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Personal Genomics

There are 3 billion letters in the human genome.
Patients with tumors that share the same genetic mutation
receive the drug that targets the mutation.

(Source: https://medium.com)
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Noncoding variants

- The Human Genome Project found that only
about 1.5% of the genome are coding DNA.

- From a traditional point of view,
the other noncoding 98.5% was junk DNA.

- Most mutations are in noncoding regions,
which may regulate the transcription of a gene
into mRNA.
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Epigenomic features
Some epigenomic features

Open/closed chromatin
Histone modifications
Protein-binding to DNA
Protein-binding to RNA
DNA methylation
DNA looping

Bernstein et al. (2010)
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Epigenomic features
Some epigenomic features

Open/closed chromatin
Histone modifications
Protein-binding to DNA
Protein-binding to RNA
DNA methylation
DNA looping

(Source: http://pediaa.com)
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Protein-DNA binding

DNA is stretched out for illustration. (Source: bioinfo.ucc.ie)

Thousands of proteins may float in human body cells.
Transcription factor (TF) proteins that bind to DNA may
control the rate or amount of mRNA (gene expression) copied
from DNA.
TF proteins tend to bind specific DNA sequences.

6 / 34

http://bioinfo.ucc.ie/TFbsST/


Introduction Binding change test with InDels Scalable algorithm Simulation studies Analysis of acute myeloid leukemia InDels

Protein-DNA binding changes due to mutations

TF protein unbinds to DNA due to a point mutation.

Thousands of proteins may float in human body cells.
Transcription factor (TF) proteins that bind to DNA may
control the rate or amount of mRNA (gene expression) copied
from DNA.
TF proteins tend to bind specific DNA sequences.
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Scalable test of statistical significance for protein-DNA
binding changes

Experiments for all combinations between proteins and
mutations are not doable in practice.

An enormous number of mutations are in the human genome.
It is useful to quantitatively evaluate the mutation influence
on protein-DNA binding by means of a statistical modeling.
We aim to nominate noncoding mutations that are responsible
for diseases and find TFs that plays a role in diseases.

Noncoding mutations may regulate expression of disease
associated genes through modification of TF-DNA binding.
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Protein-DNA binding change test for InDels

(Source: www.singerinstruments.com)

About 15-20% of the mutations in the human genome are
considered InDels. (Mullaney et al., 2010)
Functional impact of InDels can be substantial compared to
single nucleotide variants (SNVs).
Protein-DNA binding change test for InDels

is the first novel quantitative approach to find protein-DNA
binding changer InDels.
works for any lengths of the contrasting sequences, m.
easily speeds up the analysis of large-scale InDel mutation data.
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Motif library: a large collection of binding sequence patterns
A large number of TF-binding motifs have been discovered
and become publicly available.

ENCODE provides at least 2,065 motifs. (Kheradpour and
Kellis, 2014)
JASPAR provides at least 579 motifs.

Motif library example
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Notations
Consider a 4 × L Position Probability Matrix (PPM) of a
given motif of L positions W .

Each column contains the four probabilities W (·, l) s.t.∑4
k=1 W (k, l) = 1 ∀l l = 1, . . . , L.

A contrasting sequence of m nucleotides in the forward strand
is yc = (yL, · · · , yL+m−1), yi ∈ {1, 2, 3, 4},
i = L, . . . , L + m − 1.

Example: ‘TAT’ in the insertion, and ‘CA’ in the deletion
m and L are fixed.
Given m and L,

y = (y1, · · · , yL−1, yL, yL+1, · · · , yL+m−1, yL+m, · · · , y2L+m−2) is
the longer sequence in the forward strand, yi ∈ {1, 2, 3, 4},
i = 1, . . . , 2L + m − 2.
ya = (y1, · · · , yL−1, yL+m, · · · , y2L+m−2) is the shorter
sequence in the forward strand.
y = (ya

1, yc, ya
2) and ya = (ya

1, ya
2), where

ya
1 = (y1, · · · , yL−1) and ya

2 = (yL+m, · · · , y2L+m−2).
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Markov chain background model

