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Scale § n, +» n*/>. Limit is a graph of v: [0,1] - R

The directed geodesic.



The directed landscape

d(n**x, ns; i*3y, nt) = n(t — s) — n"L(x, 57y, t) + error

o L: the directed landscape, a universal random plane geometry
e —L: A inequality, L(p,p) =0

o
U= ()BT, s<t
Lix,siy. 1) £ 40 (x,5) = (y.1)
—00 else

Dauvergne Ortmann V (2023)



DL: the full scaling limit

The same structure as last passage percolation

-
=,
%
&
g
e
R\\
=
=
=
KPZ
Kz

description

geodesic shape information

Tracy-Widom law
Airy process

KPZ fixed point
directed landscape

none

1d marginal, point-to-point
1d marginal, general

full law, general



The fox and the rabbit

w Jeremy Quastel and Alejandro Ramirez
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Absolute continuity

& planar white noise
B: occupation measure on graph of BM on [0, 1]

Find £, — &, and B, — B independent so that

_law(&, + Bp)
= T law(E)

&n, By: projection to ey, ..., e,, basis of L?(R?).
But Z, is bounded in L2 since

is L1-tight

EZ? = Eexp(B,,B!) < Eexpa(B,B') = Eexp|N| < 0. L[]



The continuum directed random polymer

Alberts, Khanin, Quastel (2014)

law(&) * (law(B)| )

P(CDRP € Al¢) = ()



Class of planar models

A+ ¢

RWIRE
Random conductances
Parabolic Anderson model

Brownian motion with obstacles

planar stochastic heat equation
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This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

L INTRODUCTION

NUMBER of physical phenomena seem to involve
quantum-mechanical motion, without any par-
ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion!-?;
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-
nomena is randomness: random spacings of impurities,
random interactions with the “atmosphere” of other
impurities, random arrangements of electronic or
nuclear spins, etc.
Our eventual purpose in this work will be to lay the
foundation for a quantum-mechanical theory of trans-

reasonably well, and to prove a theorem about the
model. The theorem is tha
transport does not take
are localized in a small §
a fairly good estimate of =
theorem fails. An additj
be of sufficiently short
7 — oo faster than 1/7°—
of the rate of transport ;%
Such a theorem is of i1
first, because it may a
among donor electrons

has shown experimentay eg-
ligible; second, and pr ,an
example of a real phy lite
number of degrees of «—— == | \ ~ous
oversimplification, in wk _ um

is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
o A D



Class of planar models for today

A+ ¢

Random conductances
Parabolic Anderson model

Brownian motion with obstacles

planar stochastic heat equation

We chose A = 0y« + 9y, £ = planar white noise.



Main Theorem

Let u satisfy the Wick-ordered planar SHE

Oru=35Au+ué,  u(-,0)=d.

Then forany t >0and a€ R as N — oo,

P(u((0, N3/2t), Nt) x NeM’t/2\/2rt < a) — Fxpz(t, a).




When chaos expansion fails: proof idea

Defining 2d SHE. By analogy, in 2d

, - 1aw(B2d +€)
law (€)

By4: occ. measure on the path planar BM.
L? iff t < t.. Gagliardo—Nirenberg. But still L! tight.
Convergence to KPZ. In our scaling:

path (2d BM) — graph (1d BM)

L! tightness: technical.



0:1:2 to 1:2:3

w Balint Veto












The Brownian web distance

Theorem.(Vetd, V.) After 0: 1 : 2 scaling, the discrete web distance
converges to the Brownian web distance.

Arratia (1981), Téth Werner (1998), Newman Ravishankar Schertzer
(2010), Dumaz Téth (2013)

integer-valued
number of times you have to switch paths
0:1: 2-scale invariant

no time-reversal symmetry:

for distinct points d(x,s;,y,t) < oo iff s < t and (y, t) is on the
skeleton.






KPZ limit

Theorem. As m — oo,

tn + 2zn%/3 — dp,(2tn + 2zn?/3, —tn; R_
n + 2zn br ( nl; 2% 2R 0) L r0,0;2,1)
n

compactly in law.

Future directions
@ Random limit shapes

@ Nonunique geodesics



4/3: universality of directed polymers

5=n_o‘,cv<%

o

solo by Julian Ransford



2n
Znp= Z H NEION

m:(0,0)—(n,n) 1=0



& jiid with Y(X) = Ee*id, () < oo, Var(&j) = o2,
Theorem (Ransford) Let 5, = n=%, « € (1/5,1/4). Then

log Zng, —an ,

4/3
@agmis 7 T Teue

204
an = 2n(log ¥(8,) + log2 + 03@7)

Alberts Quastel Khanin 2014

Borodin Corwin Remenik 2013, Krishnan Quastel 2018



For k moments matching, need

2

AR VERT]

Two moments should suffice for
o> —

A different obstacle at 1/5.




Happy birthday Timo!
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