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Six—vertex model

Square grid with O in the
vertices and H on the edges.

Take a finite/infinite domain.

Configurations: possible
matchings of all atoms inside
domain into H>O molecules.

This is square ice model.
Real-world ice has somewhat
similar (although 3d) structure.
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Six—vertex model
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Six—vertex model

Square grid with O in the
vertices and H on the edges.

Take a finite/infinite domain.

Configurations: possible
matchings of all atoms inside
domain into H>O molecules.

This is square ice model.
Real-world ice has somewhat
similar (although 3d) structure.

Also known as the six vertex model.
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Gibbs measures

Six positive weights corresponding to types of vertices.

H H H
O—H H—O H—O O—H H—O—H )
H H H

ajy a9 b1 by c1 c



~
o

o =0 T—0O T—0O m

Gibbs measures
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Gibbs measures

Six positive weights corresponding to types of vertices.
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Gibbs measures

HiO

0 i{H—0 H—0! H—0 H—O

Gibbs probability measure on
configurations:

a#(al)ajﬁ(az)bfﬁ(bl) bjﬁ(bz) Cl#(cl) Cjé(CZ)

Z(Q, di, a2, b17 b27 1, CZ)

Remark. Distribution depends

biby ao
only on Y and -

Example. Uniform measure on configurations in a fixed domain is
Gibbs with a1 =a» = b1 = by = ¢ = ¢ = 1.



Gibbs measures

H—O

HiO

0 i{H—0 H—0! H—0 H—O

Gibbs probability measure on
configurations:

a#(al)ajﬁ(az)bfﬁ(bl) bjﬁ(bz) Cl#(cl) cf(q)

Z(Q, di, az, b17 b27 1, CZ)

Remark. Distribution depends

biby ao
only on Y and -

Example. Uniform measure on configurations in a fixed domain is
Gibbs with a1 =a» = b1 = by = ¢ = ¢ = 1.

We aim to study asymptotic properties of Gibbs measures.



Domain wall boundary conditions (DWBC)
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Our setup: (a, b, c)-measure with DWBC.

N x N square
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How does a random configuration look like as N — c0?
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N = 200 simulation by David Keating

. a=1
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Almost nothing in this picture was explained rigorously.



N = 256 simulation by David Keating
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Boundary limits?

® What happens near boundaries as N — oo?
® Boundary conditions are seen only through these points.
® By symmetries, it is sufficient to deal with lower boundary.



GUE for all A <'1

Theorem. (Gorin—Liechty-23) For A < 1 the probability that there
are precisely k horizontal molecules in line k tends to 1 as N — oc.
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GUE for all A <'1
Theorem. (Gorin—Liechty-23) For A < 1, the positions of
horizontal molecules in line k, after subtracting m(a, b, c)N and
dividing by s(a, b, ¢)v/N, converge in distribution to the
eigenvalues of k x k matrix of Gaussian Unitary Ensemble.
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z HoO N H W H N(0,1) +iN(0,1)
Qo Do o 0@ oD elements.
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® Horizontal molecules uniquely fix all others.
® Corollary: The first kK rows — GUE-corners process.



GUE for all A <'1
Theorem. (Gorin—Liechty-23) For A < 1, the positions of
horizontal molecules in line k, after subtracting m(a, b, c)N and
dividing by s(a, b, ¢)v/N, converge in distribution to the
eigenvalues of k x k matrix of Gaussian Unitary Ensemble.

H—0O H—0O H—0O H—O—H O—H
H H H H H
. *
H—0 H—O—H O—H O—H O—H Eigenvalues of %
H H H H H

HeO H—0 H—0—H O0—n o—n ——= X = kx k matrix with i.i.d.

N(0,1) +iN(0,1)

Qo Do o 0@ oD elements.
H H H

® Horizontal molecules uniquely fix all others.
® Corollary: The first kK rows — GUE-corners process.
® Previous results:

1. A =0: [Johansson-Nordenstam-06] through domino tilings.
2. a= b= c = 1: [Gorin-Panova-15] through Schur functions.
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GUE for all A <'1

Theorem. (Gorin—Liechty-23) For A < 1, the positions of
horizontal molecules in line k, after subtracting m(a, b, c)N and
dividing by s(a, b, ¢)v/N, converge in distribution to the
eigenvalues of k x k matrix of Gaussian Unitary Ensemble.