Background DNA sequences are usually fitted by the Markov
chain model as the occurrence of a nucleotide at a given
position depends on the previous nucleotides in the sequence
(Avery and Henderson, 1999; Menéndez et al., 2011; Reinert
et al., 2000).
The null model for the longer sequences is a stationary
reversible first order Markov model with prior probabilities
π0(k) = P(yl = k), k = 1, · · · , 4, transition probabilities
a0(k, n) = P(yl+1 = n|yl = k), k, n = 1, · · · , 4:

fH0(y) = π0(y1)
∏

l∈{1,...,2L+m−3}
a0(yl , yl+1). (1)
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Binding score
Define the binding score for a subsequence of the longer
sequence y, which starts at position s with a fixed length of L:

C(y, s) =
L∑

l=1
log W (yl+s−1, l). (2)

s ∈ {1, . . . , L + m − 1} is the protein binding start position.
The binding score of the sequence y is defined as

C(y) = max
s∈{1,...,L+m−1}

{C(T (y), s) : T ∈ {I, R}}. (3)

I and R are the forward and reverse strand operators.{
I(y) = y
R(y) = (5 − y2L+m−2, 5 − y2L+m−3, · · · , 5 − y1).

Similarly, define the binding score of ya, denoted as Ca(ya).
y has m more subsequences than ya.
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Binding change score statistic
The binding changes due to InDels are tested by comparing
binding significance on y to that on ya.
The TF binding p-value for a longer sequence y0 is

pl(y0) = P{C(y) ≥ C(y0)|y ∼ fH0}.

The TF binding p-value for a shorter sequence ya
0 is

ps(ya
0) = P{Ca(ya) ≥ Ca(ya

0)|y ∼ fH0}.

Our BC test statistic for the pair (y, ya), named “binding
change score”, is the difference between the logarithm of the
binding p-values to y and ya:

T ≡ T (y, ya) = log{ps(ya)} − log{pl(y)}. (4)
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Binding change score & p-value

We can determine whether or not the binding is enhanced or
disrupted from the sign of T .
The test statistic T is a function of p-values.

Examples of p-value-based test statistics are higher criticism
test statistic (Donoho et al., 2004), and its variation for binary
regression (Mukherjee et al., 2015).

For the observed sequence pair (y0, ya
0), define p-value

p(y0, ya
0) = 2 · min{P(T ≥ t0|y ∼ fH0), P(T ≤ t0|y ∼ fH0)},

t0 ≡ T (y0, ya
0) = log{ps(ya

0)} − log{pl(y0)}.
The null distribution of T is obtained with sequence pairs from
fH0 .
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Empirical p-value computation

A practical challenge is the theoretical calculation of the null
distribution of T for distinct values of m, L, W .
We develop an efficient algorithm for empirical p-value
computation of the BC test based on the importance sampling
technique, requiring a much smaller number of sequence pairs
to be simulated. (Kahn and Harris, 1951; Chan and Zhang, 2007; Chan
et al., 2010)

It is scalable for the BC tests on hundreds of thousands InDel
mutations against thousands of binding motifs.
The algorithm coded in R and C++ is available in R package
atIndel. (https://github.com/sunyoungshin/atIndel)
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Importance sampling algorithm

Original distribution: fH0(y)
Importance distribution:
hθ(y)

θ is a tilting parameter.

Importance sampling Monte Carlo algorithm
1. Sample sequences from the importance distribution y ∼ hθ(y).
2. Compute binding change p-value for (y0, ya

0) based on

p(y0, ya
0) =2 · min

[
E [1{T ≥ t0} · fH0(y)

hθ(y) |y ∼ hθ(y)],

E [1{T ≤ t0)} · fH0(y)
hθ(y) |y ∼ hθ(y)]

]
.

The p-value is estimated by the weighted frequency.
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Conditional importance distribution

Overlapping example between the protein binding site and the longer
sequence

Conditional importance distribution of y given starting
position s

hθ(y|s) = 1
Ms(θ) f (y1, . . . , ys−1)1(s≥2)

[
L−1∏
l=s

IW (yl , l − s + 1)

]1(1≤s≤L−1)

[ min(s,m)+L−1∏
c=max(L,s)

D(yc , c − s + 1)θ
][

L+s−1∏
l=L+m

IW (yl , l − s + 1)

]1(m+1≤s≤L+m−1)

f (yL+s , . . . , y2L+m−2)1(s≤L+m−2)

Ms(θ) is the normalizing constant.
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Simulations under the null model

