Stochastic optimal control and transition paths on manifold and graph

Yuan Gao, Purdue University

Y. Gao-Li-Li-Liu, MMS '23, Y. Gao-Liu-Wu, ACHA '23, Y. Gao-Liu-Tse, in preparation

Outline

Stochastic optimal control formulation for transition path theory

- Optimal control for Markov process on continuous states:
 - Running cost via Girsanov Thm for Brownian motion
 - ullet Committor function o optimal control
- Drift-diffusion on manifold:
 - Voronoi tessellation on point cloud,
 - Upwind scheme → reversible Markov chain, convergence with refined graph
 - Optimality of the controlled random walk?
- Optimal control for general Markov chain:
 - Control applies to the transition rate Q,
 - Running cost in finite time horizon (Girsanov Thm for jump process),
 - SOC in infinite time horizon (optimal change of measure in Càdlàg path space),
 - $\bullet \ \, \text{Discrete committor function} \to \text{optimal control} \\$

Transition path problem for diffusion processes

- Take $\Omega = C([0,+\infty);\mathbb{R}^d)$ and $(\Omega,\mathscr{F}_t,\mathscr{F}_\infty,P)$.
- Goal:

$$\mathrm{d}X_t = -\nabla U(X_t)\,\mathrm{d}t + \sqrt{2\varepsilon}\,\mathrm{d}B$$

Transition path connecting from local attractor *A* to local attractor *B* (fix noise level). Rare event: efficient computations? manifold suggested by point clouds?

Define a controlled process

$$\mathrm{d}\tilde{X}_t = (-\nabla U(\tilde{X}_t) + v(\tilde{X}_t))\,\mathrm{d}t + \sqrt{2\varepsilon}\,\mathrm{d}B$$

Optimality? solvable?

Stochastic optimal control: infinite time horizon

Reinterpret the transition path theory using stochastic optimal control (SOC) in the infinite time horizon

$$\begin{split} \gamma(x) := & \inf_{v} \mathbb{E}_{P} \left[\int_{0}^{\tau} \frac{1}{2} |v(\tilde{X}_{s})|^{2} \, \mathrm{d}s + f(\tilde{X}_{\tau}) \right] \\ \text{s.t.} \quad & \text{under } P, \ \mathrm{d}\tilde{X}_{t} = (\vec{b}(\tilde{X}_{t}) + v(\tilde{X}_{t})) \, \mathrm{d}t + \sqrt{2\varepsilon} \, \mathrm{d}B, \quad \tilde{X}_{0} = x \in \overline{A \cup B}^{c}, \\ \tau &= \inf\{t \geq 0; \tilde{X}_{t} \in \overline{A \cup B}\}. \end{split}$$

Boundary cost functional $f(\tilde{X}_{\tau})$ is

$$f(x) = \begin{cases} +\infty, & \text{in } \bar{A}; \\ 0, & \text{in } \bar{B}. \end{cases}$$

If in finite time horizon [0,T], it can be directly solved by HJE

Reformulated as optimal change of measures

- Original: s.t. under P, $d\tilde{X}_t = (\vec{b}(\tilde{X}_t) + v(\tilde{X}_t)) dt + \sqrt{2\varepsilon} dB$
- Define process

$$Z_t = \exp\left(\int_0^t \frac{\nu(\tilde{X}_s)}{\sqrt{2\varepsilon}} dB_s - \frac{1}{4\varepsilon} \int_0^t \nu(\tilde{X}_s)^2 ds\right), \quad t \ge 0.$$

Under P, Z_t is positive, martingale, mean 1.

Define $P^{\nu}(A):=\int_{\Omega\cap A}Z_tdP$ for all $A\in\mathscr{F}_t$ or symbolically $\frac{dP^{\nu}}{dP}\big|_{\mathscr{F}_t}=Z_t.$

- New: under P^{ν} , $d\tilde{X} = \vec{b}(\tilde{X}_t) dt + \sqrt{2\varepsilon} dB$
- Convert the running cost [Girsanov Thm for Brownian motion],

$$\mathbb{E}_{P}^{x}\left(\int_{0}^{t} \frac{1}{2} |\nu(\tilde{X}_{s})|^{2} ds\right) = -2\varepsilon \mathbb{E}_{P}^{x}\left(\log \frac{dP^{v}}{dP}\big|_{\mathscr{F}_{t}}\right)$$

Value function becomes

$$\gamma(x) = \min_{v \in \mathscr{A}, P^v} \mathbb{E}_P^x \left[f(\tilde{X}_{\tau}) - 2\varepsilon \log \frac{dP^v}{dP} \Big|_{\mathscr{F}_{\tau}} \right],$$
s.t. under P^v , $d\tilde{X} = \vec{b}(\tilde{X}_t) dt + \sqrt{2\varepsilon} dB$.

