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l. Uniformly random

Gelfand-Tsetlin patterns



Gelfand-Tsetlin (GT) pattern

e A GT pattern G of depth n:
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® G(/,i) denotes entry i € [n — /] on level £ € [n— 1] U {0}.



Uniformly random GT patterns
with fixed level zero

Let a = (a;)je[n) be an increasing sequence of length ne Z- 1.
Construct a random GT pattern G = G? of depth n as follows.
Level zero: G(0,/) = a; for i € [n].

The remaining entries {G(¢,i) : £ € [n—1],i € [n— (]}
(particles) are uniformly distributed.



Multi-level distribution of first particles

* Let k = (kj)je[q) € [n — 1]? be increasing and
t = (ti)ie[d] € R for some dimension d € [n — 1].

e CDF: Define Fy(k, t) = F2(k,t) = P{G(k;,1) > t; : i € [d]}.
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Multi-level distribution of first particles

® From the determinantal structure [Metcalfe ‘13],

Fa(k,t) = det[1 — K]i2, 1 (ki) xRey)

0 _1 m
= 2 ( m!) Z me dx H H{x; <t} det [K(k,,xi k., x)].
re[d]™ ie[m]

for ije[m]

* Metcalfe’s kernel K : ([n — 1] x R)? — C is of the form
K(k,x;4,y) = (¢ + D(k,x; £, y)

for k,0 € [n—1] and x,y € R.



Correlation kernel

k—0—1

— X
® Heat part: ¢(k,x;0,y) = 1{X>y}1{k>z}(k_£)_]_)l'

e Integral part: I(k,x;0,y) =1"(k,x: L,y) =

1
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Il: Five regimes of

boundary fluctuations



Fluctuation regimes

® Five regimes of multi-level fluctuations of first particles.

1. Bounded-level regime

N

. (Generalized) Gaussian regime

3. Weierstrass regime

N

. (Generalized) Baik-Ben Arous-Péché (BBP) regime

o1

. Airy regime



Fluctuation regimes

® The regimes differ in scaling, and whether the terms of the
level zero data (a,) contribute individually and/or
collectively to the limit process.

. Individual Aggregate Scalin
Regime contribution cogngtrilfution expongnt
Bounded-level | Yes Both possible | 1
Gaussian Yes Yes 1/2
Weierstrass Yes No 1/3
BBP Yes Yes 1/3
Airy No Yes 1/3

® There can be infinitely many outliers.



Cauchy transform of level zero

® Let a = (a;)je[s) be an increasing sequence of length n€ Z- ;.

® Define the (negative) Cauchy transform A = A? of a by

!
A(Z):Za._z forze C\ a.
i=1 7

® The fluctuation regimes can be described entirely in terms of
the sequence A, = A?".



Tracking levels

A2
¢ Level function: Define p = p? = G

® p:(—00,a1) — (1,n) is a decreasing bijection.




Tracking “curvature”

e Curvature function: Define Kk = k® =

1. (A)?
A - :
2 A

® x>0on (—w,ai).

® 1 is connected to the “curvature” of the boundary.



Fluctuation regimes

e Consider a sequence of uniform GT patterns G, = G2 of
depth £, € Z~1 and level zero a, = (an(i))ic[s,]-

e Consider a sequence of levels p, € [¢, — 1].

e Critical (saddle) points: Let ¢, = p,!(p,) where p, = p?".



Bounded-level regime
e Scaling: (an(i) — Ca)A,(C,) "= b e [1,00] for i € Zyg.

® b < 0.

® The depth sequence ¢, — 0.



Gaussian regime

° (a"(l) - Cn)An(Cn) — 0.

® Scaling: (an(i) — Ca)AL(C,) Y2 "5 by € [1,00] for i € Z=o.

® b < .



Weierstrass regime
* (an(1) = )AL (Ca)V? — 0.

* Scaling: (an(i) — o) (3 A (C,)) 2 "5 by e [1,00] for i € Zo

and by < .

fnlGn) N0 L 1, (A)?
o >/ — € (0,1] wh — g = A" .
IA7(Ch) Zl b3 (0. 1] where rp = n* = 3 A



BBP regime
* (an(1) = C)AL(C)M? — oo,

* Scaling: (an(i) — o) (3 A (C,)) 2 "5 by e [1,00] for i € Zo

and by < .

I{n(Cn) = 1 ) 1 ., (A/)2
" 4)’%06( *,1]Where/-g =g = _A —
3AL(Gh) 2, b? " 2

i=1

A



Airy regime
e Scaling: (a,(1) — Cn)(%x\;;(ﬁlv))l P> .

