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Quantum chaos is an interesting subject though it is difficult to understand.

This is due to the fact that the time evolution of quantum mechanic is local

and unitary and thus, in general, it is hard to study the emergence of ergodic

behavior in quantum system.

Therefore it is of great interest to understand thermal behavior in quantum

level in which the eigesnstate thermalization hypothesis, (ETH), plays an

important role.

In the classical level the chaotic behavior may be described by the sensitivity

of trajectories in the phase space to the initial conditions. Indeed, two

initially near by trajectories separate exponentially fast characterized by the

Lyapunov exponent.

Nonetheless, to probe the nature of quantum chaos certain quantities have

been introduced. These include, for example, out-of-time-order correlators

(OTOCs), Complexity ...

3



For chaotic systems with finite entropy S, complexity is expected to grow

for exponentially large times in the entropy, long after thermal equilibrium

has been reached.

Remarkably, the same growth holds for the black hole interior.

The complexity of the boundary state is proportional to the volume of a

maximal codimension-one bulk surface B that extends to the AdS boundary,

and asymptotes to the time slice Σ on which the boundary state is defined

C =
V (B)

GR
|∂B=Σ

This known as CV proposal. There is also another proposal known as CA.

Susskind, arXiv:1403.5695, arXiv:1402.5674
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We note however, that for chaotic Hamiltonians after the aforementioned
period of growth, at times t ∼ O(eS) we expect saturation to a plateau of
size C ∼ O(eS).

While semi-classical contributions both in form of the CV and CA conjectures
indeed provide the period of growth, the saturation to the plateau, until
recently, has been illusive.
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Recently, holographic complexity was calculated in JT gravity using the CV
conjecture where it was shown that including higher genus geometries gives
the correct late-time behavior for complexity.

The complexity is computed in terms of a non-perturbative geodesic length
in JT gravity C ∼ ⟨ℓ(t)⟩QG

⟨ℓ(t)⟩ =
∫
dℓΨ2

HH(β+ it) ℓ

where Ψ2
HH is Hartle-Hawking wave function.

For times t≪ eS one may evaluate the integral which at leading order takes
the form

⟨L(t)⟩ ≈ const.− C0e
S + C1 t ,

For large t (t ∼ eS) the integral decays and therefore the quantum expecta-
tion value of the geodesic length becomes constant.

L.V. Iliesiu, M. Mezei and G. Sárosi, arXiv:2107.06286, M. A., S. Banerjee and J. Kames-King, arXiv:2205.01150,

M. A. and S. Banerjee, arXiv:2209.02441 [hep-th].
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For chaotic systems the notion of thermalization may be described by the

eigenstate thermalization hypothesis (ETH) which gives an understanding

of how an observable thermalizes to its thermal equilibrium value.

According to the ETH, thermalization occurs at the level of individual eigen-

states of the Hamiltonian. In fact setting

ε =
E1 + E2

2
, ω = E1 − E2,

The ETH states that the matrix elements of observables in the basis of the

eigenstates of the Hamiltonian obey the following ansatz

⟨E1|O|E2⟩ = Ō(ε)δE1,E2
+ e−Sf(ε, ω)RE1E2

where Ō(ε) is the micro canonical average of the corresponding operator, S

is thermodynamical entropy of the system, f(ε, ω) is a smooth function of

its arguments and R is unit variance random function with zero mean.

J. M. Deutsch, Phys Rev A.43 (1991), M. Srednicki, cond-mat/9403051, J. Phys. A32 (1999) .
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The ETH ansatz has an immediate application in understanding of the ther-

malization which indicates that the quantum expectation value of an ob-

servable must approach its thermal average for long enough times. We

note, however, that this ansatz does not tell us how long the process of

thermalization is.

Of course our main concern is not to explore the thermalization of the

system. Actually the aim is to understand the late time behavior of a certain

observable when the system is in the thermal equilibrium.

Indeed, within the context of the ETH we are interested in finding, if any,

an observable that exhibits time growth even though the system has been

already reached the thermal equilibrium.
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Quantum Complexity

Our main motivation to propose a candidate for the quantum complexity

comes from the holographic setup in which it is believed that the holographic

complexity exhibit a linear growth at late times.

Therefore, it what follows for a given quantum system we would like to

define a quantity exhibiting such a linear growth.

