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The directed landscape

@ The directed landscape £ is a random real-valued continuous function with
domain RY = {(p,q) = (x,s;y,t) : s < t}.
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The directed landscape

@ The directed landscape £ is a random real-valued continuous function with
domain RY = {(p,q) = (x,s;y,t) : s < t}.

e L is a directed metric: L(p,q) > L(p,r) +L(r,q)

o L(x,s;y,t) is Holder-1/2~ (locally Brownian) in x,y but only Hélder-1/3~ in
s, t
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e Paths are now arbitrary continuous functions 7 : s, t] - R.

@ We must define length by subdivision. For a function 7 : [s,t] > R, let

||z =inf inf Eﬁ(w(r, 1), ri;w(ri), ri)

keN s=rg<--<rg=
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e Paths are now arbitrary continuous functions 7 : s, t] - R.
@ We must define length by subdivision. For a function 7 : [s,t] > R, let
k
|7T|£= inf inf Eﬁ(w(r,-_l),r,-;ﬁ(r,-),r,-)

keN s=rg<--<ri=t i

e 7 is a geodesic if |7r|z = L(7(s),s; 7(t),t).
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e Paths are now arbitrary continuous functions 7 : s, t] - R.

@ We must define length by subdivision. For a function 7 : [s,t] > R, let

||z =inf inf Eﬁ(w(r, 1), ri;w(ri), ri)

keN s=rg<--<rg=

e 7 is a geodesic if |7r|z = L(7(s),s; 7(t),t).
@ For any fixed pair p, g, a.s. there is a unique L-geodesic from p to gq.
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Paths are now arbitrary continuous functions 7 : [s, t] - R.

We must define length by subdivision. For a function 7 : [s,t] - R, let

||z =inf inf Eﬁ(w(r, 1), ri;w(ri), ri)

keN s=rg<--<rg=

7 is a geodesic if |7|z = L(7(s),s; w(t),t).

For any fixed pair p, g, a.s. there is a unique £-geodesic from p to g.

Not true for all p,q!! What happens at these exceptional pairs?
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A few possibilities
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A few possibilities

@ We call the set of all geodesics from p to g the geodesic network from p to
qg.
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A few possibilities

@ We call the set of all geodesics from p to g the geodesic network from p to
qg.

@ A natural goal is to try to classify the different geodesic networks that will
show up in the directed landscape.
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Theorem (D.)

There are 27 geodesic networks in the directed landscape.
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The notion of isomorphism for geodesic networks

@ We associate to each geodesic network a directed graph

@ Two networks are isomorphic if the corresponding directed graphs G, G’ are
either isomorphic, or else G is isomorphic to the transpose of G’

A network, its graph, and its transpose
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The notion of isomorphism for geodesic networks

@ We associate to each geodesic network a directed graph: the network graph

@ Two networks are isomorphic if their network graphs G, G’ are either
isomorphic, or else G’ is isomorphic to the transpose GT

Isomorphic networks
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Rules for geodesic networks

A directed graph G = (V, E) is the network graph of a geodesic network in L if
and only if...
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Rules for geodesic networks

A directed graph G = (V, E) is the network graph of a geodesic network in L if
and only if...

@ G has exactly one source vertex p and exactly one sink vertex g
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@ G has exactly one source vertex p and exactly one sink vertex g
@ G is finite, planar and loop-free
© The induced graph on V'~ {p, g} has no (undirected) cycles.
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Rules for geodesic networks

A directed graph G = (V, E) is the network graph of a geodesic network in L if
and only if...

@ G has exactly one source vertex p and exactly one sink vertex g

@ G is finite, planar and loop-free

© The induced graph on V'~ {p, g} has no (undirected) cycles.

Q deg(v)=3forall veV~{p,q}.
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Hausdorff dimensions for geodesic networks
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Hausdorff dimensions for geodesic networks

@ Define the 1:2:3 distance on R‘T‘
draa((x,51y, 1), (X, 8"y ) = [t = '[P+ |s = [P+ [x = X2 4 |y -y 12,

@ Hausdorff dimensions defined used di.2:3 are a proxy for Hausdorff dimensions
defined using the ‘metric’ L.
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Hausdorff dimensions for geodesic networks

@ Define the 1:2:3 distance on R‘T‘

dr23((x, 85y, t), (X, 85y ) = [t =t/ P s =/ t [x = X M2+ |y - /2,

@ Hausdorff dimensions defined used di.2:3 are a proxy for Hausdorff dimensions
defined using the ‘metric’ L.

Theorem (D.)

For a graph G = (V, E) satisfying the five rules above, let N:(G) denote the set
of points in R‘T‘ whose network graph is isomorphic to G. Then:

|V| + deg?(p) + deg®(q)
£ .

dim1;2;3(N5(G)) =12 -

If the right-hand side above equals 0, then Nz (G) is countable.
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Coalescent Geometry in L

time . time

space space

(a) Poisson LPP (b) The directed landscape
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Coalescent Geometry in L
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Dissection of a geodesic network

@ The ends of the network are special, but the interior is generic

@ Rarity of a particular network should be based on the rarity of the endpoint
configurations: geodesic stars
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Dissection of a geodesic network G
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Dissection of a geodesic network G

e A point p e R? is a geodesic k-star if there are k disjoint geodesics that start
at p. Let Stary be the set of geodesic stars for L.
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Dissection of a geodesic network G

e A point p e R? is a geodesic k-star if there are k disjoint geodesics that start
at p. Let Stary be the set of geodesic stars for L.
@ The Hausdorff dimension of N:(G) should be

dim1;2;3(Star2) + dim1;2;3(Star3) -3.

@ The Hausdorff dimension of the set of geodesic networks of type G whose
source and sink vertices have degree k and ¢ should be:

dimy:2:3(Starg) + dimy.2.3(Stary) — #(Interior faces)
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Geodesic stars and a final formula

Theorem (D.)

Let Star, c R? denote the set of geodesic k-stars for L. Then:

dim(Stary) =5, dim(Starp) =4, dim(Star3) =2, Stars=a.
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Geodesic stars and a final formula

Theorem (D.)

Let Star, c R? denote the set of geodesic k-stars for L. Then:

dim(Stary) =5, dim(Starp) =4, dim(Star3) =2, Stars=a.

Therefore: the Hausdorff dimension of the set of geodesic networks of type G
whose source and sink vertices have degree k and ¢ should be:

|V|+ k2 + 2

dimi.2:3(Stary ) + dimy.2.3(Stary) — #(Interior faces) = 12 - 5
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Other models

@ Other random continnum planar metrics have a similar coalescence structure,
and so we might expect similar results

Figure: Geodesics in the Brownian map
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The Brownian map and Liouville quantum gravity

@ The Brownian map is the metric space scaling limit of uniform random planar
maps
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The Brownian map and Liouville quantum gravity

@ The Brownian map is the metric space scaling limit of uniform random planar
maps

@ Liouville quantum gravity is a family of metric spaces parametrized by
v €(0,2). Conjectured scaling limits of random planar maps sampled from a
biased measure
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Parallel Theorems

Let X be either the directed landscape, the Brownian map, or a model of Liouville
quantum gravity with 7 € (0,2).
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Parallel Theorems

Let X be either the directed landscape, the Brownian map, or a model of Liouville
quantum gravity with 7 € (0,2).

Theorem (Angel-Miermont-Kolesnik, Gwynne, D.)

There are exactly 6 dense geodesic networks in X.
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Parallel Theorems

Let X be either the Brownian map, or a model of Liouville quantum gravity with
~v€(0,2).

There are either 27, 28, or 29 geodesic networks in X. |
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