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Optimal paths in random environments (zero temperature)

3
vR

Au(x,y) = inf {Aw('y) ‘ admissible v : x ~~ y}
Shape function
1
A(v) = lim ?AW(O, Tv)

T—o00
or

1
A() = lim ~Ay(0,%,), 2 — .

n—oo n n




Exact shape functions (including the temperature > 0 case)

o Corner growth, i.i.d. exponential weights: Rost (1981)

o (generalized) Hammersley process: Hammersley (1972), Aldous,
Diaconis (1995), Cator, Pimentel (2011)

o Euclidean FPP: Howard, Newman (1997)

o O’Connell-Yor polymers: Baryshnikov (2001), Gravner, Tracy,
Widom (2001), Hambly, Martin, O’Connell (2002), Moriarty,
O’Connell (2007)

o Log-gamma polymers: Seppailédinen (2012)

o Burgers equation, quadratic L: Bakhtin, Cator, Khanin (2014),
Bakhtin (2016), Bakhtin, Li (2019)

o KPZ equation: Janjigian, Rassoul-Agha, Seppildinen (recent)



Shape function

o Always convex

o In all explicit examples, differentiable and strictly convex

o Strict convexity would imply existence-uniqueness of one-sided
geodesics and infinite volume polymer measures
(thermodynamic limits) with a given slope, and even just
differentiability allows to make pretty strong claims in that
direction [Janjigian, Rassoul-Agha, Seppildinen 2020,2022]

o Differentiability at the edge of the percolation cone
for lattice FPP, LPP [Auffinger, Damron 2013].

This talk:
Several classes of models where the shape function is not known
precisely but differentiability holds:

o continuous space directed polymers

o zero temperature
o positive temperature

o homogenization in HIB equations with dynamic environments.




Shear invariant case (Burgers/KPZ type models)

Poissonian points in space-time R x R:

T

0

0

T
AOT () = / 4(1)*dt — #{Poisson points on v}
0

[Bakhtin, Cator, Khanin 2014]



Shear invariant case (Burgers/KPZ type models)

T
AVT(y) = / #(t)2dt — #{Poisson points on v}
0

Ifv(0) =~(T) =0 and ZE,v(r) =~(¢) + vt, then

/OT (;Evfy(t)>2dt
= /OT(W(t) + v)2dt

T T T
:/ ﬁ(t)zdt+2vW+/ v2dt
0 0
T

= / 4(1)%dt 4 Tv>.

0

PPP is distributionally invariant under =, so A(v) = A(0) + v



Several other shear invariant models

A =D (et =)+ D Felw),

k k
where F}, are i.i.d. in time and stationary in space [Bakhtin, 2016], or
simply

AW = (st — )

k
but require vy, to coincide with one of the Poisson points on {k} x R.
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Trees of minimizers
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A=Y (w1 —n)’

for various endpoints.
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Limit shape

2000

A point is shown in black if there

1500 is a path to that point with

A= Z —i1)? < 400

1000

The boundary of the limit shape is
an ellipse
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General (nonquadratic) action

A(Y) = L(AW) + Y Flw) (Aky = Y1 — %)
R K

Theorem [with Douglas Dow] Assume that
o Fisii.d.in time, stationary in space, continuous, bounded from
below, E F(0) < oc;

o LcC? limy| o0 L(v) = +o0,  limsup,|_,e LL(—E}))) < 00

( Doesn’t have to be convex, e.g. L(v) = v? + Z,%i_ol a;vk)
Then there is a deterministic, convex, and differentiable shape
function A: for each v € R, with probability 1,

1
A(v) = lim —A"(0,nv),

n—oo n

n—1
. 1Z .
A/(U) = nhﬁnc;lo; L/(Ak’}/ (U)),
k=0

where +"(v) realizes A" (0, nv) = inf{A()| v = 0, v, = nv}.



Using shear =, (,x) = (t,x + tv)

For a path v with v =, =0

B(v,7) = ZL(AW +v)+ ZFk(Vk)
k k

B"(v) = inf{B(v,7)| 70 = 1 = 0}

Since =,F = Z_,F = F in distribution,

(B"(v))nen = (A"(0,n0))ncry,
A(v) = lim 1A”(O,m;) = lim 1B”(v).

n—oo n n—oo n

In addition, (B"(v))yer is “nicer” than (A"(0, nv)),cr



Poisson points model with A(y) = >, (Agy)*
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Poisson points model with A(y) = >, (Agy)*

1
—B"(v) for n = 200
n
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Poisson points model with A(y) = >, (Agy)*
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Optimal paths realizing B"(v), v € [—1, 1].
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Proof of differentiability

Use 7" (v), the optimal path for B"(v) to estimate B"(w) for w = v.
B"(w) < B"(w,7"(v))

Forw —v > 0,
n—1
B" —B" 1
2 =) o " > L(Aky(v) +v) + Cw —v)
k=0

n(w —v)
n—1
W < liminf % 3 L (A (v) +v) + Cw — v)
k=0



Proof of differentiability

Use v"(v), the optimal path for B"(v) to estimate B"(w) for w =~ v.
B'(w) < B (w,7"(v))

Forw — v < 0,

. - n—1
BRI =0 5 1Y v@nt) + v +cw—v
k=0

n(w —v)
n—1
Aw) — A 1
Alw) = Av) > lim sup — ZL’(A]{)/(U) +v) 4+ Clw — v|
w—v n—oo N —0

n—1

9~ A(v) > limsup ! ZL/(Ak’Y(’U) + ).
n—oo N —0



Proof of differentiability

So
1 n—1
+ . . - i
OTA(v) < h,%i‘é{%f - kz:;L (Agy(v) +v)
1 n—1
< limsup — ZL’(AW(U) +v) <9 A(v).
n—oo N —0
But A is convex, so
0~ A(v) < 0T A(v).

