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Introduction

What is Generative modeling (for time series)?

e Given the distribution . of the time series of some process for which we have access
only through data samples

@ Sequential audio/video data
@ Medical (Intensive Care Unit data) of a patient
@ Renewable (wind and solar) energy production

@ Finance and insurance: asset price, volatility surface, claim process, ...

» The goal is to design algorithms for
@ learning p
@ generating real-looking samples of this data distribution:

o Useful for improving clinical predictions, weather forecast

o Fnancial industry: market stress test, market risk measurement, deep hedging,
reinforcement learning for optimal trading

e Data-driven approach for risk management



Generative Al

e Generative modeling (GM) has become a classical task in machine learning with several
competing methods:

@ Likelihood-based models: energy-based models (EBM), variational auto-encoders
(VAE)

@ Implicit generative models: generative adversarial network (GAN)

@ Score-based diffusion models: last generation of generative Al models that
outperforms GANs in terms of visual quality.

used notably in image processing with spectacular success (and controversies!), but
mostly for static data/image (DALL-E, Midjourney, Stable diffusion, etc).




Introduction

Challenges of GM for time series

e Temporal setting (sequential data) poses new challenges to GM:
@ capture the potentially complex dynamics of variables across time
@ not enough to learn the time marginals

@ learn the joint distribution without exploiting the sequential structure is also
not sufficient



State-of-the-art generative methods for time series

e Time series GAN (Yoon et al. 19): combination of an unsupervised adversarial loss
on real /synthetic data and supervised loss for generating sequential data

e Quant GAN (Wiese et al. 20): adversarial generator using temporal convolutional
networks

e Causal optimal transport GAN (Xu et al. 20): adversarial generator using the
adapted Wasserstein distance for processes

e Conditional loss Euler generator (Remlinger et al. 21): SDE representation of time
series and minimizing the conditional distance between transition probabilities of
real /synthetic samples

e Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20).
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» We propose here a generative model based on Schrédinger bridge, in the spirit of
score-based diffusion model, and adapted for time series.



Outline

@ Schrodinger bridge for time series



Entropic interpolation of a time series distribution

Let 1 € P((RY)") be the data time series distribution of some R“-valued process
observed on a timegrid T ={tj:i=1,...,N}. Wesettpr =0< t1 <...<tn=T.

e Schrodinger bridge time series problem: Find a diffusion process X on RY satisfying
dX; = adt+dW;, 0<t<T, Xo=0,

with a controlled drift & minimizing

e[ ) e

and such that (X, ..., X, ) ~ 1 (perfect match of the data distribution).



Schradinger bridge for time series

Assumptions

Assume that p admits a density w.r.t. Lebesgue measure on (Rd)N, denoted by misuse
of notation: p(xi,...,xn).

Denote by ;¥ the distribution of Brownian motion W on T, i.e. of (W, ..., Ws,),
hence with density:

N—-1

1 Xiy1 — xi|?
W) = [] 7)&[,(,@),

o V2r(tisr — 8 2(tip1 — t;)
o We assume that the relative entropy of p w.r.t. x¥¥ is finite, i.e.

(H) Hulut) = [log Lyan < oo
HT

Remark: Assumption (H) is satisfied whenever ;1 comes from a process with

@ Gaussian noise

@ Heavy-tailed distribution but with second moment



Solution to Schrodinger bridge time series (SBTS)

Theorem (Diffusion SBTS)

Under (H), the optimal controlled drift of the SBTS problem is in the path-
dependent form:

a; = a'(t,X5; Xy), ti<t<tp, i=0,...,N—1,
where we set X¢, := (Xg,...,Xt), and

a™(t,x; i) = Vi |og]EW[LW(Xt1, e X)X = X0, Xe = x},
KT

for x; = (x1,...,x) € (RY)’, x € RY. Here Ew denotes the expectation under
which X is a Brownian motion by Girsanov's theorem.

\.

Application: We have then a generative model for the time series with the diffusion
dXt = a*(t, Xt; (Xt,-)tfgt)dt =+ th, X() = 0,

by simulating e.g. from an Euler scheme — (Xy,,..., Xe,) ~ p.



Schrodinger drift function

Using Bayes formula, we derive the following expression:

a*(t X'X') _ 1 E, [(Xfi+1 - X)I:i(t7x"7x7xti+1)}xti = Xf] (1)
s X5 Xi tiy1 — t E/, [F,'(t, Xi,X,Xti+1)|th. = X,-] 5

for t € [ti,ti+1), i =0,...,N—1, x; € (Rd)i, x € RY, where

(1 =) (o = x,-)2> .

