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Motivation

Continuous optimization problems are ubiquitous across computer science.
▶ Most machine learning algorithms rely on continuous optimization.
▶ Many algorithms for combinatorial optimization problems in theoretical computer

science are reduced to continuous optimization problems by convex relaxations
and rounding.

Matrix sketching and, more generally, Randomized Numerical Linear Algebra
(RandNLA) have been effective over the past 25 years at providing efficient
algorithms for fundamental matrix operations with strong theoretical guarantees.

▶ This makes such tools effective at improving optimization algorithms.
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Linear Programming (LP)

Consider the standard form of the primal LP problem:

min cTx , subject to Ax = b , x ≥ 0 (1)

The associated dual problem is

max bTy , subject to ATy + s = c , s ≥ 0 (2)

Here,
A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are inputs

x ∈ Rn, y ∈ Rm, and s ∈ Rn are variables
An LP problem with m = 6, n = 2.
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LP: Applications in ML

▶ Basis pursuit

▶ Sparse inverse covariance matrix estimation (SICE)

▶ MAP inference

▶ ℓ1-regularized SVMs

▶ Nonnegative matrix factorization (NMF)

▶ Markov decision process (MDP)
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Objective Overview

Goal: Speed up linear programming for “big data” applications (ML,
bioinformatics, etc.)

▶ Focus on practical algorithms, i.e.,
– Predictor-corrector IPM methods instead of short step IPMs
– Iterative linear solvers instead of “fast” matrix multiplication
– Efficient preconditioner construction instead of inverse maintenance

▶ Extend classic theoretical convergence guarantees for linear programming to allow
for the use of inexact linear system solves.
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Optimality conditions

(x, y, s) is an (primal-dual) optimal solution iff it satisfies the following conditions:1

Ax = b, x ≥ 0 (primal feasibility)

ATy + s = c, s ≥ 0 (dual feasibility)

x ◦ s = 0 (complementary slackness)

Assumptions (m is the number of constraints and n is the number of variables):

– n≫ m and rank(A) = m, i.e., A is short-and-fat and has full rank

– Solution set is nonempty

1x ◦ s denotes the entry-wise product of x and s, i.e., [x ◦ s]i = xisi
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Standard Methods

Simplex
▶ Fast in practice
▶ exp-time worst case

Interior Point
▶ Fastest in theory
▶ Often faster in practice

for large-scale LPs

Path-following IPM visualization (Lesaja ’09)
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Interior point methods

▶ Duality measure:

µ = xTs
n

= xT(c−ATy)
n

= cTx− bTy
n

↓ 0

▶ Feasible Predictor-Corrector IPM:

– Let F0 = {(x, y, s) : (x, s) > 0, Ax = b, ATy + s = c}.

– Central path: C = {(x, y, s) ∈ F0 : x ◦ s = µ1n}, where x ◦ s denotes the
element-wise product of x and s.

– Neighborhood: N2(θ) =
{

(x, y, s) ∈ F0 : ∥x ◦ s− µ1n∥2 ≤ θµ, (x, s) > 0
}
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Solving linear system
Let X and S be diagonal matrices with the entries of x and s on the diagonal.A 0 0

0 AT In

S 0 X


∆x

∆y
∆s

 =

 0
0

−XS1n + σµ1n



AD2AT∆y = −σµAS−11n + Ax︸ ︷︷ ︸
p

, (3)

∆s = −AT∆y , (4)
∆x = − x + σµS−11n −D2∆s. (5)

Here, D = X1/2S−1/2 is a diagonal matrix.
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Predictor-Corrector Method

1. Start in the smaller neighborhood
N2(0.25)

2. Take a predictor step
▶ centering parameter σ = 0
▶ Remains within the larger
N2(0.5) neighborhood

▶ Makes large progress towards
the optimum

3. Take a corrector step
▶ centering parameter σ = 1
▶ Goes towards the central path
▶ Returns to the smaller N2(0.25)

neighborhood
4. Repeat until the duality measure µ is

less than ϵ

Predictor-corrector IPM (Wright ’97).
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Solving the normal equation

Recall:

AD2AT∆y = p (3)

Direct solvers

– If A is high-dimensional and dense, computationally prohibitive.