Therefore,
n—1
1
_ o+ Y ERT L /
O A(w) =0"A(v) =A(v) = nhm , kgzoL (Ary(v) +v)

In terms of the optimal path from (0, 0) to (n, nv):

n—1

N@) = Tm =3 (A ()
k=0

n—oo n



Doesn’t quite imply strict convexity

= lim — ZL/ Ary(v)) = (L'(Av(v)))

n—oo n
For example, if L(v) = v*, then L' (v) = 403,

N (v) = 4((Ay(v))?).

It is natural to expect this to strictly grow in v (strict convexity)
because

(Av(v)) =

But the first moment does not control the third moment, so this is not
obvious.



Positive temperature case. Average free energy.

20) = [ exp [~ AG)] Aol .. v 18, ()

n—1
Z/GXP [—ZL(AW ZFk ’Yk} (dyo)d1 - . . dyn—10y(dyy)
=0

Need more requirements: E sup|yj<i /2 Fi(x) < o0,

L/
liminf|L'(v)| >0, limsup L)

m inf P | < oo forsomef € (0,1).

Theorem [with Douglas Dow] There is a deterministic, convex,
differentiable A : R — R s.t. for every v € R, with prob. 1,

1
Aw) = = limyy00 — logZ”(nv),

-
N(0) = Timsoo g (= S5 L (A7) )

( p2, is the polymer measure on paths connecting (0, 0) to (n, nv) )



The main estimate (after applying the shear)

All paths connect 0 to O (not O to 7v )

log Z"(w) = log/exp ( - Z [Fk(’yk) + L(Ayy + w)] >d7
k

dy

/ -2 [Fk(7k)+L(Ak7+v)+(W—U)L/(Ak7+U)+%(W—U)ZL”(...):|
>log [ e

=log Z"(v)

dy

1 -2 {Fk(w)+L(Aw+v)+(w—v)L’(Ak7+v)+%(W—v)zL”(---)}
+ log Z1(0) e
(v

=log Z" (v) + log ii" (e 2k [(W*U)L’(Ak'y+v)+%(wfv)zL”(...)] )

n—1

210y 2(0) ~ v = 0ty ( L 0wy +0)) = 00— o7 . )

k=0



Continuous time, HIB eqns, non-white noise, in R4 d > 1

t t
A'(y) = / L(¥s)ds +/ F(s,s)ds
0 0
o We no longer assume F is white it time:
F(t,x) = Z i(t—ti, x—x;) = / o(t—s,x—y)N(ds, dy, dyp)
; RxRIxC

(t;, x;) are Poisson points in R x R?, each convolved with its own
random ¢; (i.i.d., C2, uniformly bounded support, an
exp-moment)

o L:RY — R convex, twice differentiable,

m @——I-oo

o] oo |V]

V2L

< oo forsome d > 0.
loj—oo |rj<s  L(v)



Continuous time, HIB eqns, non-white noise, in R4 d > 1

w0 = [ 26gds+ [ Fsaas
A(t,x) = inf {A'(y) : (0) =0, v(r) = x}
DA(t,x) + H(VA(t,x)) = F(t,x), t€ (0,00), x € RY

The Hamiltonian H is the Legendre—Fenchel transform of L

H(p) = s;@{@,w —L(v)}, peR?

. 0, x =0,
limA(t,x) =
™NO +o00, x#0.



Shape Theorem

Theorem [with Douglas Dow]

Under these conditions, there is a convex deterministic and
differentiable function A : R? — R such that for every v € R?, with
probability 1,

A(v) = lim lA(T, Tv)

t—oo T

VA@) = Jim /0 ' [VLGT ) + 61,9/ (v)]ar,

where
O(t,x) = / (= 5)Vp(t — 5, — y)N(ds, dv, dp)

—c’%/<p(t—s,x—y+v(t—S))N(ds,dy,d<p)

v=0




Shape Theorem. HIB Homogenization Version.

Corollary
For every t € (0,00) and x € R, with probability 1,

li\rj(l) €A(t/e,x/€) = tA(x/t)

The nonrandom function U(t, x) = tA(x/t) is the fundamental
viscosity solution of the deterministic HIB equation

0 U(t,x) + HVU(t,x)) =0,
where H is the Legendre-Fenchel transform of A:

A(p) = s {{v.p) ~ AW}, pe B

Moreover, H is strictly convex (no flat edges), and U(t, x) is a
classical solution which is C' for all £ > 0, x € R,




Existing homogenization results for dynamic environments

Zero viscosity HIB:
o Schwab 2009

o Bakhtin, Cator, Khanin 2014, Bakhtin 2016 (for quadratic L in
the context of Burgers equation),

o Seeger 2021
Positive viscosity HIB:
o Kosygina, Varadhan 2008
o Jing, Souganidis, Tran 2017
o Bakhtin, Li 2019 (Burgers equation, quadratic L)
o Janjigian, Rassoul-Agha, Seppildinen (KPZ eqn, quadratic L)



Further questions

o continuous FPP with asymmetries

©

(parabolic) HIB with positive viscosity/diffusion

o More general potentials (we still need shear invariance for the
background process)?

o Does this say anything about lattice models?

o Strict convexity? Use our formulas for VA?