S 2t — 1) 2(ti— 6)

E(t7Xi7X7Xi+1) = €exp (

Here E,[-|-] is the (conditional) expectation under ;& — One can then estimate the drift
function by relying directly on samples of data distribution .

Remark: When p is the distribution arising from a Markov chain, then the conditional
expectations in (1) (and so the drift function) will depend on the past values X =
(Xts ..., Xt;) only via the last value Xi,.



EETCTNFEL T EER R Estimation of drift function

Kernel estimation of the drift

e Approximate the conditional expectation under p by kernel regression methods:

» From data samples X(™ = (Xt(lm), e ,Xt(AT)), m=1,..., M from pu, the
Nadaraya-Watson estimator of the drift function in (1) is given by

M
Z X(,T1 F(t X(m % X(:Tl)HKh(XJ tj
~ 1 m=1
a(t,x;xj) = )
it (m . y(m) (m)
Z Fi(t7 Xt,- y X, Xt,-“) H Kh(xj - th )
m=1 j=1
for x; = (x1,...,x), where Kj, is a kernel function on R? with bandwith h > 0. For

lower time complexity reason, we choose the quartic kernel Ki(x) = +K(%) with

K(x) = (1-x*)1x



Outline

© Numerical experiments with applications



Numerical experiments [ A ELILIEE

Fractional Brownian motion

Fractional Brownian motion (FBM) with Hurst index H = 0.2.

e Parameters: M = 1000, N = 60, N™ = 100 (number of time steps in Euler scheme),
bandwith h = 0.05, Runtime for 1000 generated paths = 100s.
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Figure: Four samples path of reference FBM (left) and generator SBTS (right)



Toy examples
Metrics for SBST generator vs FBM
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Figure: Top: Quadratic variation distribution Zf\’:l \XtH_l
Bottom: Covariance matrix for reference FBM and SBTS




Toy examples
Estimation of Hurst index

Standard estimator of Hurst index:

N-1
[ (2 X =X F)
Q- 2l1— i=0
2 [ log N

» From our generated SBTS with N = 60, we get:

N

H = 0.2016, Std = 0.004.



Application with real-data sets
Real-world data sets on Apple

Data: stock prices of Apple from jan. 1, 2010 to jan. 30, 2020, with sliding window of
N = 60 days.
M = 2500, N™ = 100, bandwith h = 0.05, runtime for 500 generated paths = 100s.
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Figure: Four paths generated by SBTS (right) vs real ones from Apple (left).



Metrics for SBST generator vs real-data Apple
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Figure: Top: Covariance matrix for real-data and generative SBTS. Bottom: Quadratic variation distribution.



Application to deep hedging
e Consider a ATM call option on Apple: g(S7) = (St — K)+, and we search for a price

p* and hedging strategy A* minimizing the quadratic criterion (loss function):

N—1
2
(p,A) +— IEI p+ Z A (S, — Sy) —g(S7)| = replication error
i=0

PnL
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» We parametrize A by a LSTM network that is trained from synthetic data sets
produced by SBTS, and we compare the results with real-data sets.
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Figu re: Procedure of backtest for deep hedging



Comparison of the PnL and replication error with real-data and generative SBTS
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Figure: Deep hedging PnL distribution from test set

Training Set Test Set

Price Mean Std Mean Std
Data 0.0415 | 0.0008 | 0.0098 | 0.003 0.012
SBTS | 0.0471 | 0.0004 | 0.0109 | -0.0024 | 0.0076

Table: Mean of PnL and its Std (replication error).



Concluding remarks

e Novel generative model for time series based on Schrédinger bridge (SB) approach:

@ Solution described by a forward stochastic differential equation (SDE) over a finite
period, which matchs perfectly the data distribution

@ Path-dependent drift capturing the temporal dynamics of the time series distribution

@ Drift estimated by kernel regression (possibly by vectorization): practical and
low-cost computationally

e Compared to GAN type methods, the simulation of synthetic samples from SB is much
faster as it does not require training of neural networks.

e Series of numerical experiments, including financial applications with real-data, to
illustrate the performance and accuracy of our generative SBTS. Further tests to be
developed ...

e Limitations and further developments:

@ Solution obtained under the finiteness of the relative entropy of the time series
distribution: may be violated for heavy-tailed distribution (no second-order moment)

@ Numerical instability in very high dimension (e.g. pixels in image)
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