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s this your first time
in Banff?

In July 2003 (age 16) I attended:

Mathematical Biology: From molecultes to
ecosystems: the legacy of Lee Segel

"While he liked talking about his work, he
had the rare quality of actually being
interested in hearing about other people’s
work (Daniel Segel, free translation)’




Approximation Theory of Group Invariant Neural Networks



Neural Networks

Supervised Machine Learning: Learn f from examples
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Neural Networks

Activation function: : R - R

Induces 0: R% - R g (xq, ..., x5) = (6(x1), ..., 5(x4))

Affine functions AV (x) = A®x 4+ b® where h(): R¥i-1 —» RWi

Definition: We say that V': R¢ — R™ is a fully connected neural network if
N(x) = hyy o0 ohy 000000 hy(x)

Depth of V := L

Width of V' := Maximal dimension max w;
1<i<L



Approximation Theory of Neural Networks

Universality Theorem [Cybenko 1989, Pinkus 1999.many others in between]

If the activation function: g: R — R is continuous and not polynomial

then for every compact K € R%, continuous f:K—->Rande >0,

There exists a fully connected neural network V: R? — R of depth L=1 (and arbitrarily large width)
N(x) = hy e 0o hg(x)

Such that

If(x) = N(x)| <€ Vx € K

Universality- provides justification for choosing neural networks as a function space for any continuous
learning task.




Approximation Theory of Neural Networks

Bevyond universality- rates of approximation (More recent research)

Given f: K — R which is Lispschitz/smooth/fractal and € what width W (€) and depth L(¢€)

are necessary to achieve an € approximation?



Group Invariant Neural Networks

heH

min > If () = h(x)I?

Invariant networks: : ’

Construct H = H;y,,, so thatall h € H;;,,, are invariant to the

? >
symmetries of f f f
(e.g., Convolutional Neural Networks for translation
invariance)

Many other examples.. “Cat”

Popular model class: Convolutional Neural Networks
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Invariant networks example 2: Learning on Graphs

Social networks Economic networks

Information networks:
Web & citations

Internet Networks of neurons

9

Graph Neural Networks : Graph valued functions typically invariant to node relabeling
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Main example for today: point sets

3Xn points

X ={x1,%5, ..., %5}

X =(x, %9, e, X)) ~ 0. X = (X3, X1, .. Xp)

o € S, = permutations

10



Orthogonal invariance

1-Aug-23

X =(xy, %9, .., %) ~ R.X = (Rxq,Rx5, ... Rxy,)
R € 0(d) = {R € RY?| RRT =1,}
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Special Orthogonal=Rotation invariance

X =(xy, %9, .., %) ~ R.X = (Rxq,Rx5, ... Rxy,)
R € S0(d) = {R € R*4| RRT = I ,det(R) = 1}
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Rotation+Permutation invariance

Point set symmetries:
Permutation S,
Orthogonal 0(d)
Rotation S0(d)
Orthogonal+Permutation

Rotation+Permutation

X =(x,%9, 0, %) ~ (R,0),(X) = (Rxy, Rx{, ... Rx};)

1-Aug-23
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Scientific applications (Chemistry, Physics)

Targets

Molecule="point cloud+graph’ DFT >

~ 103 seconds [£,wo, ..
I

Message Passing Neural Net
VE P M 7\
S \=/= —d

N\ /4 N/ \ W/

~ 1072 seconds

[Neural Message Passing for Quantum Chemistry Gilmer et al. 2017]



Symmetry preserving architectures for point sets

Point set networks (permutation invariant)

[PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Qi et al. 2016]
[Deep sets, Zaheer et al. 2017]

[Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks, Lee et al. 2019]

PointNet/DeepSets On {x4, ..., x,} consider permutation invariant functions of the form

(1, s X} 2 NO(Z, N D ()
Or {xq, ., x,} » N @ (max{]\f(l)(xiﬂ i=1, n})
l

Useful principle: Invariance cannot be “ruined’ by composition (by (2 in this example)



Symmetry preserving architectures for point sets 2

Point set networks (rotation invariant)
Not so much...

Point set networks (rotations+permutation invariant)

[Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds, Thomas et al.
2018]

[E(n) Equivariant Graph Neural Networks, Satorras et al. 2021]
[Directional Message Passing for Molecular Graphs, Gasteiger et al. 2020]



Group Invariant Neural Networks



Approximation Theory of Group Invariant Neural Networks




Universality of invariant machine learning

Continuous functions= rconnected NNs

Continuous 1mnvariant
functions=H;,,,,
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Example: Universality for permutation invariant point set functions

Question: Can any continuous permutation invariant f: R**"® — R

flxq, o, xp) = f(xr(l), s xT(n)) for every permutation 7

Be approximated by functions of the form
n

{1, i, Xp} > N @ ( N D (x; ))

=1



Throughout we will assume...