– Sparse solvers don’t take into account irregular sparsity patterns of AD2A.

Iterative solvers

– AD2AT is typically ill-conditioned near the optimal solution.
– Does not return an exact solution (invalidates standard theoretical analysis).
– Does not maintain primal feasibility.
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Structural Condition: Inexact system solve

We can maintain O(
√

n log µ0/ϵ) outer iteration complexity as long as an inexact solver satisfies
at each iteration:2

∥∆ỹ− (AD2AT )−1p︸ ︷︷ ︸
exact solution

∥AD2AT ≤ δ, and

∥AD2AT ∆ỹ− p︸ ︷︷ ︸
residual

∥2 ≤ δ.

– Here δ = O
(

ϵ√
n log µo/ϵ

)
.

– Running the standard predictor-correct algorithm with such an inexact solver converges in
O(
√

n log µ0/ϵ) outer iterations to an ϵ-optimal solution (same as using a direct solver).

– The final solution will be ϵ-feasible, i.e., ∥Ax∗ − b∥2 ≤ ϵ.

2The energy-norm is denoted as ∥x∥M =
√

xT Mx for vector x and PSD matrix M.
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Structural Condition: Error-adjusted solver

How do we ensure that the final solution is exactly feasible?
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Correction vector v

A 0 0
0 AT In

S 0 X

 ∆x̃
∆ỹ
∆s̃

 =

 0
0

−XS1n + σµ1n − v



AD2AT∆ỹ = p + AS−1v , (6)
∆s̃ = −AT∆ỹ , (7)
∆x̃ = − x + σµS−11n −D2∆s̃− S−1v. (8)

▶ A∆x̃ = 0 if v satisfies eqn. (6). Therefore, A(x + η∆x̃) = b
▶ Very similar idea in [Monteiro and O’Neal, 2003]
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Structural Condition: Error-adjusted solver

As long as the returned inexact solution ∆ỹ and correction vector v satisfy

AD2AT ∆ỹ = p + AS−1v and ∥v∥2 < O(ϵ), then: (9)

– The modified predictor-corrector algorithm converges in O
(√

n log µ0/ϵ
)

outer iterations,
and

– the final solution will be exactly feasible, i.e., Ax∗ = b.

– Any computationally efficient construction for v that satisfies eqn. (9) works!
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Iterative Solver

How can we efficiently solve the linear systems while
fulfilling the previous structural conditions?
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Iterative solver

Preconditioned CG Algorithm (PCG):
Input: AD ∈ Rm×n with m≪ n, p ∈ Rm, sketch-
ing matrix W ∈ Rn×w, iteration count t;

Step 1. Compute ADW and its SVD. Let UQ ∈
Rm×m be the matrix of its left singular vectors and
let Σ

1/2
Q ∈ Rm×m be the matrix of its singular val-

ues;

Step 2. Compute Q−1/2 = UQΣ
−1/2
Q U⊤

Q;

Step 3. Initialize z̃0 ← 0m and run standard CG on
Q−1/2AD2AT Q−1/2z̃ = Q−1/2p for t iterations;

Output: return ∆̂y = Q−1/2z̃t

▶ Sketching matrix W is an ℓ2-subspace
embedding matrix

▶ Used to construct a strong precondi-
tioner Q−1/2 to reduce the condition
number of the system to a constant

▶ Iterative solvers, e.g. PCG, converge
exponentially fast (standard analysis):

∥Q−1/2(AD2AT )Q−1/2z̃t −Q−1/2p∥2

≤ ζt∥Q−1/2p∥2, for some ζ ∈ (0, 1).
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Inexact system solver for unmodified PC

Recall that the normal equations must be solved to the following precision with δ = O (ϵ/
√

n)
(hiding a log factor):

∥∆ỹ− (AD2AT )−1p∥AD2AT ≤ δ and ∥AD2AT ∆ỹ− p∥2 ≤ δ.