Al <1 a=sin(y—t), b=sin(y+1t), c =sin(2y), |[t| <y < 7/2

cot(y + t) + 75 tan (5F sin(y — t)sin(y + t
m(a, b, c) = 2y (2~{) s(a, b, c) = w

cot(y — t) + cot(y + t) sin(27)

J (55 -1) - (w0 Zon(Z5)) (s 0+ S ().



GUE for all A <'1

Theorem. (Gorin—Liechty-23) For A < 1, the positions of
horizontal molecules in line k, after subtracting m(a, b, c)N and
dividing by s(a, b, ¢)v/N, converge in distribution to the
eigenvalues of k x k matrix of Gaussian Unitary Ensemble.

Al <1 a=sin(y—t), b=sin(y+1t), c =sin(2y), |[t| <y < 7/2

cot(y +t) + 2,Y tan (;'y)

2y o(a, b, ) = sin(y — t)sin(y + t) «
cot(y — t) + cot(y + t) S e sin(27)

J (55 -1) - (w0 Zon(Z5)) (s 0+ S ().

A < —1: a=sinh(y — t), b =sinh(y + t), c =sinh(2y), |t| <~

m(a, b, c) =

t
coth(y +t) — & 02(7‘ )

g

m(a, b, c) = () oo, b, ) = Smh(Y = t)sinh(y + )
"7 coth(y — t) + coth(y + 1) » )= nh(27)
2
2 72 95 (;T;) (w) m(coth(y + t) — coth(y — t)) ¥ (2"()
5 W (192 (%Yt) 12fy2 Z < )> - 2 . (2’Y) — coth(y + t) coth(y — t)
m(1+1t/v)

_ a2
w = f s 91, 92,03, ¥4 = Jacobi elliptic theta functions with nome g = e~ ™ /(27).



A > 1: N = 256 simulation by David Keating

Is A < 1 just a technical restriction?



A > 1: N = 256 simulation by David Keating

Is A < 1 just a technical restriction? No!
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A > 1: stochastic six-vertex model.

Theorem. (Gorin—Liechty-23) For A > 1 and a > b, as N — oo
the configuration converges near the bottom—left corner to the
stochastic six-vertex model without any rescaling.

(Complementary a < b case is obtained by a vertical flip.)



Stochastic six—vertex model.

aa=a=1 b +a=1 b +c=1.

H H H
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H H H
aq as by b c1 c9

e ; _ aiatbhb—cco
Remark. This implies A = N > 1.

The model in quadrant defined by local sampling algorithm.



Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.
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The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.
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The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1
The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1

The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1

The model in quadrant defined by local sampling algorithm.
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Stochastic six—vertex model.

aa=a=1 b+a=1 b+c=1

The model in quadrant defined by local sampling algorithm.
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Stochastic six-vertex model is a particle system.

H H H
O—H H—0 H—O O—H H—O—H [0}
H H H

1 1 bl bf_) &) (&)

C1:1—b1, C2:1—b2

® Discrete time version of Asymmetric Simple Exclusion Process.



Stochastic six-vertex model is a particle system.

H H H

O—H H—0O H—O O—H H—O—H (0]
H H H 4

,,,,,,, = o d
[ [ 3

1 1 bl b"_) &} 2

2
a=1—b;, o=1—>b 1 :

0 1 2 3 4 5
® Discrete time version of Asymmetric Simple Exclusion Process.
® First introduced on torus in [Gwa-Spohn-92].

L b]_ > b2: LLN and fluctuations in [Borodin-Corwin-Gorin-16], [Dimitrov - 23]
L4 Sma|| b]_ - b2 >0 KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]
® Small by — by stochastic telegraph limit in [sorodin-Gorin-19]



Stochastic six-vertex model is a particle system.

H H H

O—H H—O0 H—O O—H H—O—H O
H H H 4

,,,,,,, 4 o d
r 3

1 1 bl bf_) &) (&)
2

a=1—b;, o=1—>b 1

Discrete time version of Asymmetric Simple Exclusion Process.
First introduced on torus in [Gwa-Spohn-92].

b1 > by: LLN and fluctuations in [Borodin-Corwin-Gorin-16], [Dimitrov - 23]
Small by — by > 0 KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]

Small by — by stochastic telegraph limit in [gorodin-Gorin-19]
Stationary regime by < by is relevant for DWBC.



A > 1: stochastic six-vertex model.