To proceed, let us define the quantum object C associated with an operator

O as follows

CO(β, t) ≡ ⟨O(t)⟩β = ⟨ψ|e−(β2−it)HO e−(β2+it)H |ψ⟩ .
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Using the completeness condition of the energy eigenstates
∫
dE |E⟩⟨E| = 1,

one finds

CO(β, t) =
∫ ∞

0
dE1dE2 e

−β
2(E1+E2)eit(E1−E2)ρψ(E1, E2) A(E1, E2),

where

ρψ(E1, E2) = ⟨E1|ψ⟩⟨ψ|E2⟩ = ρ(E1)ρ(E2) ,

A(E1, E2) = ⟨E1|O|E2⟩ ,

with ρ(E) = ⟨E|ψ⟩ is the density of state.

For a typical operator the A-function follows the ETH ansatz and therefore

the long time average of CO approaches that of micro canonical average of

the corresponding operator.

As far as the time dependence of the corresponding quantum object is con-

cerned, as we will see, the main role is played by the A-function.
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We would like to see whether there is a condition under which the corre-
sponding quantum quantity, CO, keeps growing with time even though the
whole system is reached thermal equilibrium.

To proceed, since we are interested in the late time behavior CO(β, t), it is
useful to rewrite the corresponding expression in terms of the variables ε and
ω

CO(β, t) =
1

Z

∫ ∞

0
dεe−βε

∫ ∞

−∞
dω eiωt ρ(ε+

ω

2
)ρ(ε−

ω

2
)A(ε, ω)

To address this question, following the ETH idea, it is clear from this equa-
tion that the corresponding information should be encoded in the behavior
of A-function.

Actually, as it is evident form the above expression, the time dependence of
CO(β, t) should be read from the ω-integral.

Due to the simple factor of eiωt in the integrand, using the Cauchy’s residue
theorem with the assumption that the density of state ρ(ε±ω/2) is a smooth
function in the limit of ω → 0, in order to get a non-trivial time dependence,
the A-function must have a pole structure of order of n for n ≥ 2.
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In particular, for the case of a double pole structure where the A-function

has the following limiting behavior

A(ε, ω) = −
a(ε)

ω2
+ local terms, for ω → 0,

with a positive smooth function a(ε), one finds that the quantum object

CO(β, t) exhibits a linear growth at late times

CO(β, t) = C0 +
∫ ∞

0
dεe−βερ2(ε)a(ε) (2πt),

where C0 is a time independent constant that is a function of β.

It is worth noting that this linear growth must not be confused with that of

the ramp phase in e.g. the spectrum form factor where the linear growth

was the consequence of subleading connected part of the density-density

correlation. Here we have a linear growth at leading disconnected level.
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Having found a quantum object that has linear growth at late times, it is

tempting to identify the corresponding quantum object, CO, as the quantum

complexity. To be precise, we would like to define the complexity as follows.

For a chaotic quantum system the quantum complexity is defined by CO for a

particular operator O -to be found for a given system- so that the associated

A-function exhibits a double pole structure in the limit of E1 → E2

A(E1, E2) ≈ −
a(E1, E2)

(E1 − E2)2
+ local terms

where a(E1, E2) is a smooth positive function.

Of course for a given quantum system and for a given state, a priori, it is

not obvious how to find O that results in the desired double pole structure

for A-function. Moreover, in general the corresponding quantity may not be

given in terms of local operators.

To further explore this observation, let us consider explicit examples in which

one could identify a proper O, that results in a linear growth for CO.
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Example

Let us consider a quantum system with the following Hamiltonian

H =
P2

2
+ 2µe−x+2e−2x .

Then the corresponding Schrödinger equation is(
−
d2

dx2
+4µe−x+4e−2x

)
ψ(x) = 2Eψ(x) .

The eigenstate wave functions of the above equation are given in terms of

the Whittaker function of the second kind with imaginary order

ψµ,E(x) = ex/2W−µ,i
√
2E(4e

−x) .

Actually this Hamiltonian is used to study different aspects of two-dimensional

JT gravity.

D. Harlow and D. Jafferis, arXiv:1804.01081, Z. Yang, arXiv:1809.08647, P. Saad, arXiv:1910.10311, P. Gao,

D. L. Jafferis and D. K. Kolchmeyer, arXiv:2104.01184, D. Bagrets, A. Altland and A. Kamenev, arXiv:1607.00694
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The orthogonality condition for the eigenstates ψµ,E(x) is∫ ∞

0
dx ψµ,E1

(x) ψµ,E2
(x) =

δ(E1 − E2)

ρµ(E1)
,

where

ρµ(E) =
∣∣∣∣Γ(12 + µ+ i

√
2E

)∣∣∣∣2 sinh2π
√
2E

4π2
,

where ρµ(E) is essentially the density of state of the system.

