp} \psi$ satisfies

$$
\nabla^{\perp} \psi \cdot \nabla \Delta \psi=0 .
$$

Hence, if

$$
\Delta \psi=F(\psi), \quad F \in C^{1}
$$

then ψ is a steady solution.
Arnold's stability (1960's):

$$
\left.\begin{array}{c}
-\lambda_{1}(D)<F^{\prime}(\psi)<0 \\
0<F^{\prime}(\psi)<+\infty
\end{array}\right\} \Longrightarrow \text { nonlinearly (Lyapunov) stable in } L^{2} . \Longrightarrow \quad \text { nonlinearly (Lyapunov) stable in } L^{\infty}
$$

Arnold's stability

Any steady Euler flow $\mathbf{v}=\nabla^{\perp} \psi$ satisfies

$$
\nabla^{\perp} \psi \cdot \nabla \Delta \psi=0 .
$$

Hence, if

$$
\Delta \psi=F(\psi), \quad F \in C^{1}
$$

then ψ is a steady solution.
Arnold's stability (1960's):

$$
\begin{gathered}
-\lambda_{1}(D)<F^{\prime}(\psi)<0 \\
\left.\begin{array}{c}
0<F^{\prime}(\psi)<+\infty
\end{array}\right\} \Longrightarrow \quad \text { nonlinearly (Lyapunov) stable in } L^{2} \\
F(\psi)=(\text { cte }) \Longrightarrow \quad \text { nonlinearly (Lyapunov) stable in } L^{\infty}
\end{gathered}
$$

Couette and Taylor-Couette flows are stable in L^{∞}.
Pouseville flow is stable in L^{2}.

Are these shear/radial flows un/stable?

We consider the ansatz

$$
\mathbf{v}(\mathbf{x}, t):=(U(y), 0)+\mathbf{u}(\mathbf{x}, t) .
$$

Are these shear/radial flows un/stable?

We consider the ansatz

$$
\mathbf{v}(\mathbf{x}, t):=(U(y), 0)+\mathbf{u}(\mathbf{x}, t)
$$

Then,

$$
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p+U(y) \partial_{x} \mathbf{u}+\left(U^{\prime}(y), 0\right) u_{2}=0, \quad \nabla \cdot \mathbf{u}=0
$$

or equivalently

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+U(y) \partial_{x} \omega-U^{\prime \prime}(y) \partial_{x} \psi=0, \quad \Delta \psi=\omega .
$$

Are these shear/radial flows un/stable?

We consider the ansatz

$$
\mathbf{v}(\mathbf{x}, t):=(U(y), 0)+\mathbf{u}(\mathbf{x}, t)
$$

Then,

$$
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p+U(y) \partial_{x} \mathbf{u}+\left(U^{\prime}(y), 0\right) u_{2}=0, \quad \nabla \cdot \mathbf{u}=0
$$

or equivalently

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+U(y) \partial_{x} \omega-U^{\prime \prime}(y) \partial_{x} \psi=0, \quad \Delta \psi=\omega .
$$

What happens at $t \rightarrow \infty$?

$$
\left\|\mathbf{u}_{0}\right\|_{X} \ll 1 \Longrightarrow \lim _{t \rightarrow \infty}\|\mathbf{u}(t)\|_{Y}=? ?
$$

Are these shear/radial flows un/stable?

We consider the ansatz

$$
\mathbf{v}(\mathbf{x}, t):=(U(y), 0)+\mathbf{u}(\mathbf{x}, t)
$$

Then,

$$
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p+U(y) \partial_{x} \mathbf{u}+\left(U^{\prime}(y), 0\right) u_{2}=0, \quad \nabla \cdot \mathbf{u}=0
$$

or equivalently

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+U(y) \partial_{x} \omega-U^{\prime \prime}(y) \partial_{x} \psi=0, \quad \Delta \psi=\omega .
$$

What happens at $t \rightarrow \infty$?

$$
\left\|\mathbf{u}_{0}\right\|_{X} \ll 1 \Longrightarrow \lim _{t \rightarrow \infty}\|\mathbf{u}(t)\|_{Y}=? ?
$$

In 1907, Orr predicted the inviscid damping for the Couette flow

$$
\begin{aligned}
& \text { shear flow }+ \text { perturbation } \rightarrow \text { new shear } \\
& \text { flow }
\end{aligned}
$$

Couette flow

Perturbation of the Couette flow in $\mathbb{T} \times \mathbb{R}$

The equation for a perturbation of the Couette flow

$$
\mathbf{v}(\mathbf{x}, t)=(y, 0)+\mathbf{u}(\mathbf{x}, t), \quad w(\mathbf{x}, t)=-1+\omega(\mathbf{x}, t)
$$

is given by

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+y \partial_{\chi} \omega=0,
$$

with

$$
\psi=\Delta^{-1} \omega=\int_{\mathbb{T} \times \mathbb{R}} \log (\cosh (y-\bar{y})-\cos (x-\bar{x})) \omega(\bar{x}, \bar{y}) \mathrm{d} \bar{x} \mathrm{~d} \bar{y} .
$$

Traveling waves and stationary states

Lin-Zeng (2011). Inviscid dynamical structures near Couette flow

- Existence of nontrivial and smooth stationary states arbitrarily close to the Couette flow in the $H^{<\frac{3}{2}}$ topology.

- Nonexistence of nontrivial smooth traveling waves arbitrarily close to the Couette flow in the $H^{\frac{3}{2}}$ topology. All steady states near Couette in $H^{>\frac{3}{2}}$ are shears.

Traveling waves and stationary states

Lin-Zeng (2011). Inviscid dynamical structures near Couette flow

- Existence of nontrivial and smooth stationary states arbitrarily close to the Couette flow in the $H^{<\frac{3}{2}}$ topology.

- Nonexistence of nontrivial smooth traveling waves arbitrarily close to the Couette flow in the $H^{\frac{3}{2}}$ topology. All steady states near Couette in $H^{\frac{3}{2}}$ are shears.

The above results immediately implies that nonlinear inviscid damping is NOT TRUE in any $H^{s}(s<3 / 2)$ neighborhood of Couette flow.

