Energy tronsfer for solutions to the Noulimeo Schrödinger Equation

Giglio la Staffilami
MIT

SIMONS
FOUNDATION

Fluid and Dispersive Epuatious
merle - Raphoel - Rodmienski-Szeftel

Smooth Implosion of Conynessible Euler ond Navier-Stoks

Mutching trousfoubtion
grouth of Sobsew nouns of periodic SQG \&e
smoth blow - up of cuttin energy supen critical delefocening NCS in \mathbb{R}^{n}

Energy spectrum of perioolic subcuitical NCS

Global vell-posedmess and properties
Consoler the Initial Value Problem

$$
\left\{\begin{array}{l}
i_{t} \mu+\Delta u=\lambda \operatorname{cu}^{2} u \quad \lambda= \pm 1 \\
\left.\mu\right|_{t=0}=\mu_{0}(x) \quad x \in \pi^{2}
\end{array}\right.
$$

Using Strichatz estimates and a fixed print agament one con claim that this Initial value Problem is locally uell-posed in $H^{s}\left(\Pi^{2}\right), s>0$. If $\lambda=1$ (o housing) then enngy conservation \Rightarrow global vele-posednen for $s \geqslant 1$.
Question: Can we learn more about the behaviour of the solution $\mu(t, x)$ as $t \rightarrow \infty$?

Energy Spectrum
Given a periodic solution $u(t, x)$ of a (olispersic) PDE, He coll Energy Spectrum the set

$$
\sum(t)=\left\{|\hat{u}(t, n)|^{2}, k \in \mathbb{Z}^{d}\right\}
$$

Questions:

- What is the dynamics of $\Sigma(t)$ an $t \rightarrow 2 \pm \infty$?
- Is there on evolution equation for $\Sigma()_{1}$?

Tronsfer of energey
$t=0$

Question : 1) Does the suppert of $|\hat{\mu}(t, \xi)|^{2}$ move to high fupuencie? (Ueek turbulence, forward cascode)
2) If such a "migrotion" hoppens, is it dome in a incoberent bopping way or mou like a wovelike tronsport?

Tro different approaches
Approach \#1: We look at $\sum_{k}^{1}|\hat{\mu}(t, k)|^{2}\langle k\rangle^{2 s}=:\|\mu(t)\|_{H^{s}}^{2}$ and ve study $\lim _{t \rightarrow \infty}\|\mu(t)\|_{H^{s}}^{2}$.
PDE Approach: Bourgoin, Kuhsin, S, Sohinger, Deng-Germoin, Collionder - keel-S. - Takeoke -To,, Calls-Fow, S.-Hilson, Honi- Ponsuden - Tzvethor - Visaiglie...
Computchioul Aproach: Collionder-Sulem, Foon, Y. Pon...
Dijnomical System Approach: House-Procesi, Kaloshim-Guadie, Berti-Me spero, Gulioni-Guadia...

Approach \#2: This is based on finding on effective olynonics. One approximote the equation, where the koulineonty is kech $(\lambda \rightarrow 0)$, (this is olom in vanon suays) and then "takerlimits" to get to the Wave kinetic epuation Uove Turbuluce Theory.
Fundamental original uork on this by: Peierls, Hasselmon, Zakharow, nevell, L'va, Pomeon, Mezarenko,....

Approach \#1: Groceth of Sobolev Norms
Fact 1: Complete integrebility mey prevent the grouth of Soboler noms (1D cubic NLS, KdV)
Fact 2: Scottering prevents the grouth of Soboler nouns: (Defonining Cutric $N C S$ in \mathbb{R}^{2}. If $\mu(t, x)$ is solution in $H^{s}\left(\mathbb{R}^{2}\right)$ then $\exists \mu^{+}=H^{s}\left(\mathbb{R}^{2}\right)$ s.t.

$$
s \geqslant 0 \quad\left\|S(t) u^{+}-u\right\|_{H^{s}} \xrightarrow{t \rightarrow+\infty} 0 \text { (Dodson '16) }
$$

As a consupeence for $t \gg 1 \longrightarrow S(t)$ is unitacy!

$$
\|u(t)\|_{H^{s}} \leq\left\|s(t) \mu^{+}-\mu\right\|_{H^{s}}+\left\|S(t) \mu^{+}\right\|_{H^{s}} \leq \varepsilon+\left\|\mu^{+}\right\|_{H^{\varepsilon}} .
$$

A bound fram a bove
Assume $\mu(t, x)$ is the globol smooth solection to

$$
\left\{\begin{array}{l}
i \eta_{t} u+\Delta u=|u|^{2} \mu \\
\left.\mu\right|_{t=0}=\mu_{0} \quad x \in \pi^{2}, s \gg 1
\end{array}\right.
$$