Novikov condition and regularization

- Admissible velocity given by the Novikov condition $\mathscr{A}:=\{v:\ \mathbb{E}_P\left(e^{\frac{1}{4\varepsilon}\int_0^\tau|v(\tilde{X}_s)|^2\,\mathrm{d}s}\right)<\infty\}$
- Regularization by δ -cutoff

$$f_{\delta}(x) = \begin{cases} -\log \delta & \text{for } x \in A; \\ 0 & \text{for } x \in B. \end{cases}$$

ullet Using elliptic estimates to justify $\delta o 0$

Solvable optimal control by committor function

Committer function h (probability of hitting B before A),

$$Qh = 0$$
 with BCs $h|_A = 0$, $h|_B = 1$; generator $Q = \varepsilon \Delta + b \cdot \nabla$

Probability representation of h via

$$h(x) = \mathbb{E}_P^x(e^{-f(X_{\overline{\tau}})}), \quad \forall x \in (A \cup B)^c.$$

- Optimal control is given by $v^* = -\nabla \gamma = 2\varepsilon \nabla \ln h$
- $\gamma(x)$ satisfies static HJE $H(p,x) = \frac{1}{2}|p|^2 b \cdot p$,

$$H(\nabla \gamma(x), x) = \varepsilon \Delta \gamma$$
, in $(\overline{A \cup B})^c$, $\gamma = f$ on $\overline{A \cup B}$

• In reversible case \rightarrow effective potential $U^e = U - 2\varepsilon \ln h$, effective equilibrium $\pi^e = h^2\pi$

[Bolhuis, Chandler, Dellago, Geissler, '02][Weinan E, Vanden-Eijnden, '06]

Simulation for transition path: rare event \rightarrow a.s.

Part II: Drift-diffusion on manifold

- Voronoi tessellation on point cloud,
- Upwind scheme → reversible Markov chain (convergence with refined graph)
- Optimality of the controlled random walk?

Reversible Fokker-Planck on manifold, finite volume scheme

- Voronoi tessellation:
 - Collected point $\{x_i\}_{i=1}^N \subset \mathcal{M}$, well distributed;

 ${\mathscr M}$ is d-dimensional closed manifold embedded into ${\mathbb R}^\ell$

Cell $C_i = \{x : d(x, x_i) \le d(x, x_j), j \ne i\};$

Interface Γ_{ij} between cell C_i and C_j (perpendicular bisector);

Nearest neighbor index set \mathcal{N}_i not include itself.

• Reversible case, equilibrium $\pi \propto e^{-U/\varepsilon}$, $\tilde{t} = \varepsilon t$, drop tilde

$$\partial_{ar{t}}
ho = rac{1}{arepsilon}\partial_{t}
ho = \Delta
ho +
abla\cdot(
ho
abla U) =
abla\cdot\left(\pi
abla\left(rac{
ho}{\pi}
ight)
ight).$$

• Finite volume method: (piecewise constant approximation) ρ_i at C_i ,

$$rac{\mathrm{d}}{\mathrm{d}t}
ho_i|C_i|pproxrac{\mathrm{d}}{\mathrm{d}t}\int_{C_i}
ho\,\mathscr{H}^d(C_i)pprox\sum_{i\in\mathscr{M}}\int_{\Gamma_{ij}}\pi\mathbf{n}\cdot
abla\left(rac{
ho}{\pi}
ight)\mathscr{H}^{d-1}(\Gamma_{ij})$$

Finite volume scheme

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_i|C_i| = \sum_{j\in\mathscr{N}_i} |\Gamma_{ij}| \frac{\pi_i + \pi_j}{2} \frac{1}{|x_i - x_j|} \left(\frac{\rho_j}{\pi_j} - \frac{\rho_i}{\pi_i}\right) =: \sum_{j=1}^N Q_{ji}\rho_j|C_j|$$

