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Square grid with O in the
vertices and H on the edges.

Take a finite/infinite domain.

Configurations: possible
matchings of all atoms inside
domain into H2O molecules.

This is square ice model.
Real-world ice has somewhat
similar (although 3d) structure.
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Also known as the six vertex model.
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Gibbs measures

Six positive weights corresponding to types of vertices.
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Gibbs probability measure on
configurations:

a
#(a1)
1 a

#(a2)
2 b

#(b1)
1 b

#(b2)
2 c

#(c1)
1 c

#(c2)
2

Z (Ω; a1, a2, b1, b2, c1, c2)

Remark. Distribution depends
only on b1b2

a1a2
and c1c2

a1a2
.

Example. Uniform measure on configurations in a fixed domain is
Gibbs with a1 = a2 = b1 = b2 = c1 = c2 = 1.

We aim to study asymptotic properties of Gibbs measures.
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Domain wall boundary conditions (DWBC)
O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

H H H H H

H H H H H

H H H H H

H H H H H

Simplest possible domain: N × N square.



Our setup: (a, b, c)–measure with DWBC.

N × N square
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No loss of generality, because of
dependence on b1b2

a1a2
and c1c2

a1a2
.

How does a random configuration look like as N → ∞?

∆ = a2+b2−c2

2ab will play a role.



N = 200 simulation by David Keating
a = 1
b = 1
c =

√
8

∆ = −3

only c-vertices
shown
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Almost nothing in this picture was explained rigorously.



N = 256 simulation by David Keating
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Boundary limits?

our focus

• What happens near boundaries as N → ∞?

• Boundary conditions are seen only through these points.

• By symmetries, it is sufficient to deal with lower boundary.



GUE for all ∆ < 1

Theorem. (Gorin–Liechty-23) For ∆ < 1 the probability that there
are precisely k horizontal molecules in line k tends to 1 as N → ∞.
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GUE for all ∆ < 1
Theorem. (Gorin–Liechty-23) For ∆ < 1, the positions of
horizontal molecules in line k , after subtracting m(a, b, c)N and
dividing by s(a, b, c)

√
N, converge in distribution to the

eigenvalues of k × k matrix of Gaussian Unitary Ensemble.
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→
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−→

Eigenvalues of X+X∗

2 .

X = k×k matrix with i.i.d.
N (0, 1) + iN (0, 1)
elements.

• Horizontal molecules uniquely fix all others.
• Corollary: The first k rows → GUE–corners process.

• Previous results:
1. ∆ = 0: [Johansson-Nordenstam-06] through domino tilings.
2. a = b = c = 1: [Gorin-Panova-15] through Schur functions.
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GUE for all ∆ < 1
Theorem. (Gorin–Liechty-23) For ∆ < 1, the positions of
horizontal molecules in line k , after subtracting m(a, b, c)N and
dividing by s(a, b, c)

√
N, converge in distribution to the

eigenvalues of k × k matrix of Gaussian Unitary Ensemble.

|∆| < 1: a = sin(γ− t), b = sin(γ+ t), c = sin(2γ), |t| < γ < π/2

m(a, b, c) =
cot(γ + t) + π

2γ
tan
(

πt
2γ

)
cot(γ − t) + cot(γ + t)

, s(a, b, c) =
sin(γ − t) sin(γ + t)

sin(2γ)
×

×

√√√√ 2
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(
cot(γ − t) −

π

2γ
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))(
cot(γ + t) +

π

2γ
tan

(
πt
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.

∆ < −1: a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ), |t| < γ

m(a, b, c) =

coth(γ + t) − π
2γ

ϑ′
2

(
πt
2γ

)
ϑ2

(
πt
2γ

)
coth(γ − t) + coth(γ + t)

, s(a, b, c) =
sinh(γ − t) sinh(γ + t)

sinh(2γ)
×

×

√√√√√√ 2

3
−

π2

12γ2

ϑ′
2

(
πt
2γ

)
ϑ2

(
πt
2γ

)
2

+
π2

12γ2

4∑
j=1

(
ϑ′
j (ω)

ϑj (ω)

)2

−
π(coth(γ + t) − coth(γ − t))

2γ

ϑ′
2

(
πt
2γ

)
ϑ2

(
πt
2γ

) − coth(γ + t) coth(γ − t)

ω =
π(1 + t/γ)

4
, ϑ1, ϑ2, ϑ3, ϑ4 = Jacobi elliptic theta functions with nome q = e−π2/(2γ)

.
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∆ > 1: N = 256 simulation by David Keating

Is ∆ < 1 just a technical restriction?