Kn(Cn)

(A")?
3A0(Cn) '

A

1 "
— ko € (0,1] where Kk, = K" = EA —

® The condition that kg > 0 is technical.



{Hypothetical} degenerate regime

e Scaling: (a,(1) — Cn)(%f“\/,;(Cn))l 3, o0

2
° lffnfgn) — 0 where k, = K% = EA// _ (A) .
§An(Cn) 2 A

o Likely-vacuous.



I11: Limit kernels
for large levels



Limiting kernel for the Gaussian regime

* Limit parameters: Let b = (bj)icz_, be a nondecreasing
0
1
sequence on [1, 00| such that b; < 0 and Z - < L.
i=1"i

e The limit kernel K'"P : ((—o0, by) x R)2 — C is of the form
K" (u,s;v,t) = (&”’b + 1) (u, s; v, t)

for u,v < by and s,t € R.



Limiting kernel for the Gaussian regime

¢ The heat part is given by $”’b(u,s; v, t) =

1{u<v} 1 { 1 (Rb(u) — Rb(v) — S+ t)z}
Var /QP(v) - QP(u QP(v) — Q(u) '

* Q) Z{bﬂ b2}

i=1

= 1
° Rb(u) = 12 Z 7b-(b- — 2
i=1 '\



Limiting kernel for the Gaussian regime

¢ The integral part is given by T”’b(u,s; v, t) =

|| et e

et o

where at € (0,7/4) and o~ € (7/4,37/4).
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Limiting kernel for the Gaussian regime

° Wi’ denotes the Weierstrass sum of order 1 given by
b & V4 V4
Wl(z)zz log 1_E + for ze C\ [b1,0)
i=1 ! !

where the logarithms are the principal branch.

|

® The series above converges since Z b2 < 0.



Limiting kernel for the Gaussian regime

® If by = o0 then the limit process is a Brownian motion.

® The case by = by < byy1 = o for some N € Z~( recovers
the extended versions of the generalized Gaussian kernels of
Baik-Ben Arous-Péché [Baik-Ben Arous-Péché ‘06],
[Knizel-Petrov-Saenz ‘18], [Imamura-Sasamoto ‘05,‘07].



Limiting kernel for the Weierstrass regime

* Limit parameters: Let b = (bj)iez_, be a nondecreasing
o0
1
sequence on [1, 0] such that b; < o and Z — <L
i=1"i
e The limit kernel Kb : ((—o0, by) x R)? — C is of the form
K"P(u,s;v, t) = (p"P + 10y (u, s; v, 1)

for u,v < by and s,t € R.



Limiting kernel for the Weierstrass regime

® The heat part is given by qﬁ”' bu,s;v, t) = o by, s;v,t) =
1{u<v} {_1 (Rb(u) — Rb(v) — S+ t)z}
Vo \/Qb(v) Qb QP (v) — Q(u) '

QU Z{b—ﬂ b2}

i=1

= 1
* RP(u) = u? Z 7[)_(13_ — 7
i=q Pil\Pi



Limiting kernel for the Weierstrass regime

® The integral part is given by /I\”"b(u,s; v, t) =

f f exp{— flllb (2) + IIIb<W)}dez

ot o

where at € (7/6,7/4) and o~ € (7/2,37/4).

¢ 0(2) = Wh(2) + 5 - 2Q°(u) + 2+ (s~ R*(u)



Limiting kernel for the Weierstrass regime

° WS denotes the Weierstrass sum of order 2 given by

0 2
W5(2) =Z{Iog (1—;) +;+2Z[32} for ze C \ [b1, )

i=1

where the logarithms are the principal branch.

a0
. i 1
® The series above converges since Z o < 0.

j=1 i



Limiting kernel for the Weierstrass regime

[oe]
1 ~ N . .
o If Z 7 < o then K" = K''b byt the two regimes still
i=1"i

differ in scaling.

o0
o If Z 5= then the limit process is novel.
i=1 i

® A similar kernel appeared in exponential LPP with growing
inhomogeneous parameters [Johansson 07].



Limiting kernel for the BBP regime

* Limit parameters: Let b = (bj)icz_, be a nondecreasing
0

sequence on [1, 00| such that b; < 0 and Z 5= ro for
i=1"0
some rp € (0, 1].

e The limit kernel K'V:b:o ((—o0, by) x R)2 — C is of the
form

RVP(u, 5 v, 8) = (¢ + TVER) (0,57 v, 1)

for u,v < by and s, t € R.