In graph calculus notation

Graph gradient

$$\nabla_{ij}u:=\frac{u_j-u_i}{|x_i-x_j|},$$

• Graph divergence for flux $F = (F_{ij})$, $F_{ij} = -F_{ji}$

$$\mathsf{div}_i F := rac{1}{|C_i|} \sum_{j \in \mathscr{N}_i} |\Gamma_{ij}| F_{ij}$$

· Thus the scheme recast as

$$rac{\mathrm{d}}{\mathrm{d}t}
ho_i = \operatorname{\mathsf{div}}_i\left(rac{\pi_i + \pi_j}{2}
abla_{ij}rac{
ho}{\pi}
ight)$$

Compare with continuous eq

$$\partial_t
ho =
abla \cdot \left(\pi
abla \left(rac{
ho}{\pi}
ight)
ight).$$

Tangent plane approximation → Voronoi cells

Input: Set bandwidth r and threshold s

• Approximation of tangent plane $T_{x_k}\mathcal{M}$: Span $\{\beta_{n,r,1}, \dots, \beta_{n,r,d}\}$, the first d orthonormal eigenvectors of covariance matrix

$$\mathscr{C}_{n,\mathbf{r}}(x_k) = \frac{1}{n} \sum_{i=1}^{\bar{N}_k} (x_{k,i} - x_k) (x_{k,i} - x_k)^\top \in \mathbb{R}^{\ell \times \ell}, \quad x_{k,i} \text{ in large ball } B_{\sqrt{r}}^{\mathbb{R}^\ell}(x_k).$$

- Projection map: $\iota_k(u): \mathbb{R}^\ell \to \mathbb{R}^d$; $\iota_k(u) = (u^\top \beta_{n,r,1}, \cdots, u^\top \beta_{n,r,d})$. Project points in the small ball $B_x^{\mathbb{R}^\ell}(x_k)$ via $\tilde{\iota}_k(x) = \iota_k(x - x_k)$.
- Voronoi tessellation in \mathbb{R}^d .
- Compute approximated volumes $|\tilde{C}_k|$ and approximated areas $|\tilde{\Gamma}_{k\ell}| = \max\{\mathcal{H}^{d-1}(\tilde{C}_{k,0} \cap \tilde{C}_{k,\ell}), s\}.$

Error estimate for the finite volume scheme

• Geodesic approximated by Euclidean distance:

$$||x'-x||_{\mathbb{R}^{\ell}} = d(x,x')(1+O(d^2(x,x'))).$$

• Approximation of the volume of a Voronoi cell $|C_k|$

$$|\tilde{C}_k| = |C_k| + O(r^{d+1})$$

• Approximation of the area of a Voronoi face $|\Gamma_{k\ell}|$

$$|\tilde{\Gamma}_{k\ell}| = |\Gamma_{k\ell}| + O(r^d).$$

Theorem (YG., Liu, Wu, ACHA 23')

Let $e_i(t) := \rho(x_i, t) - \rho_i(t)$. With probability greater than $1 - \frac{1}{N^2}$,

$$\max_{t \in [0,T]} \sum_{i} e_i(t)^2 \frac{|C_i|}{\pi_i} \le \left(\sum_{i} e_i(0)^2 \frac{|C_i|}{\pi_i} + cr\right) e^{2T}$$

 $r\sim$ diameter of Voronoi cell

Random walk approximation: master equation $\frac{d}{dt}p = Q^*p$

Q-matrix \Longrightarrow jump rate λ_i and transition probability P_{ji} (from j to i, stochastic matrix):

$$\lambda_{i} := \sum_{j \neq i} Q_{ij} = \sum_{j \in \mathcal{N}_{i}} \frac{\pi_{i} + \pi_{j}}{2\pi_{i}|C_{i}|} \frac{|\Gamma_{ij}|}{|y_{i} - y_{j}|}, \quad i = 1, 2, \dots, n;$$

$$P_{ji} := \frac{1}{\lambda_{j}} Q_{ji} = \frac{\pi_{i} + \pi_{j}}{2\lambda_{j}\pi_{j}|C_{j}|} \frac{|\Gamma_{ij}|}{|y_{i} - y_{j}|}, \quad j \in \mathcal{N}_{i}; \quad P_{ji} = 0, \quad j \notin \mathcal{N}_{i}.$$