[^0]
Inviscid damping in Gevrey spaces

ANALYTICAL \subset GEVREY \subset SMOOTH

Gevrey spaces \mathcal{G}^{s} :

$$
\left|\partial^{m} f\right| \leq K^{m}(m!)^{s} \quad \forall m \geq 0 .
$$

Inviscid damping in Gevrey spaces

ANALYTICAL \subset GEVREY \subset SMOOTH

Gevrey spaces \mathcal{G}^{s} :

$$
\left|\partial^{m} f\right| \leq K^{m}(m!)^{s} \quad \forall m \geq 0 .
$$

- Bedrossian-Masmoudi (2013): Inviscid damping and asymptotic stability for small perturbations in $\mathcal{G}^{s}, \frac{1}{2}<s \leq 1$.
- Deng-Masmoudi (2018): Long time instability if the perturbation is less smooth than Gevrey $\mathcal{G}^{s}, s<\frac{1}{2}$.
- Ionescu-Jia \& Masmoudi-Zhao (2020): finite channel $\mathbb{T} \times[0,1]$.
- More results...

Inviscid damping in Gevrey spaces

ANALYTICAL \subset GEVREY \subset SMOOTH

Gevrey spaces \mathcal{G}^{s} :

$$
\left|\partial^{m} f\right| \leq K^{m}(m!)^{s} \quad \forall m \geq 0 .
$$

- Bedrossian-Masmoudi (2013): Inviscid damping and asymptotic stability for small perturbations in $\mathcal{G}^{s}, \frac{1}{2}<s \leq 1$.
- Deng-Masmoudi (2018): Long time instability if the perturbation is less smooth than Gevrey $\mathcal{G}^{s}, s<\frac{1}{2}$.
- Ionescu-Jia \& Masmoudi-Zhao (2020): finite channel $\mathbb{T} \times[0,1]$.
- More results...

STEADY STATES NO TRAVELING WAVES

Our result

For any $0 \leq s<3 / 2$ and $\epsilon>0$, the perturbed 2D Euler system admits a nontrivial smooth traveling wave solution satisfying

$$
\|w+1\|_{H^{s}(\mathbb{T} \times \mathbb{R})} \equiv \| \omega_{H^{s}(\mathbb{T} \times \mathbb{R})}<\epsilon .
$$

Our result

For any $0 \leq s<3 / 2$ and $\epsilon>0$, the perturbed 2D Euler system admits a nontrivial smooth traveling wave solution satisfying

$$
\|w+1\|_{H^{s}(\mathbb{T} \times \mathbb{R})} \equiv\|\omega\|_{H^{s}(\mathbb{T} \times \mathbb{R})}<\epsilon .
$$

nontrivial smooth traveling wave means...

- Traveling wave:

$$
\omega(x, y, t)=\widetilde{\omega}(x+\lambda t, y) .
$$

- Nontrivial: the dependence on x is nontrivial.
- Smooth: $\omega \in C_{c}^{\infty}$ but its H^{s}-norm is large for $s>3 / 2$.

Our result

For any $0 \leq s<3 / 2$ and $\epsilon>0$, the perturbed 2D Euler system admits a nontrivial smooth traveling wave solution satisfying

$$
\|w+1\|_{H^{s}(\mathbb{T} \times \mathbb{R})} \equiv\|\omega\|_{H^{s}(\mathbb{T} \times \mathbb{R})}<\epsilon .
$$

nontrivial smooth traveling wave means...

- Traveling wave:

$$
\omega(x, y, t)=\widetilde{\omega}(x+\lambda t, y) .
$$

- Nontrivial: the dependence on x is nontrivial.
- Smooth: $\omega \in C_{c}^{\infty}$ but its H^{s}-norm is large for $s>3 / 2$.

The support of $\nabla \omega$ is concentrated around $y= \pm L$.
The speed of the wave satisfies

$$
\lambda=L+O(\epsilon) .
$$

Symmetries of the system

Galilean invariance:

$$
\mathbf{v}(x, y, t) \quad \sim \quad \overline{\mathbf{v}}(x, y, t)=\mathbf{v}(x+\lambda t, y, t)-(\lambda, 0)
$$

Symmetries of the system

Galilean invariance:

$$
\mathbf{v}(x, y, t) \quad \sim \quad \overline{\mathbf{v}}(x, y, t)=\mathbf{v}(x+\lambda t, y, t)-(\lambda, 0)
$$

If $\mathbf{v}_{\text {steady }}(x, y)$ is a nontrivial Lin-Zeng stationary solution then

$$
\overline{\mathbf{v}}_{\text {traveling }}(x, y, t)=\mathbf{v}_{\text {steady }}(x+\lambda t, y)-(\lambda, 0)
$$

is a nontrivial traveling wave.

Symmetries of the system

Galilean invariance:

$$
\mathbf{v}(x, y, t) \quad \sim \quad \overline{\mathbf{v}}(x, y, t)=\mathbf{v}(x+\lambda t, y, t)-(\lambda, 0)
$$

If $\mathbf{v}_{\text {steady }}(x, y)$ is a nontrivial Lin-Zeng stationary solution then

$$
\overline{\mathbf{v}}_{\text {traveling }}(x, y, t)=\mathbf{v}_{\text {steady }}(x+\lambda t, y)-(\lambda, 0)
$$

is a nontrivial traveling wave.

From steady states to traveling waves:

$$
v_{1}(x, y)-y=O(\epsilon) \quad \Longrightarrow \quad \bar{v}_{1}(x, y, t)-y=O(\epsilon) \quad \text { if } \quad \lambda=O(\epsilon)
$$

Symmetries of the system

Galilean invariance:

$$
\mathbf{v}(x, y, t) \quad \sim \quad \overline{\mathbf{v}}(x, y, t)=\mathbf{v}(x+\lambda t, y, t)-(\lambda, 0)
$$

If $\mathbf{v}_{\text {steady }}(x, y)$ is a nontrivial Lin-Zeng stationary solution then

$$
\overline{\mathbf{v}}_{\text {traveling }}(x, y, t)=\mathbf{v}_{\text {steady }}(x+\lambda t, y)-(\lambda, 0)
$$

is a nontrivial traveling wave.