No!
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∆ > 1: stochastic six-vertex model.
Theorem. (Gorin–Liechty-23) For ∆ > 1 and a > b, as N → ∞
the configuration converges near the bottom–left corner to the
stochastic six-vertex model without any rescaling.

−→

(Complementary a < b case is obtained by a vertical flip.)



Stochastic six–vertex model.

a1 = a2 = 1, b1 + c1 = 1, b2 + c2 = 1.

O OO H HH H OO H OH

H

H H

H H

a1 a2

H

b1 b2 c1 c2

Remark. This implies ∆ = a1a2+b1b2−c1c2
2
√
a1a2b1b2

≥ 1.

The model in quadrant defined by local sampling algorithm.
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Stochastic six–vertex model.
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Stochastic six–vertex model.
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Stochastic six-vertex model is a particle system.
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c1 = 1− b1, c2 = 1− b2
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• Discrete time version of Asymmetric Simple Exclusion Process.

• First introduced on torus in [Gwa-Spohn-92].
• b1 > b2: LLN and fluctuations in [Borodin-Corwin-Gorin-16], [Dimitrov - 23]

• Small b1 − b2 > 0 KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]

• Small b1 − b2 stochastic telegraph limit in [Borodin-Gorin-19]

• Stationary regime b1 < b2 is relevant for DWBC.
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• Discrete time version of Asymmetric Simple Exclusion Process.
• First introduced on torus in [Gwa-Spohn-92].
• b1 > b2: LLN and fluctuations in [Borodin-Corwin-Gorin-16], [Dimitrov - 23]

• Small b1 − b2 > 0 KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]
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∆ > 1: stochastic six-vertex model.
Theorem. (Gorin–Liechty-23) For ∆ > 1 and a > b, as N → ∞
the configuration converges near the bottom–left corner to the
stochastic six-vertex model with 0 < b1 < b2 < 1:

b1 =
a2 + b2 − c2 −

√
(a2 + b2 − c2)2 − 4a2b2

2a2
, b2 =

a2 + b2 − c2 +
√

(a2 + b2 − c2)2 − 4a2b2

2a2
.
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General domains
Conjecture. For any ∆ < 1 and any large polygonal domain near
boundaries we always see

√
N fluctuations and GUE–eigenvalues.
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• We proved it for squares.

• [Aggarwal–Gorin-22] An analogue for
lozenge tilings ≈ five-vertex
model.

Open question. What are all possible boundary limits for ∆ > 1?

• We found stationary stochastic six–vertex model.

• [Dimitrov-20, Dimitrov-Rychnovsky-22] Some infinite domains → GUE.

And what about ∆ ≈ 1?
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The simplest case to probe ∆ ≈ 1.
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σ = 41325

For fixed N send c → 0 to get the
Mallows measure on permutations.

P(σ) ∼
(
b2

a2

)#inversions(σ)

∆ =
a2 + b2

2ab
≥ 1.

Proposition. Set c = 0, suppose N ln
(
b2

a2

)
→ θ ∈ R as N → ∞.

Then the rescaled by N positions of horizontal molecules converge
in distribution to i.i.d. truncated exponentials of density

ρη(x) =
θ

eθ − 1
eθx , x ∈ [0, 1].

Conclusion. We expect a rich world of boundary limits for ∆ ≈ 1.
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A glimpse into proofs

Step 1. Introduce
row and column dependent
vertex weights.

ω(x , y ;σ) =


a(ψy − χx , γ),

b(ψy − χx , γ),

c(ψy − χx , γ).

Zn(χ1, . . . , χN ;ψ1, . . . , ψN ; γ) =
∑
σ

N∏
x=1

N∏
y=1

ω(x , y ;σ).

[Izergin, Korepin — 1982, 1987] Partition function evaluates:

N∏
i ,j=1

(
a(ψj − χi , γ)b(ψj − χi , γ)

)
∏
i<j

(
b(χi − χj , 0)b(ψi − ψj , 0)

) det

[
c(ψj − χi , γ)

a(ψj − χi , γ)b(ψj − χi , γ)

]N
i ,j=1

.

Step 2. Delicate N → ∞ asymptotic analysis of IK-determinant
when ψ1 = · · · = ψN = ψ and all but finitely many χi are set to 0.

Step 3. Use the Gibbs property for probabilistic consequences.



Summary

Boundary limits for the 6v–model in N × N square with DWBC:

• GUE asymptotics after
√
N–rescaling for ∆ < 1.

• Stationary stochastic six-vertex model for ∆ > 1.

• Rich, but only partially understood limits for ∆ ≈ 1.

• Asymptotic analysis based on the Izergin-Korepin determinant.