Following our proposal, the quantum complexity is given by C whose A-

function, using the coordinate system, is

A(E1, E2) =
∫ ∞

0
dx dx′ ψµ,E1

(x)ψµ,E2
(x′) f(x, x′) .

where f(x, x′) = ⟨x|O|x′⟩.
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We will consider f(x, x′) = δ(x − x′)x by which the associated A-function

reads

A(E1, E2) =
∫ ∞

0
dx ψµ,E1

(x)ψµ,E2
(x)x .

Actually, since the function f may be interpreted as matrix elements in the

coordinate basis, the above choice corresponds to the matrix elements of

position operator that is obviously diagonal leading to a delta function. On

the other hand since the wave function satisfies the Schrödinger equation,

essentially in this case what we are evaluating is the average of position

operator.

M. A., S. Banerjee and J. Kames-King, arXiv:2205.01150.
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By making use of the explicit expression for the wave function in terms of the

Whittaker function, it is then straightforward to study the pole structure of

the A-function. Indeed, using the variables (ε, ω) and in the limit of E1 → E2

one has

A(ε, ω) = −
√
2ε

πρµ(ε)

1

ω2
+ local terms.

Therefore one finds the late time behavior as follows

C(β, t) = C0 +
∫ ∞

0
dε e−βερµ(ε)

√
2ε (2t)

that is the linear growth, as expected.

If one recalls that the Hamiltonian we considered describes two dimensional

JT-gravity it is possible to identify what exactly the quantity C is. Indeed

in this case it can be interpreted as the quantum expectation value of the

geodesic length (wormhole) connecting two boundaries of a two sided 2d

black hole. This means that the function f(x, x′) is just the (regularized)

geodesic length.

M. A., S. Banerjee and J. Kames-King, arXiv:2205.01150.
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Double pole and Krylov complexity

Let us see if there is a systematic way to observe the double pole behavior
in the Krylov complexity.

To proceed let us consider a quantum system describing by a time indepen-
dent Hamiltonian H whose eigenstates and eigenvalues are denoted by |Ea⟩
and Ea, respectively. Here a = 1,2, · · · D with D being the dimension of the
associated Hilbert space H.

In this system the time evolution of a state is given by

|ψ(t)⟩ = eiHt|ψ(0)⟩ .
Then the density matrix associated with this state at any time is

ρ(t) = |ψ(t)⟩⟨ψ(t)| = eiHt ρ(0) e−iHt

where ρ(0) = |ψ(0)⟩⟨ψ(0)|.
D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, arXiv:1812.08657, J. L. F. Barbón, E. Rabi-

novici, R. Shir and R. Sinha, 1907.05393, S. K. Jian, B. Swingle and Z. Y. Xian,, 2008.12274,E. Rabinovici,

A. Sánchez-Garrido, R. Shir and J. Sonner, 2009.01862 [hep-th]]. V. Balasubramanian, P. Caputa, J. M. Ma-

gan and Q. Wu, arXiv:2202.06957.
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Using the Hamiltonian one can construct an orthonormal and ordered basis

associated with any state of the Hilbert space. Denoting the corresponding

state by |ψ(0)⟩ the orthonormal, ordered basis {|n⟩, n = 0,1,2, · · · ,Dψ − 1}
may be constructed using the Gram-Schmidt process.

The first element of the basis is indeed the original given state of the Hilbert

state |0⟩ = |ψ(0)⟩ (which is assumed to be normalized). Then the other

elements are constructed recursively as follows

| ̂n+1⟩ = (H − an)|n⟩ − bn|n− 1⟩

where |n⟩ = b−1
n |n̂⟩ and

an = ⟨n|H|n⟩, bn =
√
⟨n̂|n̂⟩

The procedure stops where ever bn vanishes which occurs for n = Dψ which

is the dimension of subspace Hψ expanded by the basis {|n⟩}.

This procedure produces an orthogonal basis together with coefficients an
and bn known as Lanczos coefficients.
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Since the basis of the subspace Hψ is an ordered basis one may label any

element of the subspace by a number which amounts to define a label

operator as follows

ℓ =

Dψ−1∑
n=0

cn|n⟩⟨n| ,

for arbitrary function cn which is the label associated with the state |n⟩.
Note cn > cn′ for n > n′. Since the basis {|n⟩} is already ordered a natural

choice for the coefficient cn is cn = n.

Then the Krylov complexity is defined as

C(t) = Tr(ℓρ(t)) =

Dψ−1∑
n=0

n |ψn(t)|2 ,

where

|ψ(t)⟩ =
Dψ−1∑
n=