From steady states to traveling waves:

$$
v_{1}(x, y)-y=O(\epsilon) \quad \Longrightarrow \quad \bar{v}_{1}(x, y, t)-y=O(\epsilon) \quad \text { if } \quad \lambda=O(\epsilon)
$$

Our traveling waves satisfy $v_{1}(x, y)-y=O(\epsilon)$ with $\lambda=O(1)$.

Taylor-Couette flow

2D Euler in polar coordinates

$$
\partial_{t} w+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} w-\partial_{r} \psi \partial_{\theta} w\right)=0, \quad-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi=w
$$

2D Euler in polar coordinates

$$
\partial_{t} W+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} w-\partial_{r} \psi \partial_{\theta} w\right)=0, \quad-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi=w .
$$

The velocity $\mathbf{v}(\mathbf{x})=v^{r}(r, \theta) \mathbf{e}_{r}+v^{\theta}(r, \theta) \mathbf{e}_{\theta}$ is recovered via

$$
\left(v^{r}, v^{\theta}\right)=\left(\frac{1}{r} \partial_{\theta} \psi,-\partial_{r} \psi\right) .
$$

2D Euler in polar coordinates

$$
\partial_{t} W+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} w-\partial_{r} \psi \partial_{\theta} w\right)=0, \quad-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi=w .
$$

The velocity $\mathbf{v}(\mathbf{x})=v^{r}(r, \theta) \mathbf{e}_{r}+v^{\theta}(r, \theta) \mathbf{e}_{\theta}$ is recovered via

$$
\left(v^{r}, v^{\theta}\right)=\left(\frac{1}{r} \partial_{\theta} \psi,-\partial_{r} \psi\right) .
$$

2D Euler in polar coordinates

$$
\partial_{t} w+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} w-\partial_{r} \psi \partial_{\theta} w\right)=0, \quad-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi=w .
$$

The velocity $\mathbf{v}(\mathbf{x})=v^{r}(r, \theta) \mathbf{e}_{r}+v^{\theta}(r, \theta) \mathbf{e}_{\theta}$ is recovered via

$$
\left(v^{r}, v^{\theta}\right)=\left(\frac{1}{r} \partial_{\theta} \psi,-\partial_{r} \psi\right) .
$$

Taylor-Couette flow:
Let $0<r_{1}<r_{2}<\infty$ and $\Omega_{r_{1}, r_{2}}=\left\{\mathbf{x} \in \mathbb{R}^{2}: r_{1} \leq|\mathbf{x}| \leq r_{2}\right\}$

$$
v^{\theta}(r)=A r+\frac{B}{r}, \quad A, B \in \mathbb{R} .
$$

2D Euler in polar coordinates

$$
\partial_{t} w+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} w-\partial_{r} \psi \partial_{\theta} w\right)=0, \quad-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi=w
$$

The velocity $\mathbf{v}(\mathbf{x})=v^{r}(r, \theta) \mathbf{e}_{r}+v^{\theta}(r, \theta) \mathbf{e}_{\theta}$ is recovered via

$$
\left(v^{r}, v^{\theta}\right)=\left(\frac{1}{r} \partial_{\theta} \psi,-\partial_{r} \psi\right)
$$

Taylor-Couette flow:

$$
\begin{aligned}
& \text { Let } 0<r_{1}<r_{2}<\infty \text { and } \Omega_{r_{1}, r_{2}}=\left\{\mathbf{x} \in \mathbb{R}^{2}: r_{1} \leq|\mathbf{x}| \leq r_{2}\right\} \\
& \qquad v^{\theta}(r)=A r+\frac{B}{r}, \quad A, B \in \mathbb{R} .
\end{aligned}
$$

Time-periocic (rotanting) solutions in an annular domain near
Taylor-Couette flow can be constructed using a similar strategy.

(Asymptotic) stability of a steady circular flow

- Bedrosian-Zelati-Vicol (2019): Linear inviscid damping around radially symmetric, strictly monotone decreasing vorticity.
- Ionesuc-Jia (2019): Asymptotic stability of point vortex solutions.
- Gallay-Sverak (2021): Stability of $w(r)=e^{-r^{2} / 4}$ and $w(r)=\left(1+|r|^{2}\right)^{-k}, k>1$ for 2D Euler and NS with low regularity.

(Asymptotic) stability of a steady circular flow

- Bedrosian-Zelati-Vicol (2019): Linear inviscid damping around radially symmetric, strictly monotone decreasing vorticity.
- Ionesuc-Jia (2019): Asymptotic stability of point vortex solutions.
- Gallay-Sverak (2021): Stability of $w(r)=e^{-r^{2} / 4}$ and $w(r)=\left(1+|r|^{2}\right)^{-k}, k>1$ for 2D Euler and NS with low regularity.

Some previous results for the Taylor-Couette:

- Zillinger \& Zelati-Zillinger (2017,2019): Linear inviscid damping around Taylor-Couette.
- An-He-Li $(2021,2023)$: Enhanced dissipation and nonlinear asymptotic stability of Taylor-Couette for 2D NS.

Perturbation of the Taylor-Couette flow in $\Omega_{r_{1}, r_{2}}$

The equation for a perturbation of the Taylor-Couette flow

$$
\mathbf{v}(r, \theta, t)=\left(0, A r+\frac{B}{r}\right)+\mathbf{u}(r, \theta, t), \quad w(r, \theta, t)=2 A+\omega(r, \theta, t)
$$

is given by

$$
\partial_{t} \omega+\frac{1}{r}\left(\partial_{\theta} \psi \partial_{r} \omega-\partial_{r} \psi \partial_{\theta} \omega\right) \omega+\left(A r+\frac{B}{r}\right) \partial_{\theta} \omega=0, \quad \text { on } \quad \Omega_{r_{1}, r_{2}}
$$

with ψ solving

$$
\left\{\begin{aligned}
-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi & =\omega, \quad \text { on } \quad \Omega_{r_{1}, r_{2}} \\
\left.\psi\right|_{r=r_{1}, r_{2}} & =0 .
\end{aligned}\right.
$$

Splitting the domain $\Omega_{r_{1}, r_{2}}$

We are looking for a solution with the following structure:
$\omega(t)= \begin{cases}0 & \Omega_{\text {Inner }}, \\ \operatorname{smooth}(t) & \Omega_{R_{1}}, \\ \epsilon & \Omega_{\text {Middle }} \\ \operatorname{smooth}(t) & \Omega_{R_{2}}, \\ 0 & \Omega_{\text {Outer }},\end{cases}$

with $r_{1}<R_{1}<R_{2}<r_{2}$ and $\left|\Omega_{R_{i}}\right|=O(\epsilon)$, for $i=1,2$.
The dynamics of the perturbation occurs only on $\Omega_{R_{1}}(t) \cup \Omega_{R_{2}}(t)$.

