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Optimal paths in random environments (zero temperature)

1/1

Aω(x, y) = inf
{

Aω(γ)
∣∣ admissible γ : x y

}
Shape function

Λ(v) = lim
T→∞

1
T

Aω(0,Tv)

or
Λ(v) = lim

n→∞

1
n

Aω(0, xn),
xn

n
→ v.



Exact shape functions (including the temperature > 0 case)

Corner growth, i.i.d. exponential weights: Rost (1981)

(generalized) Hammersley process: Hammersley (1972), Aldous,
Diaconis (1995), Cator, Pimentel (2011)

Euclidean FPP: Howard, Newman (1997)

O’Connell–Yor polymers: Baryshnikov (2001), Gravner, Tracy,
Widom (2001), Hambly, Martin, O’Connell (2002), Moriarty,
O’Connell (2007)

Log-gamma polymers: Seppäläinen (2012)

Burgers equation, quadratic L: Bakhtin, Cator, Khanin (2014),
Bakhtin (2016), Bakhtin, Li (2019)

KPZ equation: Janjigian, Rassoul-Agha, Seppäläinen (recent)



Shape function
Always convex
In all explicit examples, differentiable and strictly convex
Strict convexity would imply existence-uniqueness of one-sided
geodesics and infinite volume polymer measures
(thermodynamic limits) with a given slope, and even just
differentiability allows to make pretty strong claims in that
direction [Janjigian, Rassoul-Agha, Seppäläinen 2020,2022]
Differentiability at the edge of the percolation cone
for lattice FPP, LPP [Auffinger, Damron 2013].

This talk:
Several classes of models where the shape function is not known
precisely but differentiability holds:

continuous space directed polymers
zero temperature
positive temperature

homogenization in HJB equations with dynamic environments.



Shear invariant case (Burgers/KPZ type models)
Poissonian points in space-time R× R:

1/1

0
0

T x

A0,T(γ) =

∫ T

0
γ̇(t)2dt −#{Poisson points on γ}

[Bakhtin, Cator, Khanin 2014]



Shear invariant case (Burgers/KPZ type models)

A0,T(γ) =

∫ T

0
γ̇(t)2dt −#{Poisson points on γ}

If γ(0) = γ(T) = 0 and Ξvγ(t) = γ(t) + vt, then
x=vt

∫ T

0

( d
dt

Ξvγ(t)
)2

dt

=

∫ T

0
(γ̇(t) + v)2dt

=

∫ T

0
γ̇(t)2dt + 2v

���
��

∫ T

0
γ̇(t)dt +

∫ T

0
v2dt

=

∫ T

0
γ̇(t)2dt + Tv2.

PPP is distributionally invariant under Ξv, so Λ(v) = Λ(0) + v2.



Several other shear invariant models

A(γ) =
∑

k

(γk+1 − γk)
2 +

∑
k

Fk(γk),

where Fk are i.i.d. in time and stationary in space [Bakhtin, 2016], or
simply

A(γ) =
∑

k

(γk+1 − γk)
2

but require γk to coincide with one of the Poisson points on {k} × R.



Trees of minimizers

paths minimizing

A =
∑

(γk+1 − γk)
2

for various endpoints.



Limit shape

A point is shown in black if there
is a path to that point with

A =

n∑
i=1

(γi − γi−1)2 < 20



Limit shape

A point is shown in black if there
is a path to that point with

A =

n∑
i=1

(γi − γi−1)2 < 400

The boundary of the limit shape is
an ellipse

x2 + C
(

t − 1
2C

)2

=
1

4C

with C = Λ(0).



General (nonquadratic) action

A(γ) =
∑

k

L(∆kγ) +
∑

k

Fk(γk) (∆kγ = γk+1 − γk)

Theorem [with Douglas Dow] Assume that
F is i.i.d. in time, stationary in space, continuous, bounded from
below, EF(0) <∞;
L ∈ C2, lim|v|→∞ L(v) = +∞, lim sup|v|→∞

L′′(v)
L(v) <∞.

( Doesn’t have to be convex, e.g. L(v) = v2p +
∑2p−1

k=0 akv
k )

Then there is a deterministic, convex, and differentiable shape
function Λ: for each v ∈ R, with probability 1,

Λ(v) = lim
n→∞

1
n

An(0, nv),

Λ′(v) = lim
n→∞

1
n

n−1∑
k=0

L′(∆kγ
n(v)),

where γn(v) realizes An(0, nv) = inf{A(γ)| γ0 = 0, γn = nv}.