– The previous PCG method will satisfy both conditions after O
(

log σmax(AD) nµ

ϵ

)
iterations.

– The σmax(AD) factor is needed to satisfy the ℓ2-norm guarantee on the residual.
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Inexact system solver for error-adjusted PC

Recall that the inexact solution to the normal equations, ∆ỹ, and correction vector, v, must
satisfy:

AD2AT ∆ỹ = p + AS−1v and ∥v∥2 < O(ϵ).

– It suffices to run the PCG method for O
(

log nµ

ϵ

)
iterations.

– Notice the absence of the σmax(AD) factor.

Correction vector:

v = (XS)1/2W(ADW)†(AD2AT∆̂y− p).

– Computable with a constant number of matvecs using already computed matrices.
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Exact solve time complexity

Solving AD2AT ∆y = p exactly takes O(m2 · n) time.

– AD ∈ Rm×n, so forming AD2AT explicitly takes O(m2 · n) time.

– This is too expensive when n is very large.

– Does not take advantage of n≫ m.
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Inexact solve time complexity

PCG solver:
▶ The preconditioner Q−1/2 can be computed efficiently if W is the count sketch matrix.

– Q−1/2 can be computed in O
(

m3 log m

η

)
time with probability at least 1− η.

▶ Each iteration of CG computes a constant number of matvecs with Q−1/2, AD, and
DAT .

– Each matvec takes O(nnzA + m3) time.
▶ Total number of iterations is logarithmic in n.

– O
(

log σmax(AD) nµ

ϵ

)
or O

(
log nµ

ϵ

)
iterations.

▶ Inexact system solves take Õ
(
m3 + nnzA

)
time (ignoring log factors).
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Recap

Motivation: Predictor-corrector (PC) IPMs are theoretically and empirically fast methods for
linear programming.

Structural conditions:

– We provide conditions on inexactly computing the PC steps so that the outer iteration
complexity remains O

(√
n log µ0/ϵ

)
and the returned solution is ϵ-feasible.

– We provide conditions on inexactly computing the PC steps using a correction vector so
that by slightly modifying the PC algorithm we get an exactly feasible solution. Outer
iteration complexity remains O

(√
n log µ0/ϵ

)
.

Efficient iterative solvers

– Construct a strong preconditioner using sketching.

– Each iteration of the predictor-corrector method takes Õ
(
m3 + nnzA

)
time.
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Future Work

– Can we prove similar results for infeasible predictor-corrector IPMs? Recall that such
methods need O(n log µ0/ϵ) outer iterations (Yang & Namashita 2018)?

– Are our structural conditions necessary? Can we derive simpler conditions? Is a lower
precision solver sufficient?

– Could our structural conditions change from one iteration to the next? Could we use
dynamic preconditioning or reuse preconditioners from one iteration to the next (e.g.,
low-rank updates of the preconditioners)?

– Will a similar approach work for more general optimization problems, e.g., Quadratic
Programming (QP) or Semidefinite Programming (SDP)?
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Approximating eigenvalues of symmetric matrices
in sublinear time

My apologies for sneaking this in without warning...
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Approximating eigenvalues of symmetric matrices
in sublinear time

Joint work with R. Bhattacharjee, G. Dexter, C. Musco, and A. Ray
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Eigenvalue Approximation [Bhattacharjee, Dexter, Drineas, Musco, and Ray ICALP ’23]

Basic linear algebraic primitive: Given symmetric A ∈ Rn×n, compute approximations to all
of A’s eigenvalues.

▶ Nearly exact computation: O(nω) time via full eigendecomposition; prohibitive for large n!
▶ Accurate approximation to k largest magnitude eigenvalues using Õ(k) matrix vector

products with A: power method, subspace iteration, Krylov subspace methods, etc.
▶ Õ(n2 · k) time for dense matrices.

