High moments of the SHE & spacetime limit shapes of the KPZ equation

Random Growth Models and KPZ Universality, Banff

Li-Cheng Tsai

University of Utah

Li-Cheng Tsai Moments of SHE & limit shapes of KPZ

イロト イポト イヨト

One-point upper-tail LDPs for models in the KPZ class

- Longest increasing subsequence: Deuschel, Seppäläinen, Zeitouni, ...
- Last passage percolation: Ciech, Georgiou, Janjigian, Johansson, ...
- Directed polymers: Georgiou, Janjigian, Seppäläinen, ...
- Corner growth models: Emrah, Janjigian,...
- Random matrices and random operators: Baik, Buckingham, DiFranco, Deift, Dumaz, Its, Krasovsky, Ramirez, Rider, Viràg, Tracy, Widom, ...
- ASEP height function: Damron, Das, Petrov, Sivakoff, Zhu, ...
- Tagged particle in ASEP: Sethuraman, Varadhan,...
- KPZ equation: more on this later

イロト イボト イヨト イヨト 二日

KPZ and SHE

Kardar–Parisi–Zhang (KPZ)

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + \eta$$

 $\eta =$ spacetime white noise

Stochastic Heat Equation (SHE)

$$\partial_t Z = \frac{1}{2} \partial_{xx} Z + \eta Z$$

Feynman-Kac: Z(T,x) = $\mathbb{E}_{\rm BM}\left[e^{\int_0^T {\rm d}s \ \eta(T-s,X(s))}Z(0,X(T))\right]$ directed polymer in a random environment ► X

 $e^h = Z$

Flow chart of this talk

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

ヘロン 人間 とくほ とくほ とう

Flow chart of this talk

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Flow chart of this talk

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

ヘロン 人間 とくほ とくほ とう

Flow chart of this talk

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

SHE moments \Leftrightarrow attractive BPs

$$k_1,\ldots,k_n\in\mathbb{Z}_{>0} \qquad k:=k_1+\ldots+k_n \qquad Z(0,\,\boldsymbol{\cdot})=\delta_0$$

attractive Brownian Particles (BPs)
$$dX_i(s) = \sum_{j=1}^k \frac{1}{2} \operatorname{sgn}(X_j - X_i) ds + dB_i(s)$$

・ロト ・回ト ・ヨト ・ヨト

A special case of rank-based diffusions: Banner, Banerjee, Budhiraja, Cabezas, Dembo, Fernholz, Ichiba, Jara, Karatzas, Olla, Pal, Pitman, Papathanakos, Sarantsev, Shkolnikov, Sidoravicius, Tsai, Varadhan, Zeitouni, ...

Scaling

Particle numbers. $k_{\mathfrak{c}} = N\mathfrak{m}_{\mathfrak{c}}; \quad \mathfrak{m}_{\mathfrak{c}} \in (0,\infty); \quad N \to \infty (1)$

Time. Take any $T = T_N$ with $N^2T = N^2T_N \rightarrow \infty$ (2). Allow $T \rightarrow 0, T \rightarrow 1, T \rightarrow \infty$ as long as (1)–(2) hold.

Space. $X_i^N(s) := \frac{1}{NT}X_i(Ts)$

(moments)
$$\mathbf{E}\Big[\prod_{c=1}^{n} Z(T, NT\mathbf{x}_{c})^{N\mathfrak{m}_{c}}\Big]$$

(aBPs)
$$dX_{i}^{N} = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \operatorname{sgn}(X_{j}^{N} - X_{i}^{N}) \, \mathrm{d}s + \frac{1}{\sqrt{N^{2}T}} \mathrm{d}B_{i}(s)$$

(1) $N\mathfrak{m}_{\mathfrak{c}} \in \mathbb{Z}_{>0} \Leftrightarrow \mathfrak{m}_{\mathfrak{c}} \in \frac{1}{N}\mathbb{Z}_{>0}$

(2) Drift dominates diffusive effect. Particles tend to cluster.(Space) The scaling *NT* makes the total drift of order 1.

・ロント 日本 ・ 日本 ・ 日本

LDP for the attractive BPs

Theorem (T 23)

$$\boldsymbol{\mu}_N(s) := \frac{1}{N} \sum_{i=1}^{N\mathfrak{m}} \delta_{X_i^N(s)}, \qquad \boldsymbol{\mu}_N \in \mathscr{C}\big([0,1], \mathfrak{m}\mathscr{P}(\mathbb{R})\big)$$

As $N \to \infty$, the empirical measure μ_N satisfies an LDP on $\mathscr{C}([0,1],\mathfrak{m}\mathscr{P}(\mathbb{R}))$ with speed N^3T and an explicit rate function \mathbb{I} .

