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Background

Classical physics: principle of least action: ming S(¢)
Quantum physics: functional integral w.r.t. exp(—S(¢))D¢
Stochastic quantization: 9;¢ = —VS(¢) + ¢

In this talk S(A) will be Yang—Mills action, and A will be a Lie
algebra valued 1-form.
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Outline of talk

1.
2.
3.

Introduce Yang—Mills model, i.e. define S(A)
Introduce a class of lattice Yang—Mills models.

Recall previous construction 9;A = —VS(A) + ¢
[Chandra,Chevyrev,Hairer,S.]

Prove that the dynamics of the lattice models converge to the
continuum dynamic (Convergence step + ldentify limit)

Invariant measure.

Page 3/15



Yang—Mills model
Let G be a Lie group and g be its Lie algebra.
A=Aidxg + -+ Agdxy , A,’(X)Gg

Yang—Mills action:

S(A) :/HFAIQdX with — F2 = 0,A; — 9;A; + [Ai, Al

Gauge symmetry: VG-valued function g,
A gAg! — (dg)g™! leaves S(A) invariant.

Rmk: Quantization exp(—S(A))DA is completely formal.
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Lattice Yang—Mills models

(well-defined) lattice models which preserve gauge symmetry.

On d-dimensional lattice, we have U,, € G for each edge (x,y).
(convention: Uy = Uy}l)

exp(—S(V)) H dU,, where dU,, is Haar measure on G
(x.y)

S(U) = Zs(nyUyzUszwx) with p = (x,y, z, w)
p

s:G—R s(gug™t) = s(u)

Gauge invariance under U, — gx nygy_l, v G-valued function g

Examples: (1) s(u) = Re Tr(id — u) “witson”
(2) exp(—s(u)) is heat kernel on G i (3) s(u) = |id, u|% “Manton"
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Previous work by Chandra, Cheryvev, Hairer and S. (2020,2022)
0:A = —VS(A) + “DeTurck term” + ¢ on T? and T3

0:A; = AA; + [Aj, 28J-A,- — 8,-AJ- + [Aj, A,” + CA; + f,‘

[CCHS]: There is a finite shift of C such that A(t) has gauge
covariance property, and thus induces a Markov process X on the
space of gauge orbits {A}/{gauge}.
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The above work [CCHS] raised two questions:

(1) University. Is the Markov process X the universal limit of the
dynamics of all those discrete models?

(2) Invariant measure. In 80s-90s, 2D YM measure constructed by
Driver, Gross, King, Levy, Sengupta (in the sense of random holonomies).
Is it really invariant measure under X7

[Chevyrev-S. 23] Yes to both questions on T2.

» Proof of (2) relies on (1).

» Corollary:
universality of dynamic = universality of 2D YM measure.
(proof uses uniqueness of invariant measure i.e. ergodicity)
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Universality (from discrete to continuum)

Discrete: U : E — G is G-valued. Continuum: A is g-valued.
U =—-VS(U)+B

B assigns each edge a G-valued BM. This dynamic looks “far”

from the limiting SPDE for A.

Our strategy is to use exp : E9 — E€ to pull back S(U) and the
Riemannian metric on £¢ and B on E€ to E®.

After calculations, A := log U will satisfies a discrete equation
which looks “closer” to the SPDE in continuum.
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Recall the SPDE in continuum in [CCHS]
OtAi = DA + [A;, 20iA; — O:A; + [AjL Al + CA + & (1)
The discrete equation has the form (¢ is lattice spacing)
OtA; = DA + [AS, 20,A7 — 0,A 4 [A5, AT]] + &7 + errors™  (2)
Many (~s07) error terms, for instance
elA;}, [0A;, Ai]] = CA;

(similar with [Hairer-Quastel'15] on KPZ)
Proposition. As ¢ — 0, solution of (2) converges to a limit, which
is solution of (1) with ‘some’ C.

Question: is the limit the same as [CCHS]?
We argue that there is a unique C s.t. (1) is gauge covariant.
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Identify the limit (topological argument)
Abelian example G = U(1): A = A1dx; + Axdxo

O:Ai = DA+ CA+&  onRLxT? (1)

Gauge transformation: go A= A — dg g ! where g is U(1) valued.
Wilson loop observable: exp( f, A) for a loop .

It's gauge invariant, because fé dgg ! e2niz

Claim: Eq (1) is gauge covariant if and only if C = 0.
C = 0 case: Assume A(0) = go o A(0)

Then A(t) = g(t) o A(t) where g(t) solves:

ogg t=d"(dgg!)  g(0) = go
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C # 0 case:

Consider A(0) = 27i dx; and A(0) =0
They are gauge equivalent A(0) = A(0) — de=27x 27

A(t) = /0 t P(t — s, x — y)&(dsdy) + et€ A(0)
At) = /Ot P(t — 5,x — y)&(dsdy)

where P = (0; — A — C)!

Take £(s) = (s,0) C T2 We have Eexp( [, A(t)) # Eexp(f, A

This is because

exp(/getCA(O)) = exp(efC2mi) #1
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Identify the limit
Non-abelian case (general G) more complicated...

Euler estimates: for small t, nonlinear effect is of next order
comparing to the discrepancy created in the previous page

Roughly speaking we will look for a curve ¢ : [0,1] — g with
¢(0) =0 # ((1) such that its lift L: [0,1] — G is given by

dLL™t=d¢  L(0)=L(1)=id

This is done using sub-Riemannian geometry (Chow-Rashevsky).
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Invariant measure

Theorem. There is a unique prob measure i on the orbit space,
whose holonomies agree with earlier construction (Levy '90s)
o is the unique invariant measure of X constructed by [CCHS].

1. On lattice u. is explicitly invariant.

2. Pass to limit

J.Bou rgain '96  “Invariant measures for the 2D-defocusing nonlinear Schrédinger equation”

P( sup [ X(t)] > h)
t€[0,6]

<WstX(n>hMX ) <L) +P(IX(0)] > L)

te[0,6

X-(0) ~ pe, moments bound + Markov inequality
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Moments bound (Gauge fixing and “rough Uhlenbeck estimates”)

K.Uhlenbeck'82: “Connections with LP bounds on curvature”
» Assuming A is small, one can bound A by curvature Fp in Coulomb gauge
» Piece together local bounds by “continuity argument”.

» This paper influenced many deep results in differential geometry later on.

1. At large scales, we fix an axial gauge to have good probability
properties

2. At intermediate scales where A becomes reasonably small, we
fix Coulomb gauge (all the way down to the smallest scales)
to have sharp regularity properties.

(Sharpening earlier work by [Chevyrev'19])

Page 14/15



References:

1. H. Shen, Stochastic quantization of an Abelian gauge theory, Comm. Math.
Phys. (2021) 384(3), 1445-1512

2. A. Chandra, |. Chevyrev, M. Hairer and H. Shen, Langevin dynamic for the 2D
Yang—Mills measure, Publ. Math. IHES. 2022, 1-147.

3. A. Chandra, |. Chevyrev, M. Hairer and H. Shen, Stochastic quantisation of
Yang—Mills—Higgs in 3D, arXiv:2201.03487

4. H. Shen, S. Smith and R. Zhu, A new derivation of the finite N master loop
equation for lattice Yang—Mills, arXiv:2202.00880

5. H. Shen, R. Zhu and X. Zhu, A stochastic analysis approach to lattice
Yang—Mills at strong coupling. Comm. Math. Phys, 2022: 1-47.

6. |.Chevyrev and H. Shen, Invariant measure and universality of the 2D
Yang—Mills Langevin dynamic. arXiv:2302.12160

Thank you and happy birthday Timo!
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