(G,V) are nice, meaning

* V is areal finite dimensional vector space

e.g.,V = R&"

* ( is a compact matrix group defined by polynomial equations
e.g.,0(d) = {R € RY?|RRT = [}

* The map (g, v) = gv is polynomial
e.g., (R,X)» RX




Standard approach: Invariant Universality via
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]

Theorem [Hilbert, 1890]

Let (V, G) be nice, then there exist a finite number of invariant polynomials F;, ..., Fyy: V = R such that all invariant

polynomials are of the form

q(v) = p(Fl(v), ...,FN(U)), for some p: RY - R

Remark
Fi, ..., Fy are called the generators of the ring

R(V,G) ={F:V - R are G invariant polynomials}




Universality of invariant machine learning via
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]

Corollary

Let (V, G) be nice, and F;, ... F)y be generators of the invariant ring. Then any continuous invariant function f:V —» R

can be approximated on compact subsets of V to arbitrary accuracy by

N (F1 (v), ..., Fy (v)), for some neural network A: RY - R




Universality of invariant machine learning via
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]

Issues
» Can we explicitly compute the generators Fi, ..., Fy?
(often yes. In invariant theory this will be called “the first fundamental theorem for (V, G)")
» How does N depend on dim(V) ?
(often this is very bad... we will see examples)
* Do we want to use polynomials for approximation?

(let’s ignore this for now)




Point set "Orthogonal Universality via generators’

Group: 0(d) = {R € R¥4|RRT = I}
Action: R.(xq,..,%,) = (Rxq, ..., Rxy)
~ n? Generators:
(xi,xj) 1<i<j<n
Universality: All continuous O (d) invariant functions f can be approximated by functions of the form

N ({x1, x1), {x1, X2), oo s {Xpys X))

Where WV is a (fully connected) neural network



Point set "Special Orthogonal Universality via generators’

Group: SO(d) = {R € R¥?|RRT = I; and det(R) = 1}
Action: R, (xq,..,%,) = (Rxq, ..., Rxy)
~ (%) Generators:
(xi,xj), 1<i<j<n and det(xil, ...,xid) [ <ip < <lig
Universality: All continuous SO (d) invariant functions f can be approximated by functions of the form

N ({xq, x1), (X1, X2), ey (X, X)), det(xq, ..., Xg), ... det(p_gaq s o X))

Where WV is a (fully connected) neural network



Point set "Permutation Universality via generators’

Group: S, = {permutations t:{1,...,n} - {1, ...,n}}

Action: 7,(xq,...,x,) = (xT—1(1), ...,xT—l(n))

m(n,d) = ("Zd) Generators:

(X1, ooer Xn) & Xizq pj(x;) Where py, ..., py, form a basis for the space of polynomials of degree < n in

d variables

Universality: All continuous §,, invariant functions can be approximated by
N Eiz1 (), Ei1 p2 (20, o Biz1 Pm (%n))

Or NA(XL, NI (x))



Number of generators for point set actions

Group action on R4*" Num of generators
0(d) ~ n?
SO(d) N (n)
d
Sn

n+d
d

)




Universality of invariant machine learning via

gerfp@ting invariants
separating

Advocates: [Complete set of translation invariant measurements with Lipschitz bounds, Cahill et al. 2020]
[Group invariant max-filtering, Cahill et al. 2022]
[Low Dimensional Invariant Embeddings for Universal Geometric Learning, Dym and Gortler 2022]

Definition (Separating invariants)
Let G be a group acting on /. We say that :V — Rare (V, G) separating invariants if
* Invariant: ifu =; vthen H,(u) = /,(v),Vi=1,..,m

» Separating: if H,(v) = H/;(u),Vi=1,...,mthenv =; u

Invariance means that V/; 3 [v] » (//,(v), ..., [,,,(v)) is well defined

Separating means that it is injective on Y/



Example: G = 0(2) acts on V = R?*? via R, (x4, x,) = (Rx1, Rx;)

What invariants can we suggest? Are they separating?