Remark

- Under the diffusive scaling, N → ∞ and N²T fixed,
 [Dembo–Shkolnikov–Varadhan–Zeitouni 16] proved the LDP for a general class of rank-based diffusions.
- The behavior under $N^2T \rightarrow \infty$ (considered here) is very different from that under the diffusion scaling (considered in [DSVZ 12]).

イロト イポト イヨト イヨト 二日

LDP for the attractive BPs

Theorem (T 23)

 μ_N satisfies an LDP with speed N^3T and an explicit rate function \mathbb{I} .

Corollary

Under $Z(0, \cdot) = \delta_0$, $\mathbf{E}[\prod_{\mathfrak{c}=1}^n Z(T, NT\mathbf{x}_{\mathfrak{c}})^{N\mathfrak{m}_{\mathfrak{c}}}] \approx \exp(N^3T \cdot L_{\text{\tiny SHE}}(\vec{\mathfrak{m}}))$

$$\mathbb{I}_* := \inf \left\{ \mathbb{I}(\mu) : \mu \in \mathscr{C}([0,1], \mathfrak{m}\mathscr{P}(\mathbb{R})), \mu(0) = \sum_{\mathfrak{c}=1} \mathfrak{m}_{\mathfrak{c}} \delta_{\mathfrak{x}_{\mathfrak{c}}}, \mu(1) = \mathfrak{m} \delta_0 \right\}$$

LDP for the attractive BPs

Theorem (T 23)

 μ_N satisfies an LDP with speed N^3T and an explicit rate function \mathbb{I} .

Corollary

Under $Z(0, \cdot) = \delta_0$, $\mathbf{E}[\prod_{\mathfrak{c}=1}^n Z(T, NT\mathbf{x}_{\mathfrak{c}})^{N\mathfrak{m}_{\mathfrak{c}}}] \approx \exp(N^3T \cdot L_{\text{\tiny SHE}}(\vec{\mathfrak{m}}))$

$$\mathbb{I}_* := \inf \left\{ \mathbb{I}(\mu) : \mu \in \mathscr{C}([0,1], \mathfrak{m}\mathscr{P}(\mathbb{R})), \mu(0) = \sum_{\mathfrak{c}=1}^n \mathfrak{m}_{\mathfrak{c}} \delta_{\mathfrak{x}_{\mathfrak{c}}}, \mu(1) = \mathfrak{m} \delta_0 \right\}$$

Theorem (T 23)

Unique minimizer of the infimum: $\boldsymbol{\xi} = \sum_{c=1}^{n} \mathfrak{m}_{c} \delta_{\boldsymbol{\xi}_{c}}$, the optimal deviation.

- コントロント モント モレー 田

Optimal clusters ξ_1, \ldots, ξ_n and optimal deviation ξ

• $\boldsymbol{\xi}_{\mathfrak{c}}(s) := \qquad \qquad \boldsymbol{\xi}(s) = \sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}$

$$\mathrm{d}X_i^N = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \mathrm{sgn}(X_j^N - X_i^N) \,\mathrm{d}s + \frac{1}{\sqrt{N^2T}} \mathrm{d}B_i(s)$$

Inertia clusters, ζ_1, \ldots, ζ_c

• ζ_{c} has mass \mathfrak{m}_{c} .

イロト イロト イヨト イヨト 二日

Optimal clusters $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_n$ and optimal deviation $\boldsymbol{\xi}$

• $\boldsymbol{\xi}_{\mathfrak{c}}(s) := \qquad \qquad \boldsymbol{\xi}(s) = \sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}$

$$\mathbf{d}X_i^N = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \operatorname{sgn}(X_j^N - X_i^N) \, \mathbf{d}s + \frac{1}{\sqrt{N^2T}} \mathbf{d}B_i(s)$$

Optimal clusters ξ_1, \ldots, ξ_n and optimal deviation ξ

•
$$\boldsymbol{\xi}_{\mathfrak{c}}(s) := \boldsymbol{\xi}_{\mathfrak{c}=1} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}}(s)$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

x

=

$$\mathbf{d}X_i^N = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \operatorname{sgn}(X_j^N - X_i^N) \, \mathbf{d}s + \frac{1}{\sqrt{N^2T}} \mathbf{d}B_i(s)$$

Inertia clusters, ζ_1, \ldots, ζ_c

- ζ_{c} has mass \mathfrak{m}_{c} .
- Start with velocity $(\ldots \frac{1}{2}\mathfrak{m}_{\mathfrak{c}-1} + \frac{1}{2}\mathfrak{m}_{\mathfrak{c}+1} + \ldots).$
- Merge according to conservation of momentum.

