Ergodicity and Synchronization of the Kardar-Parisi-Zhang Equation

Chris Janjigian

Purdue University

Based on joint works with Tom Alberts, Firas Rassoul-Agha and Timo Seppäläinen

Outline

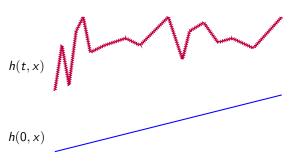
- 1 Introduce the model and the questions:
 - a Hopf-Cole solutions.
 - **b** Why stationary mod + c distributions?
 - Synchronization and 1F1S.
- Results
 - Regularity of the solution semi-group and sharp characterization of non-explosive initial conditions. (AJRS)
 - Ergodicity and synchronization (JRS)
- Tools:
 - a Busemann process.
 - **b** Continuum directed polymer.
 - Gibbs-DLR measures.
 - **d** Martingales.

The **KPZ equation** (Kardar-Parisi-Zhang 1986) is a prototypical example of **random planar growth**:

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + W$$

W is space-time white noise, " $W(t,x) \sim N(0,\delta_{t,x})$ "

"
$$\mathbb{E}[W(t,x)W(s,y)] = \delta_{t=s}\delta_{x=y}$$
".



KPZ/SHE

$$\partial_t Z = \frac{1}{2} \partial_{xx} Z + ZW,$$
 (SHE/PAM)

Formally, $h = \ln Z$ solves

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + W \tag{KPZ}$$

This is the **Hopf-Cole** definition of solutions to KPZ.

Fact: (Bertini-Giacomin '97,Alberts-Khanin-Quastel '14, Hairer-Quastel '16,...) The Hopf-Cole solutions where Z is the *mild solution* to (SHE/PAM), is a scaling limit of many models \implies physical.

"Theorem." (Hairer '14 (\mathbb{T}), Perkowski, Rosati '19 (\mathbb{R})) The KPZ equation is well-posed for nice initial data. This solution agrees with the Hopf-Cole(*) solution $h(t,x) = \ln Z(t,x)$.

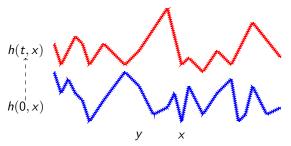
Stationary mod +c distributions:

Theorem: (e.g. Amir, Corwin, Quastel '11) With "narrow-wedge" IC, in probability,

$$\lim_{t\to\infty}\frac{1}{t}h(t,0|0,0)=-\frac{1}{24}\implies \text{transience}$$

A (random) initial condition h_0 is **stationary mod** + **c** if

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + W, \qquad h(0, x) = h_0(x)$$
$$(h(t, x) \bmod + c)_{x \in \mathbb{R}} \stackrel{d}{=} (h(0, x) \bmod + c)_{x \in \mathbb{R}}$$



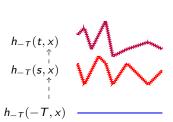
Synchronization/1F1S:

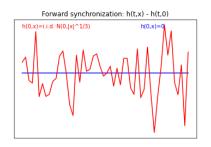
Theorem. (Bertini, Giacomin '97) For $\lambda \in \mathbb{R}$, Brownian motion with drift, $(B(x) + \lambda x)_{x \in \mathbb{R}}$, is stationary mod + c for KPZ.

Conjecture: (1F1S, ex. Bakhtin, Khanin '18) If $h_0(x) = \lambda x + \psi(x)$, $\psi(x)$ sublinear

$$\begin{cases} \partial_t h_{-T} = \frac{1}{2} \partial_{xx} h_{-T} + \frac{1}{2} (\partial_x h_{-T})^2 + W \\ h_{-T}(-T, x) = h_0(x) \end{cases}$$

$$\lim_{T\to\infty}(h_{-T}(t,x)-h_{-T}(t,y))=b^{\lambda}(t,x,t,y)\stackrel{d}{=}B(x)-B(y)+\lambda(x-y).$$





Mild solutions:

$$\partial_t Z = \frac{1}{2} \partial_{xx} Z + ZW, \qquad \rho(t, x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \mathbb{1}_{(0, \infty)}(t)$$

$$\mu \in \mathcal{M}_{\mathsf{HE}} = \{ \mu \in \mathcal{M}_+(\mathbb{R}) : \forall \mathbf{\textit{a}} > 0, \int_{\mathbb{R}} e^{-\mathbf{\textit{a}} x^2} \mu(\mathbf{\textit{d}} x) < \infty \}$$

