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Procedural Notes: Good exposition is sometimes bad history

Russian work often paralleled or preceded the western results I give
here, especially in the early days.

It will sound like there are successive periods that opened and closed.
This is false.
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Effective Algebra

Question (Van der Waerden, 1930)

How much field theory can be carried out explicitly?

Answer (Van der Waerden, 1930)

Well, certainly some.
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Effective Algebra

Definition (Fröhlich-Shepherdson, 1956)

Let R be a ring whose elements are equivalence classes of natural numbers
under a computable equivalence relation, and whose operations are
computable functions. Then we say that R is explicit.

Theorem (Van der Waerden, 1930)

If K is an explicit field and F ⊇ K is a finite extension, then F is explicit.

Theorem (Van der Waerden, 1930)

If K is an explict field with a splitting algorithm (that is, an algorithm to
decide, for any polynomial, whether it factors nontrivially), and F ⊇ K is a
finite extension, then there is a splitting algorithm for F .
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Effective Algebra

Theorem (Van der Waerden, 1930)

If there exists a general splitting algorithm for all explicitly given fields,
then every set S ⊆ N is computable.
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Effective Algebra

Theorem (Fröhlich-Shepherdson, 1956)

If K is an explicit field and F ⊇ K is a finite extension, then F is explicit,
and unique up to computable isomorphism.

Theorem (Fröhlich-Shepherdson, 1956)

Every explicit field has an explicit extension with no computable
transcendence base.

Proof.

Extend by indeterminates t, x1, x2, . . . . Let λ be a computable one-to-one
function with noncomputable range. Then let I be the ideal generated by
polynomials of the form xpnλ(n) − t, and take the quotient.
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Effective Algebra

Theorem (Fröhlich-Shepherdson, 1956)

Every explicit field has an explicit extension with no splitting algorithm.
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Effective Algebra

Definition (Rabin 1960)

We say that a group is computable if and only if its elements are
equivalence classes of natural numbers under a computable equivalence
relation, and its group operation is computable. A ring is computable
under similar circumstances.

Theorem (Rabin 1960)

The quotient of a computable group by a computable normal subgroup is
computable, and the natural projection is computable.
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Effective Algebra

Theorem (Rabin 1960)

If F is a computable field, then there exists a computable algebraic closure
of F , and a computable embedding of F into its closure.
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Effective Algebra

This line continues:

Friedman-Simpson-Smith, 1983, and others on Reverse Mathematics

Mileti-Dzhafarov 2018, and others on degree of the set of primes in a
UFD.

Brown-McNicholl, 2020, and others, on Lp-spaces
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Computable Model Theory

Let L be a computable language. We identify a formula with its Gödel
number.

Definition

Let L be a computable signature. We say that an L-structure is
computable if and only if its atomic diagram is computable.

Definition

Let L be a computable signature. We say that an L-structure is decidable
if and only if its full elementary diagram is computable.
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Computable Model Theory

Theorem (Harrington 1974)

Let T be a complete decidable theory. The following are equivalent:

T has a computable prime model.

There is a computable function f such that given φ(x) consistent
with T , applying f to the code for φ gives an index for a computable
principal type containing φ.

Proof.

Use the Henkin construction with a little care.
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Computable Model Theory

Proposition (T. Millar 1974)

Every type realized in a decidable model is computable.

Proposition (T. Millar 1974)

Every computable type of a complete decidable theory is realized in some
decidable model.

Proposition (T. Millar 1974)

Every computable non-principal type of a complete decidable theory is
omitted from some decidable model of that theory.
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Computable Model Theory

Theorem (T. Millar 1974)

There is a complete decidable theory with all types recursive such that the
countable saturated model of the theory is not decidable.
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Computable Model Theory

Theorem (Tennenbaum 1974)

If A is a computable model of Peano Arithmetic, then A is isomorphic to
the standard model.

Theorem (Goncharov 1976)

There is a decidable ω-stable theory with no computable prime model.

Question (Goncharov 1980)

Let T be a decidable strongly minimal theory. Which models of T have
computable copies?
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Computable Model Theory

Millar said the subject had no future, because “there are too many
counterexamples.”
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Computable Model Theory

This thread also continues:

Andrews, Lempp, Knight, Medvedev, and others on models of
strongly minimal theories

Csima 2004, on degrees of prime models

Lange 2008, on degrees of homogeneous models
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Computable Structure Theory

Theorem (Ash-Nerode 1981)

Let A be a computable structure, and R a relation on A. Suppose further
that for a tuple c ⊆ A and an existential formula φ, we can decide whether
tere exists ā /∈ R such that A |= (c̄ , ā). Then the following are equivalent:

R is computably enumerable in every computable isomorphic copy of
A.

There is a computably enumerable sequence of existential formulas
whose disjunction is equivalent to R.
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Computable Structure Theory

Definition (Goncharov 1977)

Let A be a computable structure. The computable dimension of A is the
number of distinct isomorphic computable copies of A up to computable
isomorphism.

Example

Let V be a finite-dimensional vector space over a computable field. Then
V has computable dimension 1.

Example

Let V be an infinite-dimensional vector space over a computable infinite
field. Then V has computable dimension ∞.
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Computable Structure Theory

Theorem (Goncharov 1977)

There exists a computable structure A of computable dimension 2.

Theorem (Goncharov 1974)

A Boolean algebra has computable dimension 1 if there are finitely many
atoms, and ∞ otherwise.