Fact $1 *\|\mu(t)\| s \leq C|t|^{(s-1)+\varepsilon}$
$|t| \geqslant 1$
for ony torus (Bourgoin, Sohinger, Plonchon_Visaighe)
Better results availe ble fon irrationd tori.
(Hrabski, Pan, S., Hilson)

Are there solutions that grove?
Fact 2: Fix $s>1,0<\delta \ll 1, k \gg 1$, then forten cultic, olefouning NLS in π^{2} rational, f on initial alate $\mu_{0} \in H^{s}$ and a time $T \gg 1$ sit.

$$
\begin{aligned}
& \text { ned a time } T \gg 1 \text { s.t. } \\
& \left\|\mu_{0}\right\|_{H^{s}}<\delta \text { and }\|\mu(T)\|_{H^{s}}>K\left(\begin{array}{c}
\text { Celienden- } \\
\text { Keel-s } \\
\text { taknoke-Teo }
\end{array}\right)
\end{aligned}
$$

Fact 3: For π^{2} rational

arbitrouly large modes exists.
(Corle-Faou)

Fact \#2: The dymanics of a toy moolel
Consunation of mon $\Rightarrow \quad \sum_{1}^{+}=\left\{x \in \mathbb{C}^{N} /|x|^{2}=1\right\}$ is uhur the olynemics happens

on Σ_{1}^{\prime} there one $c_{j}, j=1, \ldots, M$, grest cirdes that ore invariaut.

The heart of the matter
Theorem:

(lou fervency)

$$
\vdots t=T_{3}
$$

See also a more Dynamical System approach foin
Guardie-Keloshim, Hous-Procesi...

Some Remarks

* He do not know what happens after time T.
* In the uoch of Corles-Frou the procedure is different but the same set Δ of fuperencies is used.
Question: What happens when π^{2} is irrational?
Answers: With B. Wilson we prove that something different happens: Both constructions presented above combat rook to show tron seen of enengy!
Recently Gimliami-Guondie prone that if the fores is irrational but "close to ratiend" one con adjust the argument.

Approach 2: From weakly nonlinear dispersive equations to wave kinetic equations

Numerical solutions of the isotropic 3-wave kinetic equation
C. Connaughton

From dispersive equations to wave kinetic equations
Consioler the periodic NLS

$$
\begin{aligned}
& D_{t} \mu+\Delta \mu=\varepsilon|\mu|^{2} \mu \\
& \left.\mu\right|_{t=0}=\mu_{0} \quad x \in \Pi_{L}^{d}
\end{aligned}
$$

What one wants to study, after assuming on milia distribution for $\left.|\widehat{\pi}|^{2}\right|^{2}$ is:

$$
\lim _{\varepsilon \rightarrow 0, L \rightarrow \infty} \mathbb{E}\left(\left|\hat{\mu}\left(\varepsilon^{-2} z, n\right)\right|^{2}\right)=: n_{k}(\varepsilon)
$$

and shore that

$$
O_{c} m_{k}=Q\left(n_{k}\right)
$$

Wove Kinetic equation

Can we derive the wave kinetic equation?
Fundomentel original nozk on This togic by:
Peierls, Hasselmen, Benney-Soffmon-heuall, tahhavar, l^{\prime} vov, Pomeon, Nozerenko,...
In thex vorks on starts fiom a cectoin weakly nonlineor dispersive equation (NCs, kolv,.-) nith paremeters ε, L and a beck ground probability, then varions ty pes of fornal upproximotions oual limits are taken \Rightarrow WKE is obtained!

Example of a formal derivation of a WKE
Consioler the Zakharov-Kuznetsor $(z k)$ equation

$$
\partial_{t} \phi(x, t)=-\Delta D_{x_{1}} \phi(x, t)+\varepsilon D_{x_{1}}\left(\phi^{2}(x, t)\right) \quad x \in[-L, L]^{d}
$$

Let $n_{n}(t)=\mathbb{E}\left(|\hat{\phi}(k, t)|^{2}\right)$. At the kinetic time $t=\varepsilon_{c}^{-2}$
taking $L \rightarrow \infty$ then $\varepsilon \rightarrow 0 " \Rightarrow{ }^{\prime \prime} \rho_{c} n_{k}(\varepsilon)=Q\left(n_{k}(c)\right)$

