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Background

Classical physics: principle of least action: minϕ S(ϕ)

Quantum physics: functional integral w.r.t. exp(−S(ϕ))Dϕ

Stochastic quantization: ∂tϕ = −∇S(ϕ) + ξ

In this talk S(A) will be Yang–Mills action, and A will be a Lie
algebra valued 1-form.
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Outline of talk
1. Introduce Yang–Mills model, i.e. define S(A)
2. Introduce a class of lattice Yang–Mills models.
3. Recall previous construction ∂tA = −∇S(A) + ξ

[Chandra,Chevyrev,Hairer,S.]

4. Prove that the dynamics of the lattice models converge to the
continuum dynamic (Convergence step + Identify limit)

5. Invariant measure.
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Yang–Mills model

Let G be a Lie group and g be its Lie algebra.

A = A1dx1 + · · · + Addxd , Ai(x) ∈ g

Yang–Mills action:

S(A) =
ˆ

∥FA∥2dx with F ij
A = ∂iAj − ∂jAi + [Ai , Aj ]

Gauge symmetry: ∀G-valued function g ,

A 7→ gAg−1 − (dg)g−1 leaves S(A) invariant.

Rmk: Quantization exp(−S(A))DA is completely formal.
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Lattice Yang–Mills models
(well-defined) lattice models which preserve gauge symmetry.

On d-dimensional lattice, we have Uxy ∈ G for each edge (x , y).
(convention: Uxy = U−1

yx )

exp(−S(U))
∏

(x ,y)
dUxy where dUxy is Haar measure on G

S(U) =
∑

p
s(Uxy UyzUzw Uwx ) with p = (x , y , z , w)

s : G → R s(gug−1) = s(u)

Gauge invariance under Uxy 7→ gxUxy g−1
y , ∀G-valued function g

Examples: (1) s(u) = Re Tr(id − u) “Wilson”

(2) exp(−s(u)) is heat kernel on G “Villain” (3) s(u) = |id, u|2G “Manton”
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Previous work by Chandra, Cheryvev, Hairer and S. (2020,2022)

∂tA = −∇S(A) + “DeTurck term” + ξ on T2 and T3

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ CAi + ξi

[CCHS]: There is a finite shift of C such that A(t) has gauge
covariance property, and thus induces a Markov process X on the
space of gauge orbits {A}/{gauge}.

Page 6/15



The above work [CCHS] raised two questions:

(1) University. Is the Markov process X the universal limit of the
dynamics of all those discrete models?

(2) Invariant measure. In 80s-90s, 2D YM measure constructed by
Driver, Gross, King, Levy, Sengupta (in the sense of random holonomies).
Is it really invariant measure under X?

[Chevyrev-S. ’23] Yes to both questions on T2.

▶ Proof of (2) relies on (1).
▶ Corollary:

universality of dynamic ⇒ universality of 2D YM measure.
(proof uses uniqueness of invariant measure i.e. ergodicity)
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Universality (from discrete to continuum)

Discrete: U : E → G is G-valued. Continuum: A is g-valued.

∂tU = −∇S(U) + Ḃ

B assigns each edge a G-valued BM. This dynamic looks “far”
from the limiting SPDE for A.

Our strategy is to use exp : E g → EG to pull back S(U) and the
Riemannian metric on EG and B on EG to E g.

After calculations, A := log U will satisfies a discrete equation
which looks “closer” to the SPDE in continuum.
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Recall the SPDE in continuum in [CCHS]

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ CAi + ξi (1)

The discrete equation has the form (ε is lattice spacing)

∂tAε
i = ∆Aε

i +
[
Aε

j , 2∂jAε
i − ∂iAε

j + [Aε
j , Aε

i ]
]
+ ξε

i + “errors” (2)

Many (≈50?) error terms, for instance

ε[Aj , [∂Aj , Ai ]] → cAi

(similar with [Hairer-Quastel’15] on KPZ)
Proposition. As ε → 0, solution of (2) converges to a limit, which
is solution of (1) with ‘some’ C̄ .

Question: is the limit the same as [CCHS]?
We argue that there is a unique C s.t. (1) is gauge covariant.
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Identify the limit (topological argument)

Abelian example G = U(1): A = A1dx1 + A2dx2

∂tAi = ∆Ai + CAi + ξi on R+ × T2 (1)

Gauge transformation: g ◦ A = A − dg g−1 where g is U(1) valued.
Wilson loop observable: exp(

´
ℓ A) for a loop ℓ.

It’s gauge invariant, because
´

ℓ dg g−1 ∈ 2πiZ

Claim: Eq (1) is gauge covariant if and only if C = 0.

C = 0 case: Assume Ā(0) = g0 ◦ A(0)
Then Ā(t) = g(t) ◦ A(t) where g(t) solves:

∂tg g−1 = d∗(dg g−1) g(0) = g0
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C ̸= 0 case:

Consider A(0) = 2πi dx1 and Ā(0) = 0
They are gauge equivalent A(0) = Ā(0) − de−2πix1 e2πix1

A(t) =
ˆ t

0
P(t − s, x − y)ξ(dsdy) + etCA(0)

Ā(t) =
ˆ t

0
P(t − s, x − y)ξ(dsdy)

where P = (∂t − ∆ − C)−1.
Take ℓ(s) = (s, 0) ⊂ T2. We have E exp(

´
ℓ Ā(t)) ̸= E exp(

´
ℓ A(t)).

This is because

exp(
ˆ

ℓ
etCA(0)) = exp(etC2πi) ̸= 1
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Identify the limit
Non-abelian case (general G) more complicated...

Euler estimates: for small t, nonlinear effect is of next order
comparing to the discrepancy created in the previous page

Roughly speaking we will look for a curve ζ : [0, 1] → g with
ζ(0) = 0 ̸= ζ(1) such that its lift L : [0, 1] → G is given by

dL L−1 = dζ L(0) = L(1) = id

This is done using sub-Riemannian geometry (Chow-Rashevsky).
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Invariant measure

Theorem. There is a unique prob measure µ on the orbit space,
whose holonomies agree with earlier construction (Levy ’90s)
µ is the unique invariant measure of X constructed by [CCHS].

1. On lattice µε is explicitly invariant.
2. Pass to limit

J.Bourgain’96 “Invariant measures for the 2D-defocusing nonlinear Schrödinger equation”

P
(

sup
t∈[0,δ]

∥Xε(t)∥ ≥ h
)

≤ P
(

sup
t∈[0,δ]

∥Xε(t)∥ ≥ h
∣∣∣ ∥Xε(0)∥ ≤ L

)
+ P

(
∥Xε(0)∥ > L

)
Xε(0) ∼ µε, moments bound + Markov inequality
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Moments bound (Gauge fixing and “rough Uhlenbeck estimates”)

K.Uhlenbeck’82: “Connections with Lp bounds on curvature”
▶ Assuming A is small, one can bound A by curvature FA in Coulomb gauge
▶ Piece together local bounds by “continuity argument”.
▶ This paper influenced many deep results in differential geometry later on.

1. At large scales, we fix an axial gauge to have good probability
properties

2. At intermediate scales where A becomes reasonably small, we
fix Coulomb gauge (all the way down to the smallest scales)
to have sharp regularity properties.

(Sharpening earlier work by [Chevyrev’19])
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Thank you and happy birthday Timo!
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