2D Euler as an equation for the level curves/sets

We assume that

$$
\Omega_{R_{i}}(t)=\left\{(\rho+f(\rho, \theta, t))(\cos \theta, \sin \theta), \rho \in\left[R_{i}-\epsilon, R_{i}+\epsilon\right], \theta \in \mathbb{T}\right\} .
$$

2D Euler as an equation for the level curves/sets

We assume that

$$
\Omega_{R_{i}}(t)=\left\{(\rho+f(\rho, \theta, t))(\cos \theta, \sin \theta), \rho \in\left[R_{i}-\epsilon, R_{i}+\epsilon\right], \theta \in \mathbb{T}\right\} .
$$

Using the transport character of the vorticity formulation:

$$
\omega(\rho+f(\rho, \theta, t), \theta, t)=\varpi(\rho), \quad(\rho, \theta) \in\left[R_{i}-\epsilon, R_{i}+\epsilon\right] \times \mathbb{T} \quad \forall t \geq 0 .
$$

$$
w\left(\rho_{*}+f\left(\rho_{*}, \theta\right), \theta\right)=\pi\left(\rho_{* *}\right)
$$

2D Euler as an equation for the level curves/sets

We assume that

$$
\Omega_{R_{i}}(t)=\left\{(\rho+f(\rho, \theta, t))(\cos \theta, \sin \theta), \rho \in\left[R_{i}-\epsilon, R_{i}+\epsilon\right], \theta \in \mathbb{T}\right\} .
$$

Using the transport character of the vorticity formulation:

$$
\omega(\rho+f(\rho, \theta, t), \theta, t)=\varpi(\rho), \quad(\rho, \theta) \in\left[R_{i}-\epsilon, R_{i}+\epsilon\right] \times \mathbb{T} \quad \forall t \geq 0 .
$$

$$
w\left(\rho_{*}+f\left(\rho_{*}, \theta\right), \theta\right)=\omega\left(\rho_{* *}\right)
$$

The problem reduces to study the family of graphs $(\rho+f(\rho, \theta, t), \theta)$:

$$
(\rho+f(\rho, \theta, t)) \partial_{t} f(\rho, \theta, t)=\partial_{\theta} \bar{\psi}[f](\rho, \theta, t),
$$

with $\bar{\psi}[f](\rho, \theta, t):=\psi(\rho+f(\rho, \theta, t), \theta, t)$ and ψ solving

$$
\left\{\begin{aligned}
-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}\right) \psi & =\omega, \quad \text { on } \quad \Omega_{r_{1}, r_{2}} \\
\left.\psi\right|_{r=r_{1}, r_{2}} & =0 .
\end{aligned}\right.
$$

We look for time periodic solutions of the form

$$
f(\rho, \theta, t):=\mathrm{f}(\rho, \theta+\lambda t)
$$

We look for time periodic solutions of the form

$$
f(\rho, \theta, t):=\mathrm{f}(\rho, \theta+\lambda t) .
$$

Therefore, we have to solve the time-independent problem:

$$
(\rho+\mathfrak{f}) \lambda \partial_{\theta} \mathfrak{f}=\partial_{\theta} \bar{\psi}[\mathfrak{f}] .
$$

We look for time periodic solutions of the form

$$
f(\rho, \theta, t):=\mathrm{f}(\rho, \theta+\lambda t) .
$$

Therefore, we have to solve the time-independent problem:

$$
(\rho+\mathfrak{f}) \lambda \partial_{\theta} \mathfrak{f}=\partial_{\theta} \bar{\psi}[\mathfrak{f}] .
$$

This is an equation for (λ, f). Let us call

$$
F_{\varpi}[\lambda, f]:=(\rho+f) \lambda \partial_{\theta} f-\partial_{\theta} \bar{\psi}[f] .
$$

We look for time periodic solutions of the form

$$
f(\rho, \theta, t):=\mathrm{f}(\rho, \theta+\lambda t)
$$

Therefore, we have to solve the time-independent problem:

$$
(\rho+\mathfrak{f}) \lambda \partial_{\theta} \mathfrak{f}=\partial_{\theta} \bar{\psi}[\mathfrak{f}] .
$$

This is an equation for (λ, f). Let us call

$$
F_{\varpi}[\lambda, f]:=(\rho+f) \lambda \partial_{\theta} f-\partial_{\theta} \bar{\psi}[f] .
$$

Important facts:

- Note that $F_{\varpi}[\lambda, 0]=0$, for all $\lambda \in \mathbb{R}$.
- Recall that f is defined just over $\bigcup_{i=1,2}\left(R_{i}-\epsilon, R_{i}+\epsilon\right) \times \mathbb{T}$.

The function $\varpi_{\epsilon, \kappa} \in C^{\infty}\left(\left[r_{1}, r_{2}\right]\right)$

$$
\varpi_{\epsilon, \kappa}(r):=\left\{\begin{array}{cc}
0 & r_{1} \leq r \leq R_{1}-\epsilon, \\
\epsilon \varphi_{\kappa}\left(\frac{R_{1}-r}{\epsilon}\right) & R_{1}-\epsilon<r<R_{1}+\epsilon, \\
\epsilon & R_{1}+\epsilon \leq r \leq R_{2}-\epsilon, \\
\epsilon \varphi_{\kappa}\left(\frac{r-R_{2}}{\epsilon}\right) & R_{2}-\epsilon<r<R_{2}+\epsilon, \\
0 & R_{2}+\epsilon \leq r \leq r_{2} .
\end{array}\right.
$$