$$
\begin{aligned}
& \begin{array}{l}
Q\left(n_{k_{1}}\right)=\int d k_{2} d n_{3}\left|k_{1}^{\prime} n_{2}^{\prime} n_{3}^{\prime}\right|^{2} \delta\left(\omega\left(n_{3}\right)+\omega\left(n_{2}\right)-\omega\left(n_{3}\right)\right) \\
\times \delta\left(n_{2}+h_{3}-k_{1}\right)\left[n_{n_{2}} n_{n_{3}}-n_{n_{1}} n_{n_{2}} \operatorname{sipn}\left(n_{1}^{\prime}\right) \operatorname{sip}\left(n_{3}^{\prime}\right)\right. \\
\left.-n_{n_{1}} n_{n_{3}} \operatorname{sig}\left(n_{1}^{\prime}\right) \operatorname{sug}\left(n_{2}^{1}\right)\right]
\end{array} \\
& \omega(n)=h^{\prime}|k|^{2}
\end{aligned}
$$

Define $a_{k}(t):=\hat{\phi}(t, k) / \sqrt{\left|k^{\prime}\right|}$
Assume $a_{n}(t)$ are Ronolom Phase Anpliterde (RPA) fielals. We wout to Write:

$$
a_{k}(t)=a_{k}^{(0)}(t)+\varepsilon a_{k}^{(1)}(t)+\varepsilon^{2} a_{n}^{(2)}(t)+\cdots
$$

We olerine $a_{n}^{(i)} \quad i=0,1,2$ from the $\widehat{(z k)}$:

$$
\dot{a}_{k}=i \omega(k) a_{n}+i \varepsilon \sum_{k=h_{1}+k_{2}} \operatorname{sign}\left(k^{\prime}\right) a_{k_{1}} a_{u_{2}}
$$

$$
\begin{aligned}
& a_{n}^{(0)}=a_{n}(0)=\hat{\phi}_{0}(n) \quad \text { (initial dotem) } \\
& a_{n}^{(1)}=-i \operatorname{sign}\left(k^{\prime}\right) \sum_{n=n_{1}+n_{2}} V_{n_{1} n_{2} k} a_{u_{1}}^{(0)} a_{n_{2}}^{(0)} \int_{0}^{t} e^{i \omega_{12}^{k} s} d s \\
& \omega_{12}^{n}=\omega\left(n_{1}\right)+\omega\left(n_{2}\right)-\omega(n) \quad n_{1} / k_{k}
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=n_{2}+n_{3} \\
& \text { - } a_{n_{2}}^{(0)} a_{n_{3}}^{(0)} a_{n_{n}}^{(0)} \int_{0}^{t} \int_{0}^{s} e^{i\left(\omega_{34}^{\prime} \sigma+\omega_{12}^{n} s\right)} \\
& h_{3} h_{k_{4}}^{u_{2}} \\
& \text { dr ds }
\end{aligned}
$$

Findly oue urites \qquad \rightarrow ignore temens with $\Sigma^{k}, k>2$.

$$
n_{n}(t)=\mathbb{E}\left(\left|a_{k}(t)\right|^{2}\right) \cong\left\langle\left(a_{n}^{(0)}+\varepsilon a_{n}^{(1)}+\varepsilon^{2} a_{n}^{(2)}\right)\left(a_{n}^{(0)}+\varepsilon a_{n}^{(1)}+\varepsilon^{2} a_{n}^{(2)}\right)\right\rangle
$$

veplaces the expressions for $a_{n}^{(i)}, i=0,1,2$,
uxs RPA and keeping ouly up to ε^{2} and toking

$$
L \rightarrow \infty \text { tlen } \varepsilon \rightarrow 0
$$

obtain

$$
O_{2} n_{n}=Q\left(n_{n}\right)
$$

Mathematical literature: rigorous derivation

- Erdos-Yar, Evolos-Solmhofer-You:

Roudon lineer Schrödinger on a lattice setting
\rightarrow lineor Boltzmann (kinetic time) \rightarrow heot epenation (diffusion time $t=\lambda^{-2-\varepsilon}$)

- Lukkarinen-Spohn: Romolan Cukic NLS at eqerilibrien and on a luttice setting
\rightarrow (linearized) Have kanctic equation at kinetic time.

Randan Initiel Dok:

- Buchmester - Gennain - Hair - Shateh: NCS in conti nuem cose
\rightarrow belau kinetic time (linear kinetic eperdion)
- Collot-Germain, Deng-Hani NLS in continum cose
\rightarrow strictly belom kinetictime (lineor kinetic equdion)
- Deng-Han: NCS in continum cose
\rightarrow at kinetictime (nonlinuorkinetic ppudion) $i \eta+\phi+\Delta \phi=\lambda|\phi|^{2} \phi$, on periodic torus $[O, L]^{d} d \geqslant 3, L$, λ linhed.
- Lukkarinen-Vuoksenmaa: NCS m lattia cose
\rightarrow at kinetic time $d \geqslant 4$.
- Ma: ZK epuation with dissipotion and in contiumm. WKE before hinetic time

