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Outline

Stochastic optimal control formulation for transition path theory

e Optimal control for Markov process on continuous states:

@ Running cost via Girsanov Thm for Brownian motion
o Committor function — optimal control

e Drift-diffusion on manifold:
e Voronoi tessellation on point cloud,
e Upwind scheme — reversible Markov chain, convergence with refined graph
o Optimality of the controlled random walk?

e Optimal control for general Markov chain:

Control applies to the transition rate Q,

Running cost in finite time horizon (Girsanov Thm for jump process),

SOC in infinite time horizon (optimal change of measure in Cadlag path space),
Discrete committor function — optimal control
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Transition path problem for diffusion processes

o Take Q = C([0,+);RY) and (Q,.%,, F.., P).

e Goal:
dX, = —VU(X,)dr + v2edB

Transition path connecting from local attractor A to local attractor B (fix noise level).

Rare event: efficient computations? manifold suggested by point clouds?
e Define a controlled process

dX; = (-VU(X,) +v(X,))dr + v2edB

Optimality? solvable?
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Stochastic optimal control: infinite time horizon

Reinterpret the transition path theory using stochastic optimal control (SOC) in the infinite time
horizon

(o) =By | [ SR Pas 080

s.t. under P, dX, = (b(X,) +v(X,))dt +Vv2edB, Xy=xcAUB,
T =inf{t > 0;X, € AUB}.

Boundary cost functional f(X;) is

If in finite time horizon [0, 7], it can be directly solved by HJE
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Reformulated as optimal change of measures

e Original: s.t. under P, dX, = (b(X;) +v(X,))dt + v2e dB
e Define process

(X | L
Z,:exp(/0 ‘}\(/2;25135—48 A v(X;)2ds), t>0.

Under P, Z, is positive, martingale, mean 1.
Define P(A) := [qo4 Z:dP for all A € F or symbolically 42 dP 7 =%-

New: under P, dX =b(X,)dr++2edB

Convert the running cost [Girsanov Thm for Brownian motion],

dP¥
Ep (/ 2|v |2ds> = _ZSE;(IOng}=%)

Value function becomes
. ~ dP¥
’)/(x) = min E)[C) I:f(XT) — 28 log ﬁ y1:| y

s.t. under P, dX = b(X,)dr ++/2edB.
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Novikov condition and regularization

« Admissible velocity given by the Novikov condition .« := {v: Ep (eﬁ f07|V(Xs)|2dS> < oo}
e Regularization by §-cutoff

[ —logé forxeA;
f‘s(x)_{ 0 forxes.

e Using elliptic estimates to justify § — 0
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Solvable optimal control by committor function

Committor function & (probability of hitting B before A),

Oh=0 with BCs h|4 =0, hjp =1; generator Q =¢eA+b-V

Probability representation of 4 via

h(x) =EL(e /X)), vxe (AUB)".

Optimal control is given by v = —-Vy=2eVInh

y(x) satisfies static HUE H(p,x) = %|p[*—b-p,
H(Vy(x),x) = €Ay, in (AUB)‘, Yy=f onAUB
e Inreversible case — effective potential U¢ = U — 2¢1nh, effective equilibrium 7¢ = h’x

[Bolhuis, Chandler, Dellago, Geissler, '02][Weinan E, Vanden-Eijnden, '06]
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Simulation for transition path: rare event — a.s.
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Part Il: Drift-diffusion on manifold

e Voronoi tessellation on point cloud,
e Upwind scheme — reversible Markov chain (convergence with refined graph)
e Optimality of the controlled random walk?
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Reversible Fokker-Planck on manifold, finite volume scheme

e Voronoi tessellation
Collected point {x;}% | c .#, well distributed;
A s d- dlmenS|onaI closed manifold embedded into R’
Cell C; = {x:d(x,x;) < d(x,xj),j #i};
Interface I';; between cell C; and C; (perpendicular bisector);
Nearest neighbor index set .4; not include itself.

o Reversible case, equilibrium 7 o< ¢~U/¢, 7 = gr, drop tilde
1 p
oip = Ea,p =Ap+V-(pVU)=V" (nV (ED .

o Finite volume method: (piecewise constant approximation) p; at C;,

d d d d—1

—pPilCi| = — ‘7 J%ﬁ

GPiCl~ g [ pric)~ g/ . (Ty)
e Finite volume scheme

d m+m 1 pi P\ &
apilCA:ZIFuI 5 (”j_”‘ Z-Z,IQﬁPj\Cj\

JEN |Xi‘*Xj| 1
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In graph calculus notation

e Graph gradient

Vo=
Ly . |J} ——.Xj"
e Graph divergence for flux F = (F;;), Fij = —Fji
. 1
le,’F = |1",-j|Fij
ICi| &,
jet

e Thus the scheme recast as

e Compare with continuous eq
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Tangent plane approximation — Voronoi cells

Input: Set bandwidth » and threshold s

e Approximation of tangent plane T .#:

Span {B1, -, Bura}, the first d orthonormal eigenvectors of covariance matrix
1 N . ¢
%n’,,(xk) = ; .Z(Xk’i —xk)(ka —xk)T S RZXZ, Xg,i IN Iarge ball BI\Rﬁ(xk).
14

1

e Projection map: y(u) : R — RY; y(u) = (u' Buyts - ot Bura)-
Project points in the small ball BE (x;) via T (x) = 1 (x — x¢).