The function $\varpi_{\epsilon, \kappa} \in C^{\infty}\left(\left[r_{1}, r_{2}\right]\right)$

$$
\varpi_{\epsilon, \kappa}(r):=\left\{\begin{array}{cc}
0 & r_{1} \leq r \leq R_{1}-\epsilon, \\
\epsilon \varphi_{\kappa}\left(\frac{R_{1}-r}{\epsilon}\right) & R_{1}-\epsilon<r<R_{1}+\epsilon, \\
\epsilon & R_{1}+\epsilon \leq r \leq R_{2}-\epsilon, \\
\epsilon \varphi_{\kappa}\left(\frac{r-R_{2}}{\epsilon}\right) & R_{2}-\epsilon<r<R_{2}+\epsilon, \\
0 & R_{2}+\epsilon \leq r \leq r_{2} .
\end{array}\right.
$$

Note that $\varpi_{\epsilon, 0} \in W^{1, \infty}(\mathbb{R}) \cap H^{<3 / 2}(\mathbb{R}) .(\kappa$ is a regularizing parameter $)$

Crandall-Rabinowitz Theorem

Let X, Y be two Banach spaces, $\{0\} \in V \subset X$ and let $F: \mathbb{R} \times V \rightarrow Y$ satisfying:

1. $F[\lambda, 0]=0$ for any $\lambda \in \mathbb{R}$.
2. The derivatives $D_{\lambda} F, D_{\mathrm{f}} F$ and $D_{\lambda, \mathrm{f}}^{2} F$ exist and are continuous.
3. $\mathcal{L}_{\star}=D_{\star} F\left[\lambda_{\star}, 0\right]: \mathcal{N}\left(\mathcal{L}_{\star}\right)$ and $Y / \mathcal{R}\left(\mathcal{L}_{\star}\right)$ are one-dimensional.
4. $D_{\lambda, \mathrm{f}}^{2} F\left[\lambda_{\star}, 0\right] \mathrm{h}_{\star} \notin \mathcal{R}\left(\mathcal{L}_{\star}\right)$, where $\mathcal{N}\left(\mathcal{L}_{\star}\right)=\operatorname{span}\left\{\mathrm{h}_{\star}\right\}$.

Crandall-Rabinowitz Theorem

Let X, Y be two Banach spaces, $\{0\} \in V \subset X$ and let $F: \mathbb{R} \times V \rightarrow Y$ satisfying:

1. $F[\lambda, 0]=0$ for any $\lambda \in \mathbb{R}$.
2. The derivatives $D_{\lambda} F, D_{\mathrm{f}} F$ and $D_{\lambda, \mathrm{f}}^{2} F$ exist and are continuous.
3. $\mathcal{L}_{\star}=D_{\star} F\left[\lambda_{\star}, 0\right]: \mathcal{N}\left(\mathcal{L}_{\star}\right)$ and $Y / \mathcal{R}\left(\mathcal{L}_{\star}\right)$ are one-dimensional.
4. $D_{\lambda, f}^{2} F\left[\lambda_{\star}, 0\right] \mathrm{h}_{\star} \notin \mathcal{R}\left(\mathcal{L}_{\star}\right)$, where $\mathcal{N}\left(\mathcal{L}_{\star}\right)=\operatorname{span}\left\{\mathrm{h}_{\star}\right\}$.

If Z is any complement of $\mathcal{N}\left(\mathcal{L}_{\star}\right)$ in X, then there is a neighborhood U of $\left(\lambda_{\star}, 0\right)$ in $\mathbb{R} \times X$, an interval $\left(-\sigma_{0}, \sigma_{0}\right)$, and continuous functions $\varphi:\left(-\sigma_{0}, \sigma_{0}\right) \rightarrow \mathbb{R}, \psi:\left(-\sigma_{0}, \sigma_{0}\right) \rightarrow Z$ such that $\varphi(0)=0, \psi(0)=0$ and

$$
\begin{aligned}
F^{-1}(0) \cap U & =\left\{\left(\lambda_{\star}+\varphi(\sigma), \sigma h_{\star}+\sigma \psi(\sigma)\right) ;|\sigma|<\sigma_{0}\right\} \\
& \cup\{(\lambda, 0) ;(\lambda, 0) \in U\} .
\end{aligned}
$$

The linear operator

Let $h \in X$. Then, we have $h=\sum_{n \geq 1} h_{n}(r) \cos (n \theta)$.

The linear operator

Let $h \in X$. Then, we have $h=\sum_{n \geq 1} h_{n}(r) \cos (n \theta)$.
The LINEAR OPERATOR can be written as

$$
\mathcal{L}[\lambda] h=\sum_{n \geq 1} \cos (n \theta) \mathcal{L}_{n}[\lambda] h_{n}
$$

The linear operator

Let $h \in X$. Then, we have $h=\sum_{n \geq 1} h_{n}(r) \cos (n \theta)$.
The LINEAR OPERATOR can be written as

$$
\mathcal{L}[\lambda] h=\sum_{n \geq 1} \cos (n \theta) \mathcal{L}_{n}[\lambda] h_{n}
$$

where $\mathcal{L}_{n}[\lambda]$ is given by

$$
\begin{aligned}
& \mathcal{L}_{n}[\lambda] g(r):=\left(\Phi_{\epsilon, \kappa}^{\prime}(r)+\lambda r\right) g(r) \\
- & \frac{\mathcal{S}_{n}\left(r / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{1}{n} \int_{r_{1}}^{r_{2}} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}\left(r_{2} / s\right) g(s)+\frac{1}{n} \int_{r_{1}}^{r} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}(r / s) g(s),
\end{aligned}
$$

with $\mathcal{S}_{n}(\cdot)=\sinh (n \log (\cdot))$ and $\Phi_{\epsilon, \kappa}$ solving

$$
\left\{\begin{aligned}
-\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}\right) \Phi_{\epsilon, \kappa} & =\varpi_{\epsilon, \kappa}, \quad \text { on } \quad\left[r_{1}, r_{2}\right] \\
\left.\Phi_{\epsilon, \kappa}\right|_{r=r_{1}, r_{2}} & =0 .
\end{aligned}\right.
$$

The kernel: infinity system $(n \geq 1) \mapsto$ m-th mode

Note that

$$
\mathcal{L}[\lambda] h=0 \quad \Longleftrightarrow \quad \mathcal{L}_{n}[\lambda] h_{n}=0 \quad \forall n \geq 1 .
$$