Chen-Dalang '14/'15 show $\exists !$ solution for fixed $s \in \mathbb{R}, \mu \in \mathcal{M}_{\mathsf{HE}}$ of

$$Z(t, x|s; \mu) = \int_{\mathbb{R}} \rho(t - s, x - y) \mu(dy)$$
$$+ \int_{s}^{t} \int_{-\infty}^{\infty} \rho(t - u, x - z) Z(u, z|s; \mu) W(dudz)$$

The Green's function takes $\mu = \delta_y$:

$$Z(t, x|s, y) = Z(t, x|s; \delta_v)$$

Other existence/uniqueness results: Bertini and Cancrini '95, Bertini and Giacomin '97.

Renormalized Green's function:

$$\mathcal{Z}(t,x|s,y) = \begin{cases} \frac{\mathcal{Z}(t,x|s,y)}{\rho(t-s,x-y)} & s < t \\ 1 & s = t \end{cases} = \mathbf{E}_{(s,y),(t,x)}^{BB} \left[: e^{\int_{s}^{t} W(u,B_{u})} : \right]$$

Theorem. (AJRS 22+) \exists a modification $\mathcal{Z}(t,x|s,y) \in \mathcal{C}(\mathbb{R}^4,\mathbb{R})$. A.s. $\exists C = C(T,\omega) : \text{if } -T \leqslant s \leqslant t \leqslant T$,

$$C^{-1}(1+|x|^4+|y|^4)^{-1} \le \mathcal{Z}(t,x|s,y) \le C(1+|x|^4+|y|^4).$$

We define

$$\begin{split} &Z(t,x|s,y) = \mathcal{Z}(t,x|s,y)\rho(t-s,x-y) \\ &Z(t,x|s;\mu) = \int_{\mathbb{R}} Z(t,x|s,y)\mu(\mathrm{d}y) = \int_{\mathbb{R}} \mathcal{Z}(t,x|s,y)\rho(t-s,x-y)\mu(\mathrm{d}y). \end{split}$$

Previous work: Alberts-Khanin-Quastel '14 constructed Z(t, x|s, y) for s < t previously.

KPZ solution semi-group:

For f Borel, call

$$\begin{split} h(t,x|s;f) &:= \mathsf{In} \int Z(t,x|s,y) e^{f(y)} dy, \qquad h(s,x) = f(x). \\ \mathcal{M}_{\mathsf{HE}} &= \{ \mu \in \mathcal{M}_+(\mathbb{R}) : \forall a > 0, \int_{\mathbb{R}} e^{-ax^2} \mu(dx) < \infty \} \\ \mathcal{C}_{\mathsf{KPZ}} &= \bigg\{ f \in \mathcal{C}(\mathbb{R},\mathbb{R}) : \int_{\mathbb{R}} e^{f(x) - ax^2} dx \text{ for all } a > 0 \bigg\}. \end{split}$$

Theorem. (AJRS '22+)

- $\mathbf{Q} \ \mathbf{e}^f \in \mathcal{M}_{\mathsf{HE}}, \ s \in \mathbb{R} \implies h(\cdot, \cdot | s; f) \ \text{is the Hopf-Cole solution, } \mathbb{P} \ \text{a.s.}$
- **3** (Quenched continuous DS) $(f, s, t) \mapsto h(t, \cdot | s; f)$ is continuous $\mathcal{C}_{\mathsf{KPZ}} \times \mathbb{R}^2_{s \leqslant t} \to \mathcal{C}_{\mathsf{KPZ}}$.
- **4** (Conservation law) $\lim_{x\to\pm\infty} f(x)/x = \lim_{x\to\pm\infty} h(t,x|s;f)/x$

Ergodic distributions.

$$f \sim g \text{ if } f(\cdot) = g(\cdot) + c, \qquad [f] \in \widetilde{\mathcal{C}}_{\mathsf{KPZ}} = \mathcal{C}_{\mathsf{KPZ}} / \sim$$

Corollary. (AJRS 22+) $[h(t,\cdot|s;f)]: \mathbb{R}^2_{s \leq t} \times \widetilde{\mathcal{C}}_{\mathsf{KPZ}} \to \widetilde{\mathcal{C}}_{\mathsf{KPZ}}$ is continuous \Longrightarrow Feller.