A
T~
How about: ot \‘\\
’
’
(t2,%2) = Nyl and 17,61, %) = [l / 9
We get separation by adding ,' “
[
i >
(%1, 22) = [lxg — x| |‘ I
\ $
\
\\ J
N ’
N s
e-f-




Separation vs generation: sufficiency for universality

We saw : L :
- and Hq, ..., Hy,be continuous separating invariants
Let (V, G) be nice, and-E—FEy-be-generators-of thednvariantring. Then any continuous invariant function f:V —» R

can be approximated on compact subsets of V to arbitrary accuracy by

ﬁfﬁ@ﬁ@ﬂ, for some neural network N: RY — R

N(Hi(v), ... Hn (v))

Remark: This in fact implies the generator-based theorem, since generators are always separators



Separation vs generation: cardinality

Theorem [E. S. Dufresne 2008]

If (V, G) are nice, then there always exist polynomial separating invariants Hy, ..., H,,;: V — R of cardinality

m=2dim(V) + 1




Partial solution: low dimensional-separation via
generation+ linear compression’

Evaluate Random linear
. generators projection
B

veV [F1(), ..., Fy(v)] [H1(v), oo, Hyp (V)]




Intermediate conclusions

Group action |Num of
on R4*M generators
0(d) n?
S0(d) n2 + (") p
d
Sn

("a)

Can we do better? Yes

Let’s
start
here



Efficient invariants: SO(d)

Example: R € SO(d) acts on X = (x4, ..., X;,) € R*" (d < n)

R.(x1,...x5) = (Rxq, ..., Rx})

Generators: ~ (Z)

|xi — ]|2 and |x]'|2 and d@t(xil, ...xid)

Continuous family of separating invariants:

H(xq1, ., Xq; W, W) = [Wyxq + -+ + Wpx,|? + det(XW)

Random separators: For almost all wD, W@ wm wm = 2nd +1

H (xl, v, X WO, W(i)) are invariant and separating!!!



Xy + o+ wex,|? + det(XW)

|x; — x;|° and |x;|* and det(xy,, ... x;,)
Group action on R4*™ | Num of Num of Complexity
generafors separators per separator?
0(d) n? 2n-d+1
SO(d) 02 + (Z) 2n-d+1 nd?  |w
Sn 2n-d +1




Efficient Invariants: SO(d) and beyond

For the action of SO(d) on RY*™, the following is a continuous family of separating invariants

(X1, o) X W, W) = [WyXq + -+ + WX, |? + det(XW)

Definition: Let (V, G) be nice. We sat that a function //: V X RW — R is a continuous family of separating

invariants if it satisfies the following conditions:
« Invariance: If v =; v’ then //(v;w) = H(¥;w) for all w € Rw

« Separation: If v #. v’ then there exists w € R such that // (v; w) # H(v'; w)




Finite Witness Theorem

Finite Witness Theorem [Dym and Gortler 2022] (weakened version):

Let (V,G) be nice. Let //:V X R — R be a family of separating polynomial invariants.
Set m = 2 dim(V) + 1. Then for Lebesgue almost every w1, ..., w(™ e R the functions
defined by

) = H(v;w®)

are separating invariants.

Remarks
* Cardinality is often not optimal
* Proof idea comes from [On signal reconstruction without phase, Balan, Casazza and Edidin 2006] relies

on Real Algebraic Geometry




Finite Witness Theorem [Dym and Gortler 20221 (weakened version):

Let (V, G) be nice. Let H:V x R — R be a family of separating polynomial invariants.

Set m = 2 dim(V) + 1. Then for Lebesgue almost every w®, ..., w(™ € R%w the functions Hj, ... H,, defined by
H;(v) = H(v; w®)

are separating invariants.

Proof idea:

Consider the "lifted bad set’

B={(v,v,wh, . .wm) eV xVxRWm™p£:v but Hv;w®) = Hv;wW),vi=1..m}
* This set is a subset of a 2 dim(V) + md,, dimensional vector space defined by m equations
“therefore” dim(B) = md,, + (2dim(V) —m) =md,, — 1
* The dimension of the ‘projected bad set’ is no larger
Byroj = {(wD, .. .wm) € RW*™|3(v,v) s.t.v #¢ v’ but H(v;w®) = Hv;w®),vi=1..m}
* dim(By,,;) = md,, — 1 < dim(R%Ww>™)

* Most (W(l), w(m)) are not in B and so are separating

proja




Finite Witness Theorem [Dym and Gortler 20221 (weakened version):

Let (V,G) be nice. Let H:V X R — R be a continuous family of|separating|polynomial invariants.