MSC Ddit3::Cebpa Hes1

Figure: Three JASPAR motifs

Obtain π0, a0 based on the human reference genome version
GRCh37 (hg19).
10,000 sample sequences are generated from the first-order
Markov model fH0(y).
The length of the sample longer sequences is 28 and the
contrasting sequence length is 6 (L = 12, m = 6).
The Monte Carlo sample size for the algorithm is 2,000.
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Simulations under the null model
Empirical rejection probability

p-value MSC Ddit3::Cebpa Hes1
0.01 0.0138 0.0176 0.0094
0.05 0.0527 0.0684 0.0502
0.10 0.1038 0.1164 0.1008

Empirical rejection probabilities of binding changer test

MSC Ddit3::Cebpa Hes1

Figure: Q-Q plots of the p-values from the BC tests under the null model
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Simulations under a defined set of alternative models

2,000 sample sequences are generated from the full alternative
model fH1(y) such that the longer sequences may have the
nucleotide pattern of the motif while the shorter sequences
lack the pattern.
The contrasting sequence length is equal to the motif length
(m = L).
The probability mass function of fH1(y) is

fH1(y) =
∑

{yL,··· ,y2L−1}∈{1,2,3,4}L

fH0(y)
∏

l∈{L,··· ,2L−1}
W (yl , l−L+1).
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Simulations under a defined set of alternative models
Further, 2,000 sample sequences are generated from each of
the local alternative models fH1∆(y):∑

{yL,··· ,yL+∆−1}∈{1,2,3,4}∆

fH0(y)
∏

l∈{L,··· ,L+∆−1}
W (yl , l − L + 1)

∆ ∈ {1, . . . L} is the number of bases in the contrasting
sequence following W .

Power curves evaluated with significance level 0.05
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Analysis of AML InDel data
5,737 somatic InDels in samples of primary acute myeloid
leukemia (AML) reported by Li et al. (2020).

Obtained from enhancer regions.

Figure: Enhancers is a region of DNA that can be bound by proteins.
(Source: https://www.oercommons.org/courseware/lesson/15017/overview)

Used mutation callers Strelka (Saunders et al., 2012) and
Scalpel (Fang et al., 2016).
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Analysis of AML InDel data
1 2 3 4 5 6 - 10 11 - 57 Total
4,061 858 237 202 69 200 110 5,737
70.8% 15.0% 4.1% 3.5% 1.2% 3.5% 1.9% 100%

Distribution of contrasting sequence lengths (m)

MYC motifs and negative-control motifs
MYC is an important transcription factor and prognostic
marker for AML (Salvatori et al., 2011).

SOX2 and OCT4 are negative controls. These two TFs are
important for embryonic stem cells, but they are not expressed
in leukemia cell lines (Chambers and Tomlinson, 2009)
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Binding changer InDels
28.685 binding change tests are conducted.

Monte Carlo sample size was set to 10,000.
7 InDel mutations were identified by the following criteria:

Benjamni Hochberg adjusted p-value < 0.10
At least one of the two binding p-values (pl , ps) < 0.05
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Binding changer InDels

The nearest genes CARD8, ZNF114, RUNX1 are differentially
expressed between AML tumors and normal cells (Tang et al., 2019).
One nearest gene HNRNPD is a MYC target gene from Gene Set
Enrichment Analysis (Subramanian et al., 2005).
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Future work

Joint investigation of a collection of mutations that reside in a
broader site
Examination of combinatory TFs that assemble
super-enhancers (Huang et al., 2016; Liu et al., 2017, 2020)
Integrative analysis with scATAC-seq and scRNA-seq data
(Suen et al., 2023)
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Thank you!

Any questions?

Please feel free to reach out to me at
sunyoungshin@postech.ac.kr.
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Importance sampling algorithm

Original distribution: fH0(y)
Importance distribution:
hθ(y)

θ is a tilting parameter.

For small p-values, naive Monte-Carlo based on fH0(y) needs
a large number of samples.
Importance sampling based on hθ(y) generates many larger
scores in the target region. The number of simulations needed
is significantly reduced.
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Conditional importance distribution

Overlapping example between the protein binding site and the longer
sequence

How to specify hθ(y|s)?

D(k, l) = exp
{ ∑4

j=1 π0(j)
(

log W (k, l) − log W (j , l)
)}

IW (·, l) = {W (·, l) + 1/4}/2
f (·) is the first-order Markov chain with π0 and a0.