Theorem. (JRS 22+) The distribution of $[B(\cdot) + \lambda \cdot]$ is (totally) ergodic. If P is *any* ergodic distribution, then either

- **①** There exists $\lambda \in \mathbb{R}$ such that P is the distribution of $[B(\cdot) + \lambda \cdot]$.
- ② There exists $\lambda > 0$ such that P is supported on equivalence classes $[f] \in \overset{\sim}{\mathcal{C}}_{\mathsf{KPZ}}$ with

$$-\lambda = \lim_{x \to -\infty} \frac{f(x)}{x}$$
 and $\lim_{x \to \infty} \frac{f(x)}{x} = \lambda$

for all $f \in [f]$.

Open problem: Do ergodic measures of the second type exist?

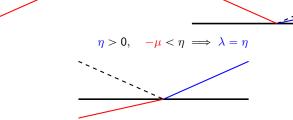
Synchronization:

(Simplified) **Theorem.** (JRS 22+) There exists a random countable Λ^{ω} with $\lambda \in \mathbb{R}$, $\mathbb{P}(\lambda \in \Lambda) = 0$ so that for $\lambda \notin \Lambda$, if ψ is sublinear and

$$h_{-T}(-T,x) = (\mu x)1_{(-\infty,0)}(x) + (\eta x)1_{(0,\infty)}(x) + \psi(x),$$

$$\mu \geqslant 0, \quad \eta \leqslant 0 \implies \lambda = 0$$

$$\mu < 0, \quad \eta < |\mu| \implies \lambda = \mu$$



$$\lim_{T\to\infty}(h_{-T}(t,x)-h_{-T}(s,y))=b^{\lambda}(s,y,t,x)$$

Busemann process:

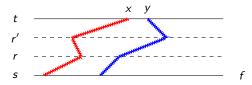
Theorem. (JRS 22+) $\exists \{b^{\lambda\pm}(s,y,t,x): \lambda, s, x, t, y \in \mathbb{R}\}$, and a random countable Λ^{ω} satisfying

- **1** For all $\lambda \in \mathbb{R}$, $\mathbb{P}(\lambda \in \Lambda) = 0$.
- **2** (Equal off Λ) If $\lambda \notin \Lambda$, then $b^{\lambda +} = b^{\lambda -} (:= b^{\lambda})$.
- **3** (Continuous) For all λ , $b^{\lambda\pm}(\cdot,\cdot,\cdot,\cdot)\in\mathcal{C}(\mathbb{R}^4,\mathbb{R})$
- **4** (Brownian) For all $t, \lambda \in \mathbb{R}$, $b^{\lambda}(t, y, t, x) \stackrel{d}{=} B(x) B(y) + \lambda(x y)$.
- **6** (Cocycle) $b^{\lambda\pm}(s,y,r,z) + b^{\lambda\pm}(r,z,t,x) = b^{\lambda\pm}(s,y,t,x)$.
- **6** (Eternal solution of KPZ) For all s, t, y, x, λ and r < t,

$$b^{\lambda\pm}(s,y,t,x) = \ln \int Z(t,x|r,u)e^{b^{\lambda\pm}(s,y,r,u)}du = h(t,x|r;b^{\lambda\pm}(s,y,r,\cdot))$$

Time $t: b^{\lambda \pm}(s, y, t, \cdot)$ Time $r < t: b^{\lambda \pm}(s, y, r, \cdot)$

Continuum Directed Random Polymer:



The CDRP is the measure $Q_{(s;f),(t,x)}$ on $\mathcal{C}([s,t],\mathbb{R})$ with transitions

$$\pi_{(s;f),(t,x)}(r,du|r',u') = Z(r',u'|r,u) \underbrace{\frac{Z(r,u|s;f)}{Z(r',u'|s;h)}}_{e^{h(r,u|s;h)f}-h(r',u'|s;h)} du'$$

Originally introduced by Alberts-Khanin-Quastel '14 for fixed t, x, s, f.

Theorem.(AJRS '22+) A regular (continuous, monotone, etc.) coupling of all $Q_{(s;\mu),(t,x)}$ exists.

Infinite volume (Gibbs) polymers and eternal cocycles:

 $b^{\lambda\pm}$ is an eternal (cocycle) KPZ solution: with $f(y)=b^{\lambda\pm}(s,y,t,x)$,

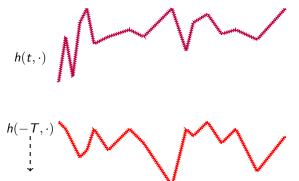
$$\pi_{(s;e^{b\lambda\pm(s,\cdot,t,x)}),(t,x)}(r',du'|r,du) = Z(r',u'|r,u)\frac{Z(r,u|s;f)}{Z(r',u'|s;f)}du'$$

$$= \underbrace{Z(r',u'|r,u)e^{b\lambda\pm(r,u,r',u')}du'}_{\text{Does not depend on s}}$$

which defines $Q_{(t,x)}^{\lambda\pm}$ on $\mathcal{C}((-\infty,t],\mathbb{R})$.