Set m = 2 dim(V) + 1. Then for Lebesgue almost every w(D, ..., w(™ ¢ R%w the functions Hy, ... H,, defined by

H;(v) = H(v; w®)
o : Real algebraic geometry
are separating ivariants. /

prd

v
Proof4des (inspired by phase retrieval paper): Full Proof

Consider the "lifted bad set’

B={(v,v,wh, . .wm) eV xVxRWPV %, v but Hv;w?D) = Hv;wW),vi=1..m}

» This set is a subset of a 2 dim(V) + dimensional vector space defined by m equations
“therefore” dim(B) = md,, + (2dim(V) —m) =md,, — 1
* The dimension of the ‘projected bad set’ is no larger
Byroj = {(wD, .. .wm) € RW*™|3(v,v) s.t.v #¢ v’ but H(v;w®) = Hv;w®),vi=1..m}
* dim(By,,;) = md,, — 1 < dim(R%Ww>™)

* Most (w(l), w(m)) are not in B and so are separating

proj:




Finite Witness Theorem-Applications

Group action | Num of Num of Complexity
on R4*" generators separators per separator?
0(d) n? 2n-d+1 n-d
S50(d) n2+(n 2n-d +1 n-d?

d
S, <n+d> 2n-d+1 n-log(n)
d




Recent work- Analytic Finite Witness Theorem

Analtyic Finite Witness Theorem [Amir, Gortler, Avni, Ravina, Dym 2023] (weakened version); Analytic
Let (V,G) be nice. Let //:V X R — R be a continuous family of separatirWiants.

Set m = 2 dim(V) + 1. Then for Lebesgue almost every w(, ..., w(™ e R the functions

defined by

(v) = H(v;w®)

are separating invariants.

"Proof”

Real Algebraic Geometry = Real analytic geometry, o-minimal systems and related concepts




Application: Permutation invariant networks
(with analytic activations)

Theorem [Amir, Gortler, Avni, Ravina, Dym 2023]

Let d, n be natural numbers and set m = 2nd + 1.
If 6: R = R is analytic and not polynomial, then for Lebesgue almost every A € R™*% and b € R™

the permutation invariant function

n
ROM 3 (xy, .., %) > Z o (Ax; + b)
i=1

1s separating



Finite Witness Theorem

Analtyic Finite Witness Theorem-stronger (but not strongest) version

Let (V, G) be nice. Let

R — R be a continuous family of separating analytic invariants. Set m =

2 dim(V) + 1YThen for Lebesgue almost every w® . owm e R the functions Hj, ... H,, defined by

;

H;(v) = H(v; W(i))

are separating invariants.

Can be a low dimensional subset of some higher
dimensional vector space, providing it is ‘reasonable’
e.g., a countable union of sets defined by polynomial and
analytic equalities and inequalities

Or image of these sets under an analytic functions



Adding to the table...

Group action | Num of Num of Complexity
on R4*n generators separators per separator?
0(d) n? 2n-d +1 n-d

n , . A2
S0(d) nz+(d 2n-d+1 n-d
A n+d 2n-d+1 |n(d+log(n))
d
0(d) x S, ? 2n-d+1 n
S0(d) x S, ? 2n-d + 1 n?




Parting questions

 Separating invariants are injective mappings f:V /G — R™. Do they preserve distances?

* Separating invariants for surfaces? (one example: conformal welding)



Funding: This research was supported by the Israeli Science Foundation grant no. 272/23
N.D. is a Horev Fellow
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. Y '-}‘fT Snir Hordan Ilai Avni Ravina Ravina

v/

Steven J. Gortler Technion
Harvard



[Neural Injective Functions for Multisets, Measures and Graphs
via a Finite Witness Theorem.
Amir, Gortler, Avni, Ravina and Dym 2023]

Thank you!

[Low Dimensional Invariant Embeddings for Universal
Geometric Learning
Dym and Gortler 2022]

[Complete Neural Networks for Euclidean Graphs
Hordan, Amir, Gortler, and Dym 2023]



O(d) x S,, separation

/N

Generically separating Fully separating
Geometric Message Passing (d — 1) order geometric message
passing




Geometric message passing
e.g. EGNN [E(n) equivariant graph neural networks, Sattoras et al. 2021 ]

Input: x4, ..., x,, € R?

set h{?, .., % =0

hl@ — (hgt_l), {hjgt_l), |xl- — xj|,j =1, n}) (repeat T times)
Pgtobar(eas - Xn) = ({h", .. hD

hgiobai (X1, -, X5) is O(d) X S, invariant



(Geometric message passing-separation
e.g. EGNN [E(n) equivariant graph neural networks, Sattoras et al. 2021 ]

Input: x4, ..., X, € R?

set hgo), ...,h;o) =0
hl_(t) = (hgt_l), {h}t_l), |xl- — xj|,j =1, n}) (repeat T times)

hglobal u ({hm: "y h1(’lT)})

!