How well can we approximate the spectrum in sublinear time, i.e., o(n2) time for dense
matrices?
Need a bounded entry assumption, otherwise any Aij and Aji can be arbitrarily large and
dominate the top eigenvalues. Finding this single pair takes Ω(n2) time.

2These slides are based on presentations by Cameron Musco and Gregory Dexter.
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Summary

▶ Very simple sublinear time algorithm for approximating all eigenvalues of any symmetric
bounded entry matrix.

▶ Just sample a uniform random principal submatrix and compute its eigenvalues.
▶ Improved error bounds for sparse matrices when you can sample rows/columns with

probabilities proportional to their sparsity, i.e., the number of non-zero entries in each
row/column.

▶ Improved error bounds when we can sample using the l2 norms of the rows.
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Our Main Result

Consider a symmetric matrix A ∈ Rn×n with entries bounded in magnitude by 1, and
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Main Result: There is an algorithm that reads O

(
log6 n

ϵ6

)
entries of A and outputs

λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i = 1 . . . n,

|λi − λ̃i| ≤ ϵ · n.
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Some Remarks

How good are ±ϵn additive error approximations to each of A’s eigenvalues?

▶ |λi| ≤ ∥A∥F ≤ n for all i. (Recall: ∥A∥2
F =

n∑
i=1

n∑
j=1

A2
ij =

n∑
i=1

λ2
i .)

▶
∑

λ2
i = ∥A∥2

F ≤ n2. So there are at most 1/ϵ2 outlying eigenvalues with |λi| ≥ ϵ · n.

▶ These are the only eigenvalues for which we give a non-trivial approximation.
▶ Additive error scaling linearly in n is necessary.
▶ Could equivalently remove the bounded entry assumption, and obtain additive error

ϵ · n ·max
i,j
|Aij |.
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Lower Bound Instance

Only ≈ ϵ2n2 entries differ across these matrices. Need to read at least Ω(1/ϵ2) entries to
distinguish them with good probability.

29/39



The Algorithm
The algorithm just computes the eigenvalues of a small random principal submatrix of A.

1. Let s = O
(

log3(n)/ϵ3
)
, and let AS be the random principal submatrix of A where each

row/column is included independently with probability s/n.

2. Compute all eigenvalues of n/s ·AS .

3. Use these eigenvalues to approximate all eigenvalues of A. Observe that AS has (in
expectation) s eigenvalues while A has n.
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Eigenvalue Alignment

Approximate the large positive eigenvalues using the positive eigenvalues of AS , the large
negative ones using the negative eigenvalues of AS , and the rest by 0.
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Is the proof hard? Why is this a ≈50-page paper?
Let’s start with the positive semidefinite (PSD) case: A has all non-negative eigenvalues.

▶ Let B ∈ Rn×n be such that A = BBT .
▶ Let n/s ·AS = ST AS be our random principal submatrix; S ∈ Rn×s is a sampling matrix.

▶ The non-zero eigenvalues of n/s ·AS = ST AS = ST BBT S are identical to those of
BT SST B and those of A = BBT are identical to those of BT B.

▶ So it suffices to analyze how well the eigenvalues of BT SST B approximate those of BT B.
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Positive Semidefinite Case

Progress: To show that the eigenvalues of n/s ·AS approximate those of A, it suffices to show
that those of BT SST B approximate those of BT B.

▶ Via a standard approximate matrix multiplication analysis ([Drineas Kannan ‘01]), with
high probability, when s = O (1/ϵ2),

∥BT B−BT SST B∥F ≤ ϵn.

▶ By an eigenvalue version of the Hoffman–Wielandt perturbation bound ([Bhatia ‘13]),
letting λ(·) denote the eigenvalue vector of a matrix,

∥λ(BT B)− λ(BT SST B)∥∞ ≤ ∥ λ(BT B)︸ ︷︷ ︸
λi, i=1...n

−λ(BT SST B)︸ ︷︷ ︸
λ̃i, i=1...n

∥2 ≤ ϵn.