イロト イポト イヨト

Optimal clusters $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_n$ and optimal deviation $\boldsymbol{\xi}$

•
$$\boldsymbol{\xi}_{\mathfrak{c}}(s) := \qquad \qquad \boldsymbol{\xi}(s) = \sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}}(s)$$

$$\mathrm{d}X_i^N = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \mathrm{sgn}(X_j^N - X_i^N) \,\mathrm{d}s + \frac{1}{\sqrt{N^2T}} \mathrm{d}B_i(s)$$

Optimal clusters ξ_1, \ldots, ξ_n and optimal deviation ξ

•
$$\boldsymbol{\xi}_{\mathfrak{c}}(s) := \qquad \qquad \boldsymbol{\xi}(s) = \sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}}(s)$$

イロト イポト イヨト

$$dX_{i}^{N} = \frac{1}{N} \sum_{j=1}^{N\mathfrak{m}} \frac{1}{2} \operatorname{sgn}(X_{j}^{N} - X_{i}^{N}) \, \mathrm{d}s + \frac{1}{\sqrt{N^{2}T}} \mathrm{d}B_{i}(s)$$

Branches, $\mathfrak{b} \colon \mathfrak{c}, \mathfrak{c}' \in \mathfrak{b}$ if and only if $\boldsymbol{\zeta}_{\mathfrak{c}}(1) = \boldsymbol{\zeta}_{\mathfrak{c}'}(1)$

Optimal clusters $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_n$ and optimal deviation $\boldsymbol{\xi}$

• $\boldsymbol{\xi}_{\mathfrak{c}}(s) := \boldsymbol{\zeta}_{\mathfrak{c}}(s) + (-\boldsymbol{\zeta}_{\mathfrak{b}}(1))s, \quad \mathfrak{c} \in \mathfrak{b}$ $\boldsymbol{\xi}(s) = \sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}$

イロト イポト イヨト イヨト 二日

 $\mathbf{x}_4 \quad \mathbf{x}_5$

So far and what's next

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Moments of SHE \rightarrow LDP for KPZ

Proposition (T 23)

Let $\mathscr{R}_{conc} := \{ \vec{r} : f_{\star, \vec{r}} \ge p, f_{\star, \vec{r}} \text{ is concave} \}.$ The functions

 $L_{\rm SHE}(\vec{\mathfrak{m}}):[0,\infty)^n\to [0,\infty) \qquad I_{\rm KPZ}(\vec{\mathbf{r}}):\mathscr{R}_{\it conc}\to [0,\infty)$

are strictly convex and the Legendre transform of each other.

Gibbs line ensembles [Corwin Hammond 14, 16] and [Ganguly–Hegde 22]. Our approach goes through moments and is different,

n-point, upper-tail LDP for the KPZ equation

$$h_N(t,x) := \frac{1}{N^2 T} (h(Tt, NTx) + \log \sqrt{T} + \frac{T}{24})$$

Corollary (T 23 & Lin-T 23)

Under delta initial condition $Z(0, {\, {f \cdot\,}}) = \delta_0$, for any ${f \ddot r} \in \mathscr{R}^\circ_{\it conc}$,

$$\mathbf{P}ig[|h_N(1,\mathbf{x}_{\mathfrak{c}})-\mathbf{r}_{\mathfrak{c}}|\leq\delta,\mathfrak{c}=1,\ldots,nig]pprox e^{-N^3T\cdot\,I_{ ext{KPZ}}(ec{\mathbf{r}})}$$

$$N
ightarrow \infty$$
 and $N^2T = N^2T_N
ightarrow \infty$ first; $\delta
ightarrow 0$ later.

Covered scaling regimes

- Short or unit-order time $T \rightarrow 0$ or $T \rightarrow 1$: any deviation $\gg 1$
- Long time $T \to \infty$: any deviation $\gg T$

Doesn't cover the hyperbolic scaling regime, N = 1 and $T \to \infty$, $h_T(t, x) := \frac{1}{T} (h(Tt, Tx) + \log \sqrt{T} + \frac{T}{24}).$

イロト イポト イヨト イヨト 二日

Related results

First, when n = 1 and $\mathbf{x}_1 = 0$, we recover $I_{\text{KPZ}}(\mathbf{r}) = \frac{4\sqrt{2}}{3}\mathbf{r}^{3/2}$.

One point, upper-tail LDPs

• Hyperbolic scaling regime

$$\mathbf{P}\left[\frac{1}{T}(h(T,0) + \log\sqrt{T} + \frac{T}{24}) \approx \mathbf{r}\right] \approx e^{-T\frac{4\sqrt{2}}{3}\mathbf{r}^{3/2}}, \qquad T \to \infty, \mathbf{r} > 0$$

- Predicted in [Le Doussal–Majumdar–Schehr 16]; proven in [Das–T 21].
- Other scaling regimes and/or other initial conditions
 - Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav, Krajenbrink, Le Doussal, Majumdar, Livne, Meerson, Prolhac, Rosso, Sasorov, Schmidt, Smith, Vilenkin, ...
 - Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin, Tsai, ...

n-point upper tails and terminal-time limit shape

- [Ganguly-Hegde 22]
 - Detailed and optimal *n*-point bounds that hold for all $t > t_0$.
 - When specialized onto the hyperbolic scaling regime: the *n*-point LDP and the terminal-time limit shape f_{*,r}.