Permutation invariant and separating



) Hard, tO Separate [Incompleteness of Atomic Structure Representations. Physical Review Letters

Pozdynakov et al. 2020]

0 |1 2 1 -1
0 |-1
1 [0 210
:/: Dlst Sort
G
0 |1 21 -1
0 |[-1
-1 10 210

e Cannot be separated by MPNN withT =1
e Can be separated by MPNN with T = 2



° Harder ? [Incompleteness of graph neural networks

for points clouds in three dimensions, Pozdnyakov and Ceriotti 2022]

Dist |

:/:G —

X € ]RSX6

Sort (PDD‘

Cannot be separated by MPNN for any T



Geometric K-order message passing

[Sign and Basis Invariant Networks for Spectral Graph Representation Learning, Lim et al. 2022]
[Is distance matrix enough for geometric deep learning, Li et al. 2023]

Assume K= 3 for notation simplicity

(xp, x;) X, xj) (X, Xg)
RO, j, X)) = () (gx) (g, x)
(Xg, Xi) (xk»xj) (Xg» X )

( pE-1) (s,j, k) )
h(t)(i,j, K)(X) = h(t_l)(i,j, k), Rt-1) (i,s, k) |, s=1,..,n
h(t_l) (i,j, S) J

hglobal = {h(T)(l,], k)l(l)]r k) € [n]3}

~N"



Theorem [Hordan, Amir, Gortler, Dym, 2023]

For every X, Y € RY*™ we have that the d-order message passing with T = 1 is separating:
It gives the same output hgjopq1(X) = hgiopai (V) if and only if X, Y are related by a permutation

and orthogonal transformation.

A modified d — 1 message passing algorithm is also separating

Theorem [Rose et al. 2023]

The original d — 1 message passing algorithm is also separating



Complexity

* FullO(d) X S,, separation with (d — 1) — WL requires computing 2nd + 1 invariants
with computational complexity of n? each, using our permutation invariant separating

functions

* This also uses the dependence of the theorem on intrinsic dimension. Considering
extrinsic dimension only would lead to exponential blowup



Separation experiment

Hard Harder

Sort

Sort

Hard Harder
MPNN Yes No
(d —1) MPNN | Yes Yes




Separation of existing invariant architectures:

0(d) % S,, Invariant architectures

(d — 1)MPNN MPNN

Point Clouds GramNet GeoEGNN EGNN LinearEGNN MACE TEN DimeNet GVPGNN
Hard1[2] 1.0 0.998 0.5 1.0 1.0 0.5 1.0 1.0
Hard?2 [2] 1.0 0.97 0.5 1.0 1.0 0.5 1.0 1.0
Hard3 [2] 1.0 0.85 0.5 1.0 1.0 0.55 1.0 1.0
Harder [1] 1.0 0.899 0.5 0.5 1.0 0.5 1.0 1.0
Cholesky dim=6 1.0 [rrelevant 0.5 0.5 1.0 [rrelevant  Irrelevant  Irrelevant
Cholesky dim=8 1.0 [rrelevant 0.5 0.5 1.0 [rrelevant  Irrelevant  Irrelevant
Cholesky dim=12 N/A [rrelevant 0.5 0.5 0.5 Irrelevant  Irrelevant  Irrelevant

Ll

Dataset composed of two point clouds which are hard to separate+rotations+permutations+noise



We didn’t discuss...

* Generic separation: Separation up to a set of measure zero. Need only dim(V) + 1 invariants
« Stability: Invariant and separating H: V — R™ can be identified with H:V/. - R™injective.

Is H bi-Lipschitz with respect to

d([v],[v']) = min||gv —v'[|
geaG

[Permutation invariant representations with applications to graph deep learning, Balan Haghani Singh 2022]
[Group-invariant max flitering, Cahill Iverson Dixon and Packer]



TODO



hi(t) = (hgt_l),{h](t_l), |xl- — xj|,j =1, n}) (repeat T times)

Permutation invariant and separating

dimensionx

ns3...

]
h(o)

i

ambient
—]

hM

ambient
—

h?

ambient ambient
4| oo pP——p

pM output

l

dimensionx

6n

6n

6n 6n 6n

intrinsic

ambient
>

h{®

hM

intrinsic
>

h?