Limiting kernel for the BBP regime

® The heat part is given by $'V’b’*"0(u, s;v,t) =

1{u<v} 1
VAT ol R+ Qh(v) - Qo)
ol L ((u2 — V)K" + RP(4) — RP(v) — s + t)?
Pl 2 kT Q) - Q) '



Limiting kernel for the BBP regime

flv,b,no(

® The integral part is given by u,s;v,t) =

dw dz

w—Zz

L ,
e | ettt )

0 <a* 0 <a

where at € (7/6,7/2) and ™ € (7/2,57/6).

N fLYs,b,Ho (Z) _ _%Kgﬂ’wz?’ =+ V\YS(Z)

+3 '22(2UK5'H0 +QP(u)) +z- (sfuzKOb'"o —RP(u))



Limiting kernel for the BBP regime

® If bp = o0 then the marginals of the limit process coincides
with a distribution of [Baik-Rains ‘00] up to rescaling.

® The case by < byy1 = o0 for some N € Z~q recovers the
extended version of the BBP kernel [Baik-Ben Arous-Péché
‘06], [Knizel-Petrov-Saenz ‘18], [Imamura-Sasamoto ‘07].



Limiting kernel for the Airy regime

* Limit parameter: Let ko € (0,1]. One can view that b; = .

e The limit kernel KV%0 : (R x R)2 — C is of the form
IA(V’“"(U,S; v, t) = ((;ASV"“O —l—iv"“o)(u,s; v, t)

for u,v,s, t e R.



Limiting kernel for the Airy regime

® The heat part is given by @’ﬂo(u,s; v,t) =

1{u<v} exp{ ]. ((u2 o \/2)/{0 — S+ t)Z} .

\/7 A/ 2 v — U)Kg Q(V - U\)HO

1
b Kbno—lﬁo— — = kg since by = 0.
0 b3
i=1

* Q°(u) =0 and RP(u) = 0 since b = .



Limiting kernel for the Airy regime

® The integral part is given by /I\/’”O(u, s;v,t) =

|| et e wy

Tt o

where a™ € (7/6,7/2) and o~ € (7/2,57/6).

1
* 03°(2) = —3mo2’ + Furg + 2+ (s o).



Limiting kernel for the Airy regime

® |t is possible to remove kg via rescaling.

® The limit process is the extended Airy process
([Préhofer-Spohn "02]) up to rescaling.



IV. Classifying boundary

fluctuations for large levels



Estimating boundary

® Let a = (aj)je[n) be an increasing sequence of length ne Z- ;.
® Boundary function: For p € (1, n), define
p
P =~P? = gy z+}.
=1 { A(2)

® ~P approximates G(p, 1), the position of the first particle on
level p € [n—1].



Estimating boundary

® The unique maximizer is the critical point

¢ =pY(p) e (—w0,a1) where p = — is the level function.
A

® Boundary function: For p € (1, n),

_ P P
'Yp‘fﬁi’l{Z*A(z)} RO T



Setup for fluctuation results

® Consider a sequence of uniform GT patterns G, = G®" of
depth /¢, € Z~1 and level zero a, = (a,,(i)),-e[@n].

* Consider a sequence of levels p, € [¢, —1].



Setup for fluctuation results

Fix a dimension d € Z~,.
Fix 1o > 0 and Umin, Umax € R with tmin < 0 < Umax-

Level variables: Let u = (u;)ic[q] € [Umin, Umax]9 be a
sequence with u; = w1 +no for i € [d — 1].

Position variables: Fix Tog > 0 and let
s = (si)ie[a] € [—To, To]?.



Rescaled joint CDF of first particles

® Rescaled CDF:

En,d(uv S) = E?jmpn(uv S) = P{Gn([B(UI”’ 1)

Dops)  GLLEL L)

VA
v

W:.(“JISA> -

()L )/l
U u 1




Limiting joint CDF of first particles

¢ Large-level regimes: Let o e {/I, /Il IV, V}.

e Limit CDF: Define F%(u,s) = det[1 — K:]B(U,-e[d]{u,-}szs-)

0

dt H 1{t>s 3 I,Jdeet][f{E<um ti; Urj,tjﬂ.

m=0



Classification theorem for large levels

Il. Gaussian regime. Fix ¢y > 0. Assume that
* (an(1) = Ca)An(Cn) — 0.
o (an(i) — Ca)AL(Ch)2 "7 by e [1, 0] for i € Zsp.
® by <ooand by = Upay + €o.
P, (Umin)

Level ratio constraint: Furthermore, assume that =2—— < rg
P,,(UmaX)

where ry > 1 is an absolute constant (purely technical).

Then E, 4(u,s) n=r ﬁg’b(u,s) uniformly in u, s and b.