So far and what's next

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Spacetime limit shape

$$\mathcal{E}_{N,\delta}(\vec{\mathbf{r}}) := \{ |h_N(1,\mathbf{x}_{\mathfrak{c}}) - \mathbf{r}_{\mathfrak{c}}| \leq \delta, \mathfrak{c} = 1, \dots, n \}$$

Theorem (Lin–T 23)

Under $Z(0, \cdot) = \delta_0$, for any $\vec{\mathbf{r}} \in \mathscr{R}_{conc}^{\circ}$ and $R < \infty$, $\mathbf{P}[\|h_N - \mathbf{h}_{\star}\|_{\mathscr{L}^{\infty}([\frac{1}{R}, 1] \times [-R, R])} < \frac{1}{R} | \mathcal{E}_{N, \delta}(\vec{\mathbf{r}})] \longrightarrow 1$ $N \to \infty$ and $N^2T = N^2T_N \to \infty$ first; $\delta \to 0$ later.

Limit shape

Hydrodynamic limit (without conditioning)

- [Janjigian–Rassoul-Agha–Seppäläinen 22] The hydrodynamic limit h_0 is the entropy solution of $\partial_t h_0 = \frac{1}{2} (\partial_x h_0)^2$.
- [Amir–Corwin–Quastel 11] Here $h_0(t,x) = p(t,x) := -x^2/(2t)$.

 Analogous to the hydrodynamic limits for the TASEP and ASEP [Rost 81], [Rezakhanlou 91], [Seppäläinen 98]

Limit shape (with conditioning)

• $h_{\star}(t,x)$ also solves $\partial_t h_{\star} = \frac{1}{2} (\partial_x h_{\star})^2$, but is a *non-entropy* solution.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Limit shape

Limit shape (with conditioning)

• $h_{\star}(t,x)$ also solves $\partial_t h_{\star} = \frac{1}{2} (\partial_x h_{\star})^2$, but is a *non-entropy* solution.

• How to describe h_{*}?

 $h_{\star}(1 - s, x)$ is the entropy solution of the *backward* equation $-\partial_s h_{\star} = \frac{1}{2}(\partial_x h_{\star})^2$. Consistent with [Jensen–Varadhan 00, 04]

ヘロン 人間 とくほ とくほ とう

Mechanism of the deviations, noise-corridor effect

$$e^{h(T,NTx)} = Z(T,NTx) = \mathbb{E}_{\scriptscriptstyle \mathrm{BM}}\left[e^{\int_0^T \mathrm{d}s \ \eta(T-s,X(s))} \delta_0(X(T))\right]$$

Consider n = 1 and $\mathbf{x}_1 = 0$.

A known phenomenon. [Seppäläinen 98], [Deuschel–Zeitouni 99] The noise η makes itself anomalously large only around $[0, 1] \times \{0\}$. We call this the **noise-corridor effect**.

イロト イポト イヨト イヨト

Mechanism of the deviations, noise-corridor effect

When n > 1, a similar noise-corridor effect occurs, with the noise-corridors being the shocks.

イロト 不得 トイヨト イヨト

=

Mechanism of the deviations, noise-corridor effect

When n > 1, a similar noise-corridor effect occurs, with the noise-corridors being the shocks.

Proposition (T 23)

(Noise corridors in KPZ := shocks) = (optimal clusters in attractive BPs)

イロト 不得 トイヨト イヨト

We utilize moments and a tree structure to obtain the spacetime limit shape. A crucial idea is to utilize the noise-corridor effect.

Conjecture. The same results should hold in the hyperbolic scaling regime $(h_T(t,x) := \frac{1}{T}(h(Tt,Tx) + \log \sqrt{T} + \frac{T}{24}), T \to \infty)$ and for $\vec{\mathbf{r}} \in \mathscr{R}$ (all upper-tail deviations). The limit shape h_* is still defined as the backward entropy solution, though the shocks are no longer piecewise linear when $\vec{\mathbf{r}} \notin \mathscr{R}_{conc}$.

More general initial conditions. One may seek to use the convolution formula as in [Corwin–Ghosal 20] and [Ghosal–Lin 23].

Possibility of symmetry breaking. Predicted in the weak-noise regime [Janas–Kamenev–Meerson 16], [Smith–Kamenev–Baruch Meerson 18], [Krajenbrink–Le Doussal 17, 19]; should hold here too.

Conjecture. Symmetry breaking under the two-delta initial condition $Z(0, \cdot) = \delta_{-NT} + \delta_{+NT}$. Very preliminary calculations in [Appendix B, Lin–T 23].