.l_ I_ intrinsic
eoe |—Mm——

hlm output



Separation of existing architectures: (when)
does 1t happen?

0(d) % S,, Invariant architectures

Theoretical separation Yes (ours) Yes (ours) No No ? Sort of ?

Point Clouds GramNet GeoEGNN EGNN LinearEGNN MACE TEN DimeNet GVPGNN

Hard1[2] 1.0 0.998 0.5 1.0 1.0 0.5 1.0 1.0
Hard2 [2] 1.0 0.97 0.5 1.0 1.0 0.5 1.0 1.0
Hard3 [2] 1.0 0.85 0.5 1.0 1.0 0.55 1.0 1.0
Harder [1] 1.0 0.899 0.5 0.5 1.0 0.5 1.0 1.0
Cholesky dim=6 1.0 [rrelevant 0.5 0.5 1.0 Irrelevant  Irrelevant  Irrelevant
Cholesky dim=8 1.0 [rrelevant 0.5 0.5 1.0 [rrelevant  Irrelevant  Irrelevant
CR()lesky dim=12 N/A [rrelevant 0.5 0.5 0.5 Irrelevant  Irrelevant  Irrelevant

I_l

Dataset composed of two point clouds which are hard to separate+rotations+permutations+noise



Proof of theorem (intuition)



Full O(d) X S,, separation (1): Cardinality

(RO (s,j, k) \
A3, j, k)(X) = KOG, k), ROG s, k)|, s=1,..,n;
\ RO, ), 9) )
hglobal = {h(l)(lJ]; k)|(’*)]: k) € [n]3}
‘0\0‘\6““}« ~ n* dimensional
e

X € R3xn
j”bv
11781'0

~ 6Mm dimensional




Phase retrieval



Better solution: imported from phase retrieval

Phase retrieval: we want to reconstruct a signal z € C™ from phaseless linear measurements
o \|°
H;(z) = |<w ! ,Z>| i=1,..m

S1 invariance: For all 8 we have that |Hi(eiez)| = |H;(z)| so we can only hope for reconstruction up to a
global phase factor, that is

Hi{(z) = H;(2) ¢=mmm) 7z = e'97for some 0

In other words, we would like H4, ... H,,, to be separating




Better solution: imported from phase retrieval

Theorem [On signal reconstruction without phase, Balan, Casazza and Edidin 2006]

If m = 4n — 2 then for Lebesgue almost all w® . w e R the functions H,, ... H,, defined by

<w("), Z>

are separating with respect to the action of Ston C*

2

H;(z) = ,Ji=1,..m

Remark: In our context we think of V = C" is a real vector space of dimension 27. So

m=4n—2 < 2dim(V)+1=4n+1

Remark: Note that all invariant are obtained by taking sample of H(z; w) which is polynomial in both its

argument z and its parameters w




Separation vs. generation for phase retrieval

Theorem [On signal reconstruction without phase, Balan, Casazza and Edidin 2006]
If m = 4n — 2 then for Lebesgue almost all w® . w e R the functions H,, ... H,, defined by

2
,i=1..m

H;(z) =

<w("), Z>

are separating with respect to the action of Ston C*

In contrast, there are ~ n? generators for the ring of invariant polynomials:

Hs,t(zli ""Zn) - Zsz_t




Invariant universality rephrased

Assume G actson V

Orbit: [vl]={weV|age G, w=gv }
Quotient space: /e ={[v]| veV}

If f:V — Y is invariant then it induces a well-defined f: VieoY

via

f(vh = f()



Invariant universality via Invariant
embeddings

IfF:V/; - R™ is invariant and injective, then any f:V/; — Y is of the form

f([v]) = h o F([v]), for an appropriate h: R™ — Y
On the image of F we have h = f o (f‘)_l

Goal: Find injective F:V/; > R™



Invariant embeddings and separating
invariants

Goal: Find injective F: Y/, > R™

-

Goal: Find invariant and separating F: V - R™
* Invariant: if [w] = [v] then F(v) = F(w)
* Separating: If F(v) = F(w) then [w] = [v]



Conclusion: things we didn’t discuss

* Stability
* Equivariance

* Performance



Invariance vs. equivariance

car?

Classification

PointNet

Part Segmentation

Semantic Segmentation



Equivariance: For Physics simulation




v

v




N-body problem

Equivariant to
*  Permutation
* Translation
Orthogonal
Lorenz!

=1