Recent work by S.-Tran
He consider the stochastic ZK equation

$$
\begin{aligned}
& \left\{\begin{aligned}
d \phi(x, t) & =-\Delta \partial_{x} \phi(x, t) d t+\varepsilon \partial_{x}\left(\phi^{2}(x, t)\right) d t+\varepsilon^{\theta} \partial_{x,} \phi \odot d U(t) \\
\phi(x, 0) & =\phi_{0}(x)
\end{aligned}\right. \\
& \varepsilon \ll 1, \quad o<\theta \ll 1
\end{aligned}
$$

The equation is considered on a lattice

$$
\Lambda=\{0,1, \ldots 2 L\}^{o l} \quad \begin{aligned}
& \quad d \geqslant 2 \text { (olimension) } \\
& \quad L_{\text {in }} \mathbb{N} .
\end{aligned}
$$

Passing to frequency space
We unite $\quad k=\left(k_{1}^{1}, \ldots, k^{d}\right) \in \Lambda_{*}=\left\{-\frac{L}{2 L-1}, \cdots, 0, \ldots,-\frac{L}{2 L-1}\right\}^{d}$

$$
\omega_{k}=\omega(k)=\sin \left(2 \pi k^{1}\right)\left[\sin ^{2}\left(2 \pi k^{2}\right)+\cdots+\sin ^{2}\left(2 \pi k^{4}\right)\right]
$$

[olispersive relation]

$$
\begin{aligned}
& \bar{\omega}_{k}=\sin \left(2 \pi k^{1}\right) \\
& W(x, t)=\sum_{k \neq 0} \frac{U_{k}(t)}{\overline{\omega_{i}(k)}} e^{i 2 \pi k \cdot x} \quad \text { [Stochesticterm] }
\end{aligned}
$$

$\left\{W_{k}(t)\right\}=$ seprence of independent real Wiener processes on (Ω, F, P).

$$
w_{-w}(t)=-w_{w}(t) \quad \forall k \in \Lambda^{*}=\Lambda_{*} \backslash\{0\} .
$$

Set $a_{k}=\frac{\hat{\phi}(k)}{\sqrt{|\bar{\omega}(x)|}} \quad$ and reuite Th epudian

$$
\begin{aligned}
& d a_{k}=i \omega(k) a_{k} d t+i \varepsilon^{\theta} a_{k} o d k_{k} \\
& i \varepsilon \int_{\left(\Lambda^{*}\right)^{2}} d k_{1} d k_{2} \operatorname{sig}\left(k^{1}\right) \sqrt{1 \bar{\omega}(k) \bar{\omega}\left(k_{1}\right) \bar{\omega}\left(k_{2}\right)} \delta\left(k-k_{1}-k_{2}\right) a_{k_{1}} a_{k_{2}} d t
\end{aligned}
$$

Definition [+wopoints correletion fuction] \rightarrow dus sity fuction

$$
f(a(t))=\int|a(t)|^{2} d f(t):=\langle a \bar{a}\rangle
$$

Statement of the main result
Consider the two-points correlation function

$$
f(k, t)=\langle a(t, n) \bar{a}(t, n)\rangle=\int d \rho\left|a_{n}(t)\right|^{2}
$$

Theorem [S .-Tran] let $d \geq 2$, under suitable (buctgereal) assumptions on the initial distribution f_{0}, if $t=\varepsilon^{-2} c$ と<<1

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0, l \rightarrow \infty} f\left(k, \varepsilon^{-2} z\right)=f^{\infty}(k, z) \text { and } \\
& \frac{\partial}{\partial z} f^{\infty}(k, z)=Q\left(f^{\infty}\right)(k, z) \quad 3 \text { - Move kinetic } \\
& \text { Equation }
\end{aligned}
$$

In the rigorous olerivation one nerds to extimole doll Feynumom graphs
The discreste setting is much more complicated then the continuum setting
the dispersion relation is very singular
The quardretic nonlinearity is not as good as the cubic nonlinearity

- He concentrated en th study of the equation for the density function $\rho(t)$ [Liouville Ep ration]
The stochastic term acts cull on angles not mogmitude and gives to the Lionille equation some dissipation brit. the ouphe veriebles.
He looked for a Meeker type of con vengence and this allowed for L and ε not to bx coupled.

Looking at the Future

1) He nerd better upper bauds for the H^{s} nouns
2) He need exomyces of growing solutions
3) He would like to go further than the kinetic scale
4) He would like to understand better the connection between the two approaches desaibed.
5) We Would like to see more numerical work.
thank you!