The kernel: infinity system $(n \geq 1) \mapsto$ m-th mode

Note that

$$
\mathcal{L}[\lambda] h=0 \quad \Longleftrightarrow \quad \mathcal{L}_{n}[\lambda] h_{n}=0 \quad \forall n \geq 1 .
$$

Fixed $m \geq 1$, we consider only $h \in X$ such that

$$
h_{n} \equiv 0 \quad \text { for } \quad n \neq m
$$

and

$$
h_{m}(r)= \begin{cases}a(r) & r \in\left[R_{1}-\epsilon, R_{1}+\epsilon\right]=: I_{\epsilon}\left(R_{1}\right), \\ b(r) & r \in\left[R_{2}-\epsilon, R_{2}+\epsilon\right]=: I_{\epsilon}\left(R_{2}\right)\end{cases}
$$

The kernel: infinity system $(n \geq 1) \mapsto$ m-th mode

Note that

$$
\mathcal{L}[\lambda] h=0 \quad \Longleftrightarrow \quad \mathcal{L}_{n}[\lambda] h_{n}=0 \quad \forall n \geq 1 .
$$

Fixed $m \geq 1$, we consider only $h \in X$ such that

$$
h_{n} \equiv 0 \quad \text { for } \quad n \neq m
$$

and

$$
h_{m}(r)= \begin{cases}a(r) & r \in\left[R_{1}-\epsilon, R_{1}+\epsilon\right]=: I_{\epsilon}\left(R_{1}\right), \\ b(r) & r \in\left[R_{2}-\epsilon, R_{2}+\epsilon\right]=: I_{\epsilon}\left(R_{2}\right)\end{cases}
$$

We have reduce the problem to study

$$
\mathcal{L}_{m}[\lambda] h_{m}(r) \equiv \mathcal{L}_{m}[\lambda]\binom{a}{b}(r)=0, \quad r \in I_{\epsilon}\left(R_{1}\right) \cup I_{\epsilon}\left(R_{2}\right)
$$

The problem for λ and (a, b)

$$
\begin{aligned}
& \left(\Phi_{\epsilon, \kappa}^{\prime}(r)+\lambda r\right) a(r)+\frac{1}{n} \int_{R_{1}-\epsilon}^{r} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}(r / s) a(s) d s \\
& \quad-\frac{\mathcal{S}_{n}\left(r / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{1}{n} \int_{R_{1}-\epsilon}^{R_{1}+\epsilon} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}\left(r_{2} / s\right) a(s) d s \\
& -\frac{\mathcal{S}_{n}\left(r / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{1}{n} \int_{R_{2}-\epsilon}^{R_{2}+\epsilon} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}\left(r_{2} / s\right) b(s) d s=0, \quad r \in I_{\epsilon}\left(R_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\Phi_{\epsilon, \kappa}^{\prime}(r)+\lambda r\right) b(r)+\frac{1}{n} \int_{R_{2}-\epsilon}^{r} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}(r / s) b(s) d s \\
& \quad+\frac{1}{n} \int_{R_{1}-\epsilon}^{R_{1}+\epsilon} s \varpi_{\epsilon, \kappa}^{\prime}(s)\left[\mathcal{S}_{n}(r / s)-\frac{\mathcal{S}_{n}\left(r / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \mathcal{S}_{n}\left(r_{2} / s\right)\right] a(s) d s \\
& \quad-\frac{\mathcal{S}_{n}\left(r / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{1}{n} \int_{R_{2}-\epsilon}^{R_{2}+\epsilon} s \varpi_{\epsilon, \kappa}^{\prime}(s) \mathcal{S}_{n}\left(r_{2} / s\right) b(s) d s=0, \quad r \in I_{\epsilon}\left(R_{2}\right) .
\end{aligned}
$$

Re-scaling

We pass from

$$
\left[R_{1}-\epsilon, R_{1}+\epsilon\right] \cup\left[R_{2}-\epsilon, R_{2}+\epsilon\right] \rightarrow[-1,1]
$$

We just have to solve

$$
\begin{gathered}
A(s):=a\left(R_{1}+\epsilon S\right), \quad B(s):=b\left(R_{2}+\epsilon s\right) \\
\left(\Phi_{\epsilon, \kappa}^{\prime}\left(R_{1}+\epsilon z\right)+\lambda\left(R_{1}+\epsilon z\right)\right) A(z) \\
+\frac{\mathcal{S}_{n}\left(\left(R_{1}+\epsilon z\right) / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{\epsilon}{n} \int_{-1}^{+1}\left(R_{1}+\epsilon S\right) \varphi_{\kappa}^{\prime}(-s) \mathcal{S}_{n}\left(r_{2} /\left(R_{1}+\epsilon S\right)\right) A(s) d s \\
-\frac{\mathcal{S}_{n}\left(\left(R_{1}+\epsilon z\right) / r_{1}\right)}{\mathcal{S}_{n}\left(r_{2} / r_{1}\right)} \frac{\epsilon}{n} \int_{-1}^{+1}\left(R_{2}+\epsilon S\right) \varphi_{\kappa}^{\prime}(s) \mathcal{S}_{n}\left(r_{2} /\left(R_{2}+\epsilon S\right)\right) B(s) d s \\
-\frac{\epsilon}{n} \int_{-1}^{z}\left(R_{1}+\epsilon S\right) \varphi_{\kappa}^{\prime}(-s) \mathcal{S}_{n}\left(\left(R_{1}+\epsilon z\right) /\left(R_{1}+s\right)\right) A(s) d s=0 .
\end{gathered}
$$

Our ansatz

We have to solve, for λ and (A, B), the system

$$
\begin{aligned}
& \left(\Phi_{0, \kappa}^{\prime}\left(R_{1}\right)+\lambda R_{1}\right) A(z)+O(\epsilon)=0, \\
& \left(\Phi_{0, \kappa}^{\prime}\left(R_{2}\right)+\lambda R_{2}\right) B(z)+O(\epsilon)=0 .
\end{aligned}
$$

Our ansatz

We have to solve, for λ and (A, B), the system

$$
\begin{aligned}
& \left(\Phi_{0, \kappa}^{\prime}\left(R_{1}\right)+\lambda R_{1}\right) A(z)+O(\epsilon)=0, \\
& \left(\Phi_{0, \kappa}^{\prime}\left(R_{2}\right)+\lambda R_{2}\right) B(z)+O(\epsilon)=0 .
\end{aligned}
$$