Theorem (Dzgoev-Goncharov 1980)

If A is a linear ordering, then A has computable dimension 1 if the
successor relation is finite, and ∞ otherwise.
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Computable Structure Theory

Definition

We say that A is computably categorical if and only if it has computable
dimension 1.
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Computable Structure Theory

Definition

Let L be a computable signature.

A computable Σ0 or Π0 formula is a first-order quantifier-free formula.

A computable Σα formula is a computable disjunction of formulas of
the form ∃xR, where R is a computable Πα formula.

A computable Πα formula is a computable disjunction of formulas of
the form ∀xR, where R is a computable Σα formula.

If we drop the requirements of “computable” everywhere (to countable),
we get Lω1ω.
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Computable Structure Theory

Theorem (Ash 1986)

Satisfaction of computable Σα (respectively, Πα formulas in a computable
structure is Σ0

α (respectively, Π0
α), with all concievable uniformity.
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Computable Structure Theory

Theorem (Scott 1965)

Every countable structure A has an Lω1ω sentence whose models are
exactly the isomorphic copies of A.

Definition

Let ā, b̄ ⊆ A.

We say that ā ≡0 b̄ if and only if they satisfy the same quantifier-free
formulas.

We say that ā ≡α b̄ if and only if for all β < α, and for each c̄, there
exists d̄ such that āc̄ ≡β b̄d̄ , and symmetrically.
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We say that ā ≡α b̄ if and only if for all β < α, and for each c̄, there
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Computable Structure Theory

Definition

The Scott rank of a tuple ā is the least β such that for all b̄, the relation
ā ≡β b̄ implies (A, ā) ∼= (A, b̄).

Definition

The Scott rank of the structure A is the least ordinal α greater than the
ranks of all tuples in A.
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ā ≡β b̄ implies (A, ā) ∼= (A, b̄).
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Computable Structure Theory

Theorem (Nadel 1980)

Let A be a computable structure. Then the Scott rank of A is at most
ωCK
1 + 1.

Wesley Calvert (SIU) Computable Structures March 20, 2023 26 / 32



Computable Structure Theory

Proposition (C.–Harizanov–Knight–Quinn, 2006)

The set of indices for computable Q-vector spaces of infinite dimension is
m-complete Π0

3.

Proof.

A Scott sentence is given by the axioms of a vector space, plus∧
n∈N

∧
∃x1, . . . , xn

∧
λ

∧
λ(x̄) ̸= 0

Given a c.e. set S , build a vector space:

Start with a lot of elements that might be a basis.
Every time a new element enters S , find a fresh linear combination and
make it zero.
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Computable Structure Theory

Theorem

The set of indices for computable well-orderings is m-complete Π1
1.

Proof.

”Every subset. . . ”

Given a Π1
1 set S , we can make a sequence of linear orderings Ln such

that

Ln =

{
a computable ordinal if n ∈ S
ωCK
1 (1 +Q) otherwise
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(Computable) Structure Theory

Question

What if there isn’t a computable thing?

Definition (Richter 1977)

Let A be a structure. The degree of the isomorphism type of A is the
least degree (if one exists) in which A has a computable copy.

Theorem (Richter 1977)

Let d be a Turing degree. Then there is a structure whose isomorphism
type has degree d.

Theorem (Richter 1977)

There is a structure whose isomorphism type has no Turing degree.

Wesley Calvert (SIU) Computable Structures March 20, 2023 29 / 32



(Computable) Structure Theory

Question

What if there isn’t a computable thing?

Definition (Richter 1977)

Let A be a structure. The degree of the isomorphism type of A is the
least degree (if one exists) in which A has a computable copy.

Theorem (Richter 1977)

Let d be a Turing degree. Then there is a structure whose isomorphism
type has degree d.

Theorem (Richter 1977)

There is a structure whose isomorphism type has no Turing degree.

Wesley Calvert (SIU) Computable Structures March 20, 2023 29 / 32



(Computable) Structure Theory

Question

What if there isn’t a computable thing?

Definition (Richter 1977)

Let A be a structure. The degree of the isomorphism type of A is the
least degree (if one exists) in which A has a computable copy.

Theorem (Richter 1977)

Let d be a Turing degree. Then there is a structure whose isomorphism
type has degree d.

Theorem (Richter 1977)

There is a structure whose isomorphism type has no Turing degree.

Wesley Calvert (SIU) Computable Structures March 20, 2023 29 / 32



(Computable) Structure Theory

Question

What if there isn’t a computable thing?

Definition (Richter 1977)

Let A be a structure. The degree of the isomorphism type of A is the
least degree (if one exists) in which A has a computable copy.

Theorem (Richter 1977)

Let d be a Turing degree. Then there is a structure whose isomorphism
type has degree d.

Theorem (Richter 1977)

There is a structure whose isomorphism type has no Turing degree.

Wesley Calvert (SIU) Computable Structures March 20, 2023 29 / 32



(Computable) Structure Theory

Theorem (Knight 1986)

Let A be a structure such that no finite tuple ā such that any permutation
of A fixing ā pointwise is an automorphism. Then the degrees of copies of
A are closed upwards.
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(Computable) Structure Theory

Quite a lot of activity here these days:

Categoricity with an oracle.

In what degrees does the structure have a copy?

What degrees compute the isomorphism?

Which structures have a computable infinitary Scott sentence?

Sets of indices for structures with given property
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(Computable) Structure Theory

How to Think About Computable Structures

Wesley Calvert

Banff International Research Station
March 20, 2023
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