36 / 34



Importance distribution

The marginal distribution of s is a multinomial distribution
with probability mass function

hθ(s) = Ms(θ)
M(θ) , s = 1, . . . , L + m − 1

M(θ) =
∑L+m−1

s=1 Ms(θ).
Importance distribution of y

hθ(y) =
L+m−1∑

s=1
hθ(y, s) =

L+m−1∑
s=1

hθ(y|s)hθ(s).
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Tilting parameter choice
Under the importance sampling distribution with the optimal
tilting parameter, it is not rare to obtain the observed score
difference.
Estimation of the tilting parameter θ

Consider y′ = (y ′
s , . . . , y ′

s+L−1) that follows zero-order Markov
model with π(·)
Set the observed binding score change C(y0) − C a(ya

0) to be
equal to the expected score difference between
(ys , . . . , ys+L−1) and y′.

Ey,y′,s

{ L∑
j=1

(
log W (yj+s−1, j) − log W (y ′

j+s−1, j)
)}

=C(y0) − C a(ya
0)

Solve for θ.
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Tilting parameter choice

Proposition 1 (Expectation of score difference)
Suppose that a random vector of the sequence and the binding start
position (y, s) follows the importance distribution hθ(y, s). Further,
suppose that y′ = (y ′

s , . . . , y ′
s+L−1) is independent of (y, s) and follows

zero-order Markov model with π(·). The expected binding score
difference between the binding subsequence (ys , . . . , ys+L−1) and the
subsequence y′ is as follows:

Ey,y′,s

{ L∑
j=1

(
log W (yj+s−1, j) − log W (y ′

j+s−1, j)
)}

=
L+m−1∑

s=1

Ms(θ)
M(θ)

[ ∑
i<max(L,s) or i≥min(s,m+L)

{ 4∑
k=1

(
IW (k, i − s + 1) − π(k)

)
log W (k, i − s + 1)

}

+
min(s,m+L−1)∑

i=max(s,L)

∑
k D(k, i − s + 1)θ log D(k, i − s + 1)∑

k D(k, i − s + 1)θ

]
.
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Importance sampling Monte Carlo algorithm
1. Generate N independent longer sequences

{Yt : t = 1, . . . , N} ∼ hθ(y) and obtain shorter sequences
{Ya

t : t = 1, . . . , N} by removing the contrasting sequences.
2. Compute the empirical estimators of pl and ps :

p̂l(Yt) = 1
N − 1

∑
s ̸=t

1{C(Ys) ≥ C(Yt)}
fH0(Ys)
hθ(Ys)

p̂s(Ya
t ) = 1

N − 1
∑
s ̸=t

1{C(Ya
s ) ≥ C(Ya

t )}
f a
H0

(Ya
s )

ha
θ(Ya

s ) ,

f a
H0

is chosen to be a first order Markov model with π0, a0.
3. Compute the empirical p-values of the observed (y0, ya

0):

p̂l(y0) = 1
N

N∑
s=1

1{C(Ys) ≥ C(y0)} fH0(Ys)
hθ(Ys)

p̂s(ya
0) = 1

N

N∑
s=1

1{C a(Ya
s ) ≥ C a(ya

0)}
f a
H0

(Ya
s )

ha
θ(Ya

s ) .

40 / 34



Importance sampling Monte Carlo algorithm

4. Obtain N binding changer test statistics corresponding to the
simulated sequences:

Tt ≡ log{p̂s(Ya
t )} − log{p̂l(Yt)}.

5. Obtain the observed test statistic for (y0, ya
0):

T0 ≡ log{p̂s(ya
0)} − log{p̂l(y0)}.

6. Compute our target p-value of the observed (y0, ya
0):

p̂(y0, ya
0) = 2·min

[
1
N

N∑
t=1

1{Tt ≥ T0} fH0(Yt)
hθ(Yt)

,
1
N

N∑
t=1

1{Tt ≤ T0} fH0(Yt)
hθ(Yt)

]
.
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Simulations under misspecification
We examine if the Type I error is well controlled even when
the background sequences are not from the first-order Markov
chain model.

The null model is independent multinomial distribution.

Empirical rejection probability
p-value MSC Ddit3::Cebpa Hes1

0.01 0.0135 0.0172 0.0093
0.05 0.0523 0.0691 0.0504
0.10 0.1027 0.1218 0.0996

The null model is the fifth-order Markov model.

Empirical rejection probability
p-value MSC Ddit3::Cebpa Hes1

0.01 0.0185 0.0170 0.0078
0.05 0.0602 0.0635 0.0390
0.10 0.1135 0.1106 0.0843
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