Then, we introduce the ansatz

$$
\begin{aligned}
A(z) & =\quad A_{1}(z) \epsilon+A_{2}^{\epsilon}(z) \epsilon^{2} \\
B(z) & =B_{0}(z)+B_{1}^{\epsilon}(z) \epsilon
\end{aligned}
$$

together with

$$
\lambda=\underbrace{-\frac{\Phi_{0, \kappa}^{\prime}\left(R_{1}\right)}{R_{1}}}_{U_{T C}\left(R_{1}\right)}+\lambda_{1} \epsilon+\lambda_{2}^{\epsilon} \epsilon^{2}
$$

Asymptotic analysis in terms of ϵ

At order O (1) we have fixed

$$
\lambda_{0}=U_{T C}\left(R_{1}\right) .
$$

$$
\Phi_{\epsilon, \kappa}^{\prime}\left(R_{i}+\epsilon z\right)+\lambda\left(R_{i}+\epsilon z\right)=\alpha_{0}^{R_{i}}\left[\lambda_{0}\right]+\alpha_{1}^{R_{i}}\left[\lambda_{0}, \lambda_{1}\right](z) \epsilon+\alpha_{2, \epsilon}^{R_{i}}\left[\lambda_{0}, \lambda_{1}, \lambda_{2}^{\epsilon}\right](z) \epsilon^{2}
$$

Asymptotic analysis in terms of ϵ

At order O (1) we have fixed

$$
\lambda_{0}=U_{T C}\left(R_{1}\right) .
$$

At order $O(\epsilon)$ we obtain a closed system for λ_{1} and A_{1}, B_{0} :

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s & =0, \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s & =0 .
\end{aligned}
$$

$$
\Phi_{\epsilon, \kappa}^{\prime}\left(R_{i}+\epsilon z\right)+\lambda\left(R_{i}+\epsilon z\right)=\alpha_{0}^{R_{i}}\left[\lambda_{0}\right]+\alpha_{1}^{R_{i}}\left[\lambda_{0}, \lambda_{1}\right](z) \epsilon+\alpha_{2, \epsilon}^{R_{i}}\left[\lambda_{0}, \lambda_{1}, \lambda_{2}^{\epsilon}\right](z) \epsilon^{2}
$$

Asymptotic analysis in terms of ϵ

At order O (1) we have fixed

$$
\lambda_{0}=U_{T C}\left(R_{1}\right) .
$$

At order $O(\epsilon)$ we obtain a closed system for λ_{1} and A_{1}, B_{0} :

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s & =0, \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s & =0 .
\end{aligned}
$$

At higher order $O\left(\varepsilon^{2}\right)$ we have a CONTRACTION for λ_{2}^{ϵ} and $A_{2}^{\epsilon}, B_{1}^{\epsilon}$.

$$
\phi_{\epsilon, \kappa}^{\prime}\left(R_{i}+\epsilon z\right)+\lambda\left(R_{i}+\epsilon z\right)=\alpha_{0}^{R_{i}}\left[\lambda_{0}\right]+\alpha_{1}^{R_{i}}\left[\lambda_{0}, \lambda_{1}\right](z) \epsilon+\alpha_{2, \epsilon}^{R_{i}}\left[\lambda_{0}, \lambda_{1}, \lambda_{2}^{\epsilon}\right](z) \epsilon^{2}
$$

Solving the system at order $O(\epsilon)$

$$
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad A_{1}=\frac{1}{\alpha_{0}^{R_{1}}\left[\lambda_{0}\right]} \int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s
$$

Solving the system at order $O(\epsilon)$

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad A_{1}=\frac{1}{\alpha_{0}^{R_{1}}\left[\lambda_{0}\right]} \int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad B_{0}(z)=\frac{C}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z)}
\end{aligned}
$$

Solving the system at order $O(\epsilon)$

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad A_{1}=\frac{1}{\alpha_{0}^{R_{1}}\left[\lambda_{0}\right]} \int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad B_{0}(z)=\frac{C}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z)}
\end{aligned}
$$

Finally, one finds that

$$
1 \stackrel{(*)}{=} \int_{-1}^{+1} \frac{\varphi_{\kappa}^{\prime}(s)}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](s)} d s
$$

Solving the system at order $O(\epsilon)$

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad A_{1}=\frac{1}{\alpha_{0}^{R_{1}}\left[\lambda_{0}\right]} \int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad B_{0}(z)=\frac{C}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z)}
\end{aligned}
$$

Finally, one finds that

$$
1 \stackrel{(*)}{=} \int_{-1}^{+1} \frac{\varphi_{k}^{\prime}(s)}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](s)} d s
$$

$$
\exists!\lambda_{1} \in \mathbb{R} \text { solving }(*) \quad \Longrightarrow B_{0}(z) \Longrightarrow A_{1} .
$$

Solving the system at order $O(\epsilon)$

$$
\begin{aligned}
\alpha_{0}^{R_{1}}\left[\lambda_{0}\right] A_{1}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad A_{1}=\frac{1}{\alpha_{0}^{R_{1}}\left[\lambda_{0}\right]} \int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s \\
\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z) B_{0}(z)-\int_{-1}^{+1} \varphi_{\kappa}^{\prime}(s) B_{0}(s) d s=0 \quad \Longrightarrow \quad B_{0}(z)=\frac{C}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](z)}
\end{aligned}
$$

Finally, one finds that

$$
1 \stackrel{(*)}{=} \int_{-1}^{+1} \frac{\varphi_{\kappa}^{\prime}(s)}{\alpha_{1}^{R_{2}}\left[\lambda_{0}, \lambda_{1}\right](s)} d s
$$

$$
\exists!\lambda_{1} \in \mathbb{R} \text { solving }(*) \Longrightarrow B_{0}(z) \Longrightarrow A_{1} .
$$

Fixed $\lambda_{\epsilon, \kappa, m}$, we have proved that there exists (unique modulo multiplicative constant) $h_{\epsilon, \kappa, m} \in X$ such that $\mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right] h_{\epsilon, \kappa, m}=0$.