Recast as a master equation of a Markov process:

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\rho_i|C_i| = \sum_{j\in\mathcal{N}_i} \lambda_j P_{ji}\rho_j|C_j| - \lambda_i\rho_i|C_i|, \quad \text{distribution } p_i = \rho_i|C_i|,}$$

It satisfies $\sum_{i} P_{ij} = 1$ and the detailed balance property

$$P_{ji}\lambda_j\pi_j|C_j|=P_{ij}\lambda_i\pi_i|C_i|.$$

Construct controlled random walk on graph, reversible case

Recall optimal control, effective potential and equilibrium:

$$v^* = 2\varepsilon \nabla \ln h$$
, $U^e = U - 2\varepsilon \ln h$, $\pi^e = e^{-\frac{U^e}{\varepsilon}} = h^2 \pi$

Discrete committor function

$$\sum_{i=1}^N Q_{ij}h_j=0,\ i
eq i_a ext{ or } i_b,\quad h_{i_a}=\delta,h_{i_b}=1$$

- Equilibrium (inherit from continuous form): $\pi_i^e := h_i^2 \pi_i$
- Master equation of controlled Markov process

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \rho_i |C_i| = \sum_{j \in \mathcal{N}_i} |\Gamma_{ij}| \frac{h_i h_j (\pi_i + \pi_j)}{2} \frac{1}{|x_i - x_j|} \left(\frac{\rho_j}{h_j^2 \pi_j} - \frac{\rho_i}{h_i^2 \pi_i} \right), \quad i = 1, \dots, N.$$

• Controlled Q-matrix (Doob's h-transformation), for $i \neq j$

$$Q_{ij}^{h} = \frac{h_{j}}{h_{i}} \frac{(\pi_{i} + \pi_{j})}{2\pi_{i} |C_{i}|} \frac{|\Gamma_{ij}|}{|x_{i} - x_{j}|} = \frac{h_{j}}{h_{i}} Q_{ij}, \quad Q_{ii}^{h} = -\sum_{j \neq i} Q_{ij}^{h}.$$

Part III: Optimal control for general Markov chain

- Control applies to the transition rate Q,
- Running cost in finite time horizon (Girsanov Thm for jump process),
- SOC in infinite time horizon (optimal change of measure in Càdlàg path space),
- Discrete committor function → optimal control

Optimality for finite time OC, Doob transformation

• Given a generator Q_{ij} , introduce control velocity

$$\vec{v}_t(i) = (v_t(i,j))_{j=1:N} \ge 0$$
, and $\tilde{Q}_t(i,j) = Q_{ij}v_t(i,j), j \ne i$.

• Running cost for finite time horizon $\tilde{L}(i, \vec{v}_t) = \sum_{i \neq i} Q_{ij} \operatorname{Ent}(v_t(i, j))$, $\operatorname{Ent}(r) = r \log r - r + 1$

$$\begin{split} \gamma(p_0) = & \min_{\vec{v}, \vec{p}} \left\{ \sum_i f(i) p_T(i) + \int_0^T \sum_i \tilde{L}(i, \vec{v}_t) p_t(i) \, \mathrm{d}t \right\}, \\ \text{s.t. } & \frac{\mathrm{d}}{\mathrm{d}t} p_i = \sum_{i=1}^N (v_t(j, i) Q_{ji} p_t(j) - v_t(i, j) Q_{ij} p_t(i)), \quad p_{t=0}(i) = p_0(i). \end{split}$$

• The optimal control is given by the Doob type *h*-transformation

$$v_t(i,j) = rac{h_t(j)}{h_t(i)}, \ Q_t^h(i,j) := rac{h_t(j)}{h_t(i)} Q(i,j), \ i,j \in \Gamma, \ j
eq i, \quad Q_{ii}^h := -\sum_{i
eq i,j \in \Gamma} Q_{ij}^h = -\lambda_i^h.$$

$$h$$
 solves linear backward eq. $\frac{\mathrm{d}}{\mathrm{d}t}h_t(i) + \sum_j Q_{ij}h_t(j) = 0, \ h_T(i) = e^{-f(i)}.$ γ solves HJE $\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(i) + H(i,\vec{\phi}) = 0, \quad H(i,\vec{\phi}) := \sum_j Q_{ij}(e^{\phi(j)-\phi(i)}-1).$