▶ This gives that |λi − λ̃i| ≤ ϵn for all i (padding the eigenvalues of n/s ·AS with zeros
accounts for the n−O(s) zero eigenvalues of BT SST B that are not present in n/s ·AS .).
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General Case
In the symmetric bounded entry setting, the previous proof breaks down: if A is not PSD, it
does not admit a real square root B ∈ Rn×n with A = BBT .

▶ Felt like a technicality! It is not: When A is PSD, ∥λ(A)∥1 =
n∑

i=1
λi = tr(A) ≤ n.

▶ When A is not PSD, we can have cancellations in the sum of the λi. There can be
significantly more eigenvalue mass overall.

▶ For example, a random ±1 matrix will have Θ(n) eigenvalues with λi = Θ(
√

n).
▶ We cannot hope to prove an ℓ2 error bound as we did in the PSD case, where

∥λ− λ̃∥2 ≤ ϵn.

▶ We approximate almost all eigenvalues by 0, so in the random ±1 matrix case

∥λ− λ̃∥2 ≈ ∥λ∥2 = n.
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Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give non-trivial approximations,
and its middle eigenvalues, and analyze these components separately.

▶ Let Vo ∈ Rn×no have columns equal to all eigenvectors with corresponding eigenvalues
satisfying |λi| ≥ ϵn. Let Vm ∈ Rn×nm have columns equal to the remaining eigenvectors.

▶ Let Λo ∈ Rno×no and Λm ∈ Rnm×nm be the corresponding diagonal eigenvalue matrices.
▶ Write A = Ao + Am where Ao = VoΛoVT

o and Am = VmΛmVT
m.

▶ Can similarly write n/s ·AS = ST AS = ST AoS + ST AmS.
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Proof Approach

So Far: Have written A = Ao + Am and ST AS = ST AoS + ST AmS.

Step 1: Show that the non-zero eigenvalues of ST AoS approximate all the eigenvalues of Ao

to ±ϵn error.

Step 2: Show that the eigenvalues of ST AmS are all small in magnitude, i.e., ≤ ϵn.

Step 3: By Weyl’s inequality and Step 2, the eigenvalues of ST AS are within ±ϵn of those of
ST A0S. Thus, by Step 1, they are all either within ±2ϵn of some eigenvalue of Ao or
bounded in magnitude by ϵn.
This is enough to give that the eigenvalues of n/s ·AS = ST AS (or zeros) approximate all
eigenvalues of A up to ±2ϵn error.
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Improved Bounds for Sparse Matrices

Consider a symmetric matrix A ∈ Rn×n with entries bounded in magnitude by 1, nnz(A)
non-zero entries, and nnz(Ai∗) entries in row i.

Sparse Matrix Result: Given the ability to sample i ∈ {1 . . . n} with probability ∝ nnz(Ai∗)
nnz(A) ,

there is an algorithm that reads O

(
log16 n

ϵ16

)
entries of A and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n

such that, for all i = 1 . . . n,
|λi − λ̃i| ≤ ϵ ·

√
nnz(A).

▶ Observe that |λi| ≤ ∥A∥F ≤
√

nnz(A) ≤ n for all i.
▶ Sparsity sampling is possible via sampling a random non-zero entry when A is stored in

sparse matrix format.
▶ Surprisingly, simply computing the eigenvalues of a random submatrix does not suffice

here: We must carefully zero out some entries of the sampled matrix.
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Open problems

– Applications of such approximations include identifying motifs in social networks; studying
Hessian and weight matrix spectra in deep learning; and study of systems in experimental
physics and chemistry.

– There are gaps between our upper bounds and our lower bounds in terms of the log n and
1/ϵ dependencies. Can these gaps be bridged?

– But, are these results truly useful to the Numerical Linear Algebra community?

– Are there other natural, additional constraints on the input matrix that could help us
achieve multiplicative error bounds?
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