Using shear Ξv(t, x) = (t, x + tv)

For a path γ with γ0 = γn = 0

B(v, γ) =
∑

k

L(∆kγ + v) +
∑

k

Fk(γk)

Bn(v) = inf{B(v, γ)| γ0 = γn = 0}

x=vt

Since ΞvF = Ξ−vF = F in distribution,

(Bn(v))n∈N
d
= (An(0, nv))n∈N,

so
Λ(v) = lim

n→∞

1
n

An(0, nv) = lim
n→∞

1
n

Bn(v).

In addition, (Bn(v))v∈R is “nicer” than (An(0, nv))v∈R



Poisson points model with A(γ) =
∑

k(∆kγ)4

1
n

An(0, nv) for n = 200



Poisson points model with A(γ) =
∑

k(∆kγ)4

1
n

Bn(v) for n = 200
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Poisson points model with A(γ) =
∑

k(∆kγ)4

Optimal paths realizing Bn(v), v ∈ [−1, 1].
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Proof of differentiability
Use γn(v), the optimal path for Bn(v) to estimate Bn(w) for w ≈ v.

Bn(w) ≤ Bn(w, γn(v))

≤ Bn(v) + (w− v)

n−1∑
k=0

L′(∆kγ(v) + v)

+
(w− v)2

2

n−1∑
k=0

L′′
(
∆kγ(v) + v + s(w− v)

)
For w− v > 0,

Bn(w)− Bn(v)

n(w− v)
≤ 1

n

n−1∑
k=0

L′(∆kγ(v) + v) + C(w− v)

Λ(w)− Λ(v)

w− v
≤ lim inf

n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v) + C(w− v)

∂+Λ(v) ≤ lim inf
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v).



Proof of differentiability
Use γn(v), the optimal path for Bn(v) to estimate Bn(w) for w ≈ v.

Bn(w) ≤ Bn(w, γn(v))

≤ Bn(v) + (w− v)

n−1∑
k=0

L′(∆kγ(v) + v)

+
(w− v)2

2

n−1∑
k=0

L′′
(
∆kγ(v) + v + s(w− v)

)
For w− v < 0,

Bn(w)− Bn(v)

n(w− v)
≥ 1

n

n−1∑
k=0

L′(∆kγ(v) + v) + C|w− v|

Λ(w)− Λ(v)

w− v
≥ lim sup

n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v) + C|w− v|

∂−Λ(v) ≥ lim sup
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v).



Proof of differentiability
So

∂+Λ(v) ≤ lim inf
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v)

≤ lim sup
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v) ≤ ∂−Λ(v).

But Λ is convex, so
∂−Λ(v) ≤ ∂+Λ(v).

Therefore,

∂−Λ(v) = ∂+Λ(v) = Λ′(v) = lim
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v) + v)

In terms of the optimal path from (0, 0) to (n, nv):

Λ′(v) = lim
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v))



Doesn’t quite imply strict convexity

Λ′(v) = lim
n→∞

1
n

n−1∑
k=0

L′(∆kγ(v)) = 〈L′(∆γ(v))〉

For example, if L(v) = v4, then L′(v) = 4v3,

Λ′(v) = 4〈(∆γ(v))3〉.

It is natural to expect this to strictly grow in v (strict convexity)
because

〈∆γ(v)〉 = v.

But the first moment does not control the third moment, so this is not
obvious.



Positive temperature case. Average free energy.

Zn(y) =

∫
exp

[
− A(γ)

]
δ0(dγ0)dγ1 . . . dγn−1δy(dγn)

=

∫
exp

[
−

n−1∑
k=0

L(∆kγ)−
n−1∑
k=0

Fk(γk)
]
δ0(dγ0)dγ1 . . . dγn−1δy(dγn)

Need more requirements: E sup|x|≤1/2 Fk(x) <∞,

lim inf
|v|→∞

|L′(v)| > 0, lim sup
|v|→∞

|L′(v)|
|L(v)|θ

<∞ for some θ ∈ (0, 1).

Theorem [with Douglas Dow] There is a deterministic, convex,
differentiable Λ : R→ R s.t. for every v ∈ R, with prob. 1,

Λ(v) = − limn→∞
1
n

log Zn(nv),

Λ′(v) = limn→∞ µ
n
nv

(1
n
∑n−1

k=0 L′(∆kγ)
)

( µn
nv is the polymer measure on paths connecting (0, 0) to (n, nv) )



The main estimate (after applying the shear)

All paths connect 0 to 0 (not 0 to Tv )

log Z̃n(w) = log

∫
exp

(
−
∑

k

[
Fk(γk) + L(∆kγ + w)

])
dγ

≥ log

∫
e
−

∑
k

[
Fk(γk)+L(∆kγ+v)+(w−v)L′(∆kγ+v)+ 1

2 (w−v)2L′′(...)