SOC in infinite time, running cost via Girsanov transformation

• Girsanov Thm for pure jump (time-homogeneous case)

$$Z_t := e^{\int_0^t [\lambda^h(X_s^h) - \lambda(X_s^h)] \, \mathrm{d}s - \log \frac{h(X_t^h)}{h(X_0^h)}}, \quad t \ge 0$$

is positive, P-martingale, and of mean 1. Thus define P^h via $\left. \frac{\mathrm{d} P^h}{\mathrm{d} P} \right|_{\mathscr{F}_t} = Z_t$

$$(X^h, P, Q^h) \longrightarrow (X^h, P^h, Q)$$

The time marginal representation for finite time horizon (consistent with entropy)

$$\mathbb{E}^{P}(\log \frac{\mathrm{d}P^{h}}{\mathrm{d}P}\Big|_{\mathscr{F}_{t}}) = -\int_{0}^{t} \sum_{i} p_{s}^{h}(i) \sum_{j} Q_{ij} \mathsf{Ent}(\frac{h_{s}(j)}{h_{s}(i)}) \, \mathrm{d}s.$$

Stochastic optimal control formulation in the infinite time horizon

$$\gamma(x) = \min_{h, h_i > 0} \mathbb{E}_P \{ f(X_{\tau}^h) + \log \frac{\mathrm{d}P}{\mathrm{d}P^h} \Big|_{\mathscr{F}_{\tau}} \}$$

s.t. X^h is the controlled process with generator Q^h under P, $X^h(0) = x \notin A \cup B$.

Optimality given by committor function and Doob transformation

Theorem

Transition path problem for Markov chain is formulated as

$$\gamma(i) = \min_{\vec{h}, h_i > 0} \mathbb{E}^P \left\{ f(X^h(\tau)) - \int_0^\tau (\lambda^h(X^h_s) - \lambda(X^h_s)) \, \mathrm{d}s + [\log h(X^h_\tau) - \log h(X^h_0)] \right\},$$
 s.t. $(X^h_t)_{t > 0}$ is a Markov chain with generator Q^h under $P, X^h_0 = i \in (A \cup B)^c$.

The optimal control is given by discrete committor function, for $i \in (A \cup B)^c$,

$$\gamma(i) = -\log h^*(i) = -\log \mathbb{E}_P^i(e^{-f(X_{\tau})}), \qquad \sum_i Q_{ij}h_j^* = 0, \quad h^*|_A = \delta, \ h^*|_B = 1.$$

Optimal controlled jump rate doesn't change $\lambda_i^{h^*} := -Q_{i,i}^{h^*} = -Q_{i,i} = \lambda_i, i \notin A \cup B$

Optimal controlled jump rate doesn't change
$$\lambda_i^n:=-Q_{i,i}^n=-Q_{i,i}=\lambda_i,\ i
otin A\cup B$$

Remark: Optimal change of measure formulation (importance sampling, need parameterized
$$\tilde{P}$$
)
$$\gamma(x) = \min_{\tilde{P}, \subset P} \mathbb{E}^P \left\{ f(\tilde{X}_{\tau}) - \log \frac{\mathrm{d}\tilde{P}}{\mathrm{d}P} \bigg|_{\mathscr{F}_{\tau}} \right\},$$

s.t.
$$(\tilde{X})_{t\geq 0}$$
 is a Markov chain with generator Q under \tilde{P} , $x\notin A\cup B$.

Alanine dipeptide and two backbone dihedral angles

Conclusion

- Transition path theory via stochastic optimal control in infinite time horizon
- Finding optimal control = optimal change of measure (parameterized) in path space
- Girsanov Thm: Running cost is the cost of changing measures: relative entropy on path space: quadratic for diffusion; entropy for Markov chain
- Optimal solution is given by continuous/discrete committor function (linear problem)
- ullet Helps design optimally controlled random walk (rare event o almost surely)

Thank you!