Ergodicity, eternal cocycle solutions, and Gibbs polymers:

If P is ergodic take $[h(-T,\cdot)] \sim P$. Extension \implies \exists global cocycle sol $b^P(s,x,t,y)$ (on an extended space)



Global cocycle $\implies \exists$ semi-infinite polymer $Q_{t,\mathsf{x}}^P$ with transitions

$$\pi_{t,x}^P(r',du'|r,du) = Z(r',u'|r,u)e^{b^P(r,u,r',u')}du'.$$

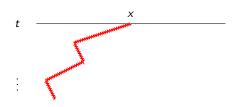
Busemann limits and Gibbs martingales:

The Busemann limit says that if $\lambda \notin \Lambda$, $z_r/r \to -\lambda$ as $r \to -\infty$

$$\frac{Z(s,y|r,z_r)}{Z(t,x|r,z_r)} \to e^{b^{\lambda}(s,y,t,x)}.$$

On the other hand, because $Q_{t,x}^P$ is Gibbs,

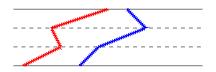
$$\begin{split} \mathcal{M}_{r}^{s,y,t,x} &= \frac{Z(s,y|r,X_{r})}{Z(t,x|r,X_{r})} \text{ is a } Q_{t,x}^{P} \text{ bmg, } \mathbf{E}^{Q_{t,x}^{P}} \left[\frac{Z(s,y|r,X_{r})}{Z(t,x|r,X_{r})} \right] = e^{b^{P}(s,y,t,x)}, \\ \chi &= \lim_{r \to +\infty} \frac{X_{r}}{r} \text{ exists } Q_{t,x}^{P} - a.s. \qquad (\chi \in [-\infty,\infty] \text{ is } Q_{t,x}^{P} \text{ random}). \end{split}$$



LLN/slope duality:

By monotonicity, for large -r and x < 0, $Q_{t,x}^P$ a.s.

$$\frac{Z(t,x|r,-(\lambda+\varepsilon)r)}{Z(t,0|r,-(\lambda+\varepsilon)r)} \cdot 1_{\{\chi \geqslant -\lambda\}} \leqslant \frac{Z(t,x|r,X_r)}{Z(t,0|r,X_r)} 1_{\{\chi \geqslant -\lambda\}} \implies e^{b^{\lambda+\epsilon}(t,0,t,x)} Q_{t,x}^P(\chi \geqslant -\lambda) \leqslant e^{b^P(t,0,t,x)}.$$



$$Q_{0,0}^P(\chi \geqslant -\lambda) > 0 \implies \overline{\lim}_{x \to -\infty} \frac{b^P(t,0,t,x)}{x} \leqslant \lambda$$

 $Q_{0,0}^P(\chi\geqslant -\lambda)>0\iff Q_{t,x}^P(\chi\geqslant -\lambda)>0\implies \{Q_{0,0}^P(\chi\geqslant -\lambda)>0\}$ is translation invariant.

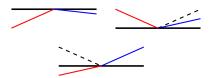
LLN/slope duality continued:

If P is ergodic, then since $[b^P(t, 0, t, \cdot)] \sim P$

$$\mathbb{P}(Q_{0,0}^P(\chi \geqslant -\lambda) > 0) > 0 \implies \mathsf{P}(\overline{\lim}_{x \to -\infty} f(x) / x \leqslant \lambda) = 1$$

Similar statements for $\overline{\lim}_{x\to\pm-\infty}$ and $\underline{\lim}_{x\to\pm-\infty}$ and a finiteness lemma $\implies \exists$ finite $\overline{\lambda}, \underline{\lambda}$:

$$\mathsf{P}\Big(\lim_{x\to -\infty} f(x)/x = \underline{\lambda}\Big) = \mathsf{P}\Big(\lim_{x\to \infty} f(x)/x = \overline{\lambda}\Big) = 1.$$



Consistency with the Busemann limits now says that if we do not have $\overline{\chi} > 0$ and $\chi = -\overline{\chi}$, then $b^P = b^{\lambda}$ for $\lambda = \overline{\lambda} = \underline{\lambda}$.

Thank you!