]
dγ

= log Z̃n(v)

+ log
1

Z̃n(v)

∫
e
−

∑
k

[
Fk(γk)+L(∆kγ+v)+(w−v)L′(∆kγ+v)+ 1

2 (w−v)2L′′(...)

]
dγ

= log Z̃n(v) + log µ̃n
v

(
e−

∑
k

[
(w−v)L′(∆kγ+v)+ 1

2 (w−v)2L′′(...)
])

≥ log Z̃n(v)− (w− v)µ̃n
v

( n−1∑
k=0

L′(∆kγ + v)

)
− 1

2
(w− v)2µ̃n

v

(
. . .

)



Continuous time, HJB eqns, non-white noise, in Rd, d ≥ 1

At(γ) =

∫ t

0
L(γ̇s)ds +

∫ t

0
F(s, γs)ds

We no longer assume F is white it time:

F(t, x) =
∑

i

ϕi(t−ti, x−xi) =

∫
R×Rd×C

ϕ(t−s, x−y)N(ds, dy, dϕ)

(ti, xi) are Poisson points in R×Rd, each convolved with its own
random ϕi (i.i.d., C2, uniformly bounded support, an
exp-moment)
L : Rd → R convex, twice differentiable,

lim
|v|→∞

L(v)

|v|
= +∞

lim sup
|v|→∞

sup
|r|≤δ

‖∇2L(v + r)‖
L(v)

<∞ for some δ > 0.



Continuous time, HJB eqns, non-white noise, in Rd, d ≥ 1

At(γ) =

∫ t

0
L(γ̇s)ds +

∫ t

0
F(s, γs)ds

A(t, x) = inf
{

At(γ) : γ(0) = 0, γ(t) = x
}

∂tA(t, x) + H(∇A(t, x)) = F(t, x), t ∈ (0,∞), x ∈ Rd

The Hamiltonian H is the Legendre–Fenchel transform of L

H(p) = sup
v∈Rd
{〈p, v〉 − L(v)}, p ∈ Rd

lim
t↘0

A(t, x) =

{
0, x = 0,
+∞, x 6= 0.



Shape Theorem

Theorem [with Douglas Dow]
Under these conditions, there is a convex deterministic and
differentiable function Λ : Rd → R such that for every v ∈ Rd, with
probability 1,

Λ(v) = lim
t→∞

1
T

A(T,Tv)

∇Λ(v) = lim
T→∞

1
T

∫ T

0

[
∇L(γ̇T

t (v)) + Θ(t, γT
t (v))

]
dt,

where

Θ(t, x) =

∫
(t − s)∇ϕ(t − s, x− y)N(ds, dy, dϕ)

= ∂v

∫
ϕ(t − s, x− y + v(t − s))N(ds, dy, dϕ)

∣∣∣
v=0



Shape Theorem. HJB Homogenization Version.

Corollary

For every t ∈ (0,∞) and x ∈ Rd, with probability 1,

lim
ε↘0

εA(t/ε, x/ε) = tΛ(x/t)

The nonrandom function U(t, x) = tΛ(x/t) is the fundamental
viscosity solution of the deterministic HJB equation

∂tU(t, x) + H(∇U(t, x)) = 0,

where H is the Legendre–Fenchel transform of Λ:

H(p) = sup
v∈Rd
{〈v, p〉 − Λ(v)}, p ∈ Rd.

Moreover, H is strictly convex (no flat edges), and U(t, x) is a
classical solution which is C1 for all t > 0, x ∈ Rd.



Existing homogenization results for dynamic environments

Zero viscosity HJB:

Schwab 2009

Bakhtin, Cator, Khanin 2014, Bakhtin 2016 (for quadratic L in
the context of Burgers equation),

Seeger 2021

Positive viscosity HJB:

Kosygina, Varadhan 2008

Jing, Souganidis, Tran 2017

Bakhtin, Li 2019 (Burgers equation, quadratic L)

Janjigian, Rassoul-Agha, Seppäläinen (KPZ eqn, quadratic L)



Further questions

continuous FPP with asymmetries

(parabolic) HJB with positive viscosity/diffusion

More general potentials (we still need shear invariance for the
background process)?

Does this say anything about lattice models?

Strict convexity? Use our formulas for∇Λ?