Theorem. (Gorin—Liechty-23) For A > 1 and a > b, as N — ¢
the configuration converges near the bottom—left corner to the
stochastic six-vertex model with 0 < by < by < 1:

24+ b2 - (a2 + b2 — c2)2 — 422p? 2%+ b2 — 2 4 /(a2 + b2 — c2)2 — 4a2h2

b= 222 o k= 222 ’
v
s
\/l;'
v

H H 134

/ O—H H—0O H—0O O—H H—O—H O

A H il H

v ‘ ‘
S o

/ 1 1 by by c| o

s
/ C1:1—b1, C2:1—b2




General domains

Conjecture. For any A < 1 and any large polygonal domain near
boundaries we always see v/N fluctuations and GUE—eigenvalues.
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® We proved it for squares.

® [aggarwal-Gorin-22] An analogue for
lozenge tilings ~ five-vertex
model.



General domains

Conjecture. For any A < 1 and any large polygonal domain near
boundaries we always see v/N fluctuations and GUE—eigenvalues.
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; ® We proved it for squares.
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Open question. What are all possible boundary limits for A > 17
® We found stationary stochastic six—vertex model.
° [Dimitrov-20, Dimitrov-Rychnovsky-22] Some inﬁnite domainS — GUE



General domains

Conjecture. For any A < 1 and any large polygonal domain near
boundaries we always see v/N fluctuations and GUE—eigenvalues.

HiO H O H O H:iO
H il H H H
HiO H O H O H!O .
; ® We proved it for squares.
H,.!H H H H
[} —Gorin-
0'H 0O H OHOH'O [Aggarwal-Gorin 22] An ana_logue for
lozenge tilings = five-vertex
H H H H H
model.
OiH O H OH O H:O

H H H H H
O:H O H O HiO H O

Open question. What are all possible boundary limits for A > 17
® We found stationary stochastic six—vertex model.
® |Dimitrov-20, Dimitrov-Rychnovsky-22] Some infinite domains — GUE.

And what about A =~ 1?7



The simplest case to probe A ~ 1.

HOHOHOHO For fixed N send ¢ — 0 to get the

HoooH oH H W Mallows measure on permutations.
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o = 41325 2ab  —



The simplest case to probe A ~ 1.
H—O H—0 H—O H o@ For fixed N send ¢ — 0 to get the

H H H H Mallows measure on permutations.
H—0 @ o—H
H

H
il il
HOHO@

i ) #inversions(o)

H P(o) ~ <
il 1 il 1 i
O—H O—H O—H O—H

H H H H H
a2+ b?

H—0 H—O H 0 O—H
A= > 1.

o = 41325 2ab  —

32

Proposition. Set ¢ = 0, suppose NIn (S—i) — 60 cRas N — oo.

Then the rescaled by N positions of horizontal molecules converge
in distribution to i.i.d. truncated exponentials of density

pn(x) = 1€ x € [0,1].



The simplest case to probe A ~ 1.
H—O H—0 H—O H 0@ For fixed N send ¢ — 0 to get the

H H H H Mallows measure on permutations.
H—0 @ o—H
H

H
il il
HOHO@

i ) #inversions(o)

H P(o) ~ <
il 1 il il i
O—H O—H O—H O—H

H H H H H
a2+ b2

H—0 H—O H 0 O—H
A= > 1.

o = 41325 2ab  —

32

Proposition. Set ¢ = 0, suppose NIn (S—i) — 60 cRas N — oo.

Then the rescaled by N positions of horizontal molecules converge
in distribution to i.i.d. truncated exponentials of density

pn(x) = 1€ x € [0,1].

Conclusion. We expect a rich world of boundary limits for A =~ L.



A glimpse into proofs

Step 1. Introduce a(ty — Xx» )
row and column dependent wix,y;0) = 4 b(e ")
vertex weights. e (d}y X7 )’
y XX7
N
Zn(le'--’XN;¢17° . -J/)N;V) = Z H HW(X7_}/;U).

o x=1ly=1
[Izergin, Korepin — 1982, 1987] Partition function evaluates:

N

i}jHZI(a(W — X, 7)b(¥j = xi,7)) c(tj — x1,7) N

H(b(Xi_Xjao)b(wi_wjaO)) det L’(@bj_X:u v)b (7/)1 Xis Y )]l}f—l'

i<j

Step 2. Delicate N — oo asymptotic analysis of IK-determinant
when 1 = --- =y = 9 and all but finitely many x; are set to 0.

Step 3. Use the Gibbs property for probabilistic consequences.



Summary

Boundary limits for the 6v—model in N x N square with DWBC:
* GUE asymptotics after v/N-rescaling for A < 1.
e Stationary stochastic six-vertex model for A > 1.

® Rich, but only partially understood limits for A ~ 1.

® Asymptotic analysis based on the Izergin-Korepin determinant.