The condition on R_{1} and R_{2}

Using the above argument, we get time-periodic solutions with

$$
\lambda \approx U_{T C}\left(R_{1}\right) \quad \text { or } \quad \lambda \approx U_{T C}\left(R_{2}\right)
$$

The condition on R_{1} and R_{2}

Using the above argument, we get time-periodic solutions with

$$
\lambda \approx U_{T C}\left(R_{1}\right) \quad \text { or } \quad \lambda \approx U_{T C}\left(R_{2}\right) .
$$

Up to here, $R_{1}, R_{2} \in\left(r_{1}, r_{2}\right)$ are free parameters.

The condition on R_{1} and R_{2}

Using the above argument, we get time-periodic solutions with

$$
\lambda \approx U_{T C}\left(R_{1}\right) \quad \text { or } \quad \lambda \approx U_{T C}\left(R_{2}\right) .
$$

Up to here, $R_{1}, R_{2} \in\left(r_{1}, r_{2}\right)$ are free parameters. We need to impose

$$
U_{T C}\left(R_{1}\right) \neq U_{T C}\left(R_{2}\right)
$$

Note that $U_{T C}\left(R_{1}\right)=\lambda=U_{T C}\left(R_{2}\right) \Longrightarrow \operatorname{dim}(\operatorname{Ker}(\mathcal{L}[\lambda]))>1$.

The co-kernel

Now, we have to prove that $\operatorname{dim}\left(Y / \mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right](X)\right)=1$.

The co-kernel

Now, we have to prove that $\operatorname{dim}\left(Y / \mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right](X)\right)=1$.
The idea is to use the Fredholm structure of the linear operator

$$
\mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right]=\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right]+\mathcal{K}
$$

with

$$
\begin{aligned}
\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right] & \text { isomorphism } \\
\mathcal{K} & : \text { compact operator }
\end{aligned}
$$

The co-kernel

Now, we have to prove that $\operatorname{dim}\left(Y / \mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right](X)\right)=1$.
The idea is to use the Fredholm structure of the linear operator

$$
\mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right]=\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right]+\mathcal{K}
$$

with

$$
\begin{aligned}
\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right] & \text { isomorphism } \\
\mathcal{K} & : \text { compact operator }
\end{aligned}
$$

Two facts:

- Index of Fredholm remains unchanged under compact pert.
- An isomorphism is Fredholm of zero index.

The co-kernel

Now, we have to prove that $\operatorname{dim}\left(Y / \mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right](X)\right)=1$.
The idea is to use the Fredholm structure of the linear operator

$$
\mathcal{L}\left[\lambda_{\epsilon, \kappa, m}\right]=\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right]+\mathcal{K}
$$

with

$$
\begin{aligned}
\mathcal{L}_{0}\left[\lambda_{\epsilon, \kappa, m}\right] & \text { isomorphism } \\
\mathcal{K} & : \text { compact operator }
\end{aligned}
$$

Two facts:

- Index of Fredholm remains unchanged under compact pert.
- An isomorphism is Fredholm of zero index.

Then

$$
\text { index }=\operatorname{dim}(\mathcal{N}(\mathcal{L}))-\operatorname{dim}(Y / \mathcal{R}(\mathcal{L}))
$$

Theorem

Fixed $1<M<\infty$. There exist $\epsilon_{0}(M), \kappa_{0}(M)$ such that, for every $0<\epsilon<\epsilon_{0}, 0<\kappa<\kappa_{0}$ and $m \in \mathbb{N}, m<M$, there exist $\left(\lambda_{\epsilon, \kappa, m}^{\sigma}, \mathbf{f}_{\epsilon, \kappa, m}^{\sigma}\right)$ satisfying,

$$
F_{\varpi_{\epsilon, \kappa}}\left[\lambda_{\epsilon, \kappa, m}^{\sigma}, \tau_{\epsilon, \kappa, m}^{\sigma}\right]=0,
$$

parameterize by σ. These solutions satisfy:

1. $\mathfrak{f}_{\epsilon, \kappa, m}^{\sigma}(r, \theta)$ is $\frac{2 \pi}{m}$-periodic on θ.
2. The branch

$$
\mathfrak{f}_{\epsilon, \kappa, m}^{\sigma}=\sigma \mathrm{h}_{\epsilon, \kappa, m}^{\sigma}+O(\sigma),
$$

and the speed of the rotation is

$$
\lambda_{\epsilon, \kappa, m}^{\sigma}=\lambda_{\epsilon, \kappa, m}+o(1)
$$

3. $\mathfrak{f}_{\epsilon, \kappa, m}^{\sigma}(r, \theta)$ depends on θ in a non-trivial way.

Theorem (continuation).

In addition, vorticity $\omega_{\epsilon, \kappa, m}^{\sigma}$ given implicitly by

$$
\omega_{\epsilon, \kappa, m}^{\sigma}\left(\rho+\mathbf{f}_{\epsilon, \kappa, m}^{\sigma}(\rho, \theta), \theta\right)=\varpi_{\epsilon, \kappa}(\rho),
$$

and extended to $\left[r_{1}, r_{2}\right] \times \mathbb{T}$ by ϵ and 0 , yields a traveling way solution for 2D Euler in the sense that

$$
\omega_{\epsilon, \kappa, m}^{\sigma}\left(r, \theta+\lambda_{\epsilon, \kappa, m}^{\sigma} t\right)
$$

satisfies perturbed 2D Euler.
Importantly, $\omega_{\epsilon, \kappa, m}^{\sigma}(r, \theta)$ depends nontrivially on θ.

Pouseville flow

Work in progress

Pouseville flow $U_{P}(y)=y^{2}-1$ in $\mathbb{T} \times[-1,1]$:

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+U(y) \partial_{x} \omega-U^{\prime \prime}(y) \partial_{x} \psi=0, \quad \Delta \psi=\omega .
$$

Work in progress

Pouseville flow $U_{P}(y)=y^{2}-1$ in $\mathbb{T} \times[-1,1]$:

$$
\partial_{t} \omega+\nabla^{\perp} \psi \cdot \nabla \omega+U(y) \partial_{x} \omega-U^{\prime \prime}(y) \partial_{x} \psi=0, \quad \Delta \psi=\omega .
$$

Desingularization

Thank you for your attention!

[^0]: The authors work in a channel $\mathbb{T} \times[0,1]$