Classification theorem for large levels

I1l. Weierstrass regime. Fix ¢; > 0. Assume that
* (an(1) — Cn)(A/rv<<n))1/2 — .
* (an(i) — Cn)(%An”(Cn))l/3 "= bi

€ [1,00] for i € Z=g
® b <o and by

Umax + €0-

“1
Il

Then I, 4(u,s) = ﬁgl’b(u,s) uniformly in u, s and b



Classification theorem for large levels
IV. BBP regime. Fix ¢; > 0. Assume that
* (an(1) — Cn)(A/rv<<n))1/2 — .
o (an(i) — Ca)(AAL"(Co))Y3 "7 by € [1, 0] for i € Zso.
® phy < oo and by = Upay + €0.

Hn(Cn) a1
L4 m — Ko = — +€0.
3A0(Ch) ; b?

Then F, 4(u,s) X lagv’b’m(

u,s) uniformly in u, s, b and .



Classification theorem for large levels

V. Airy regime. Fix ¢y > 0. Assume that

* (an(1) — gn)(%An”(Cn))l/?’ — 0.
Kn(Cn)

— KQ= €0-
1A7(Ch)

Then F,, 4(u,s) "=* FY"™(u,s) uniformly in u, s and ko.



IV. Some specializations



Case of a limit shape
e Consider a sequence of uniform GT patterns G, = G?" of
depth £, — o0 and level zero a, = (an(/))efe,]-

Assumptions.

(i) an(1) = ag for n € Z~q for some fixed ap € R.

¢
1 & -0 .
(ii) A Z an(i) "= 11 vaguely for some subprobability
Mi=1

measure 1 on R such that p # 0 and # supp v > 1.



Shape function

¢ Define the shape function 7 = 5%/ by

y(r) = ZS;JEO {Z + A(z)} for r e (0, u(R))

o A = A¥ denotes the negative of the Cauchy transform of u:

a—2z

A(Z) =f #(da) for z € C . supp p.
R



Limit shape

* Consider a sequence of levels p, € [¢, — 1] such that % —r
n

for some fixed ratio r € (0, u(R)).
¢ (Weak) shape theorem.

1
K—G,,(p,,, 1) > A(r) in probability.



Shape function is convex

r is convex.
A(z) }

r= MP»)



Flat part of shape function

e Limit level function: Define p = p* =

Sk

® Let p = infsuppp.

® D is a decreasing bijection from (—o0, i) onto (p(s1), u(R)) for
some (/1) € [0, u(R)



Flat part of shape function

® a9 =an(l) < p.
® 5 has a flat segment if and only if rp = p(ag) > 0.

o

r-0
Dot
m{;" —————————————— r = Ylr)
E(“o) erfiL“& Coave X




Airy universality

Theorem. Assume that r € (rp, u(R)). Let

wr _ R(C(r)

where & = 1A” — (Af&) and ¢ = (p)~L.

Then F, 4(u,s) — I*A“:,/’Ho(u,s) uniformly in u and s.




A model with a limiting density

Level zero: Fix g € (1,2). Assume that

i — 1\ Ya+D)
an(i) = ( 7 ) forie[¢, —1] and ne Z~o.

an(l) =ap =0.
Limit measure: y(da) = (g + 1)1(a¢0,132%da.

The shape function 7 has a flat segment: ry > 0.



Fluctuations on the flat segment

Theorem. Fix ¢y > 0. Assume that r € (0,rp). Let

~1/2
b = <1 - r> and by =00 (Brownian motion).
ro

ASSUme that bl = Umax + €0.

P,,(Umin) .
Furthermore, assume that =2——- < ry where rp > 1 is an

Bn(umax)
absolute constant (purely technical).

Then F, ;(u,s) — ﬁg’b(u,s) uniformly in u and s.



Fluctuations within the critical window

Theorem. Fix ¢y > 0. Assume that r = ry and

(P p;nt) 0, 2/(1+q)—>X€R
where pi'it = /),,(—E'El""(Hq)).

Then F, ;(u,s) — F”l *(u,s) uniformly in u and s provided that

b1 = Umayx + €9 Where

. 1/3
bi = b{(x) = ((i = DY+ 4 ). (Z (G- 1>1/<11+q> +y>3>

1

for i € Z~g, and



Fluctuations within the critical window

y = y9(x) > 0 is defined implicitly through

L _ Aoy 1 1
TR 02Z =DV + 12 (- DA% 4 y)2 7

Jj=

[y

1 ~
b2

1
j2/(1+q)

s

|
—

= oo since q € (1,2).

s

Il
—

1 1

® Therefore, the limit process is specific to the Weierstrass
regime.



Thanks!