« Voronoi tessellation in R?.

o Gompute approximated volumes |C«| and approximated areas
Tre| = max {24~ (CroNCry), s}

12/21



Error estimate for the finite volume scheme

e Geodesic approximated by Euclidean distance:
Il = x| e = d(x,2') (1 + O(d?(x,2)).
o Approximation of the volume of a Voronoi cell |Cy|
|Cil = |G| +0(r**)
e Approximation of the area of a Voronoi face |I'y|
Tke| = [T + O(F).

Theorem (YG., Liu, Wu, ACHA 23’)

Let ei(r) := p(xi,1) — p;(t). With probability greater than 1 — -,

max Zel

t€[0,7]

2 |Ct < Zei(O)Z% +cr)eZT
i i

r ~ diameter of Voronoi cell
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Random walk approximation: master equation %p =Q*p
Q-matrix = jump rate A; and transition probability P;; (from j to i, stochastic matrix ):

1971

A= Qii = ! J , i=1,2,---.m
L X el by
1 T+ T ‘Fi'| . .
T G iy T T

Recast as a master equation of a Markov process:

d .
aPi|Cz‘| =Y APip;|Cj| — Aipi|Ci|, distribution p; = p;|Ci,
JEN

It satisfies }_; /;; = 1 and the detailed balance property
Pjidjmj|Cj| = PijAim|Cil.
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Construct controlled random walk on graph, reversible case

Recall optimal control, effective potential and equilibrium:

Vv =2eVInh, U°=U-2¢elnh, 7n°=e
Discrete committor function

N
Y Qijhj =0, i#iz0rip, hi, =8k,
=1

Equilibrium (inherit from continuous form):  xf := h?m;

Master equation of controlled Markov process

I
-

d hihj(mi+m;) 1 pj pi
1C:| = r:: _ ,
dtpl| il Z T3] ) . hiﬂ'j 2

jEJ% |xl__xv|

Controlled Q-matrix (Doob’s h-transformation), for i # j

hj (mi+7;) Tyl hy
ho_ TR ij nj _
ij h,‘ 27rj|Ci| ‘xl x/| h Qlja 11 ;Qzl
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Part IlI: Optimal control for general Markov chain

Control applies to the transition rate Q,

Running cost in finite time horizon (Girsanov Thm for jump process),

SOC in infinite time horizon (optimal change of measure in Cadlag path space),
Discrete committor function — optimal control
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Optimality for finite time OC, Doob transformation

o Given a generator Q;;, introduce control velocity
‘_;f(l) = (Vf(i’j)>j=121\’ > 07 and Qt(l7]) = Qijvt(ivj)vj 7& i
* Running cost for finite time horizon L(i, V) = ¥ ;.; Qi;Ent(v (i, j)), Ent(r) = rlogr—r+1

¥(po) =min {);f<i>pT<i> + [ Einne dr} ,

N
St g pi= L 000 () w00, o) = ol
P

e The optimal control is given by the Doob type Ai-transformation
() hi(J)
Vl(lv.]) - l’l ()

h solves linear backward eq. &4, (i)+¥; Qijh(j) =0, hT( ) =e"
’YSOIVeS HJE %(Pt(l)—i_H(laa) :Ov H(l76) = Z]Qlj(ed) ) )

, 0)(i,)) =
hy (i) j#ijer

i Q(lvf)vlajerm]?él» QZ** Z Q?,**ll
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SOC in infinite time, running cost via Girsanov transformation

e Girsanov Thm for pure jump (time-homogeneous case)

h
Jo AR (X =2.(x1)] ds—log 2%
Zii=e hX) >0

is positive, P-martingale, and of mean 1. Thus define P" via ‘% ;= 7
1

(X", P,Q") — (X", P",0)

The time marginal representation for finite time horizon (consistent with entropy)

E” (log dP / Zps ZQI] )
e Stochastic optimal control formulation in the infinite time horizon
dpP
y(x) = min Ep{f(X{)+log—

>0 dph ‘%}
s.t. X" is the controlled process with generator Q" under P, X"(0) = x ¢ AUB.
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Optimality given by committor function and Doob transformation
Theorem

Transition path problem for Markov chain is formulated as

T
7(1) = min B { £08(9) ~ [ (A4(K!) ~ A1) as + Hogh(x) ~ togh(xf)] |
B, hi>0 0
s.t. (X");>0 is @ Markov chain with generator Q" under P, X! =i € (AUB)".

The optimal control is given by discrete committor function, fori € (AUB)¢,

(i) = —logh® (i) = —logBp(e /X)), Y 0ijh5 =0, h|a=35, h*jz=1.
J

Optimal controlled jump rate doesn’t change Al" :=—Ql; = —0Q;;= A, i¢ AUB

Remark: Optimal change of measure formulation (importance sampling, need parameterized P)

) dp
=minE"{ f(X;) —log—
=g {f( ? OgdP‘y:}’

s.t. (X),>0 is @ Markov chain with generator Q under P, x ¢ AUB.

19/21




Alanine dipeptide and two backbone dihedral angles

(a)
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Conclusion

Transition path theory via stochastic optimal control in infinite time horizon
Finding optimal control = optimal change of measure (parameterized) in path space

Girsanov Thm: Running cost is the cost of changing measures:
relative entropy on path space: quadratic for diffusion; entropy for Markov chain

Optimal solution is given by continuous/discrete committor function (linear problem)
Helps design optimally controlled random walk (rare event — almost surely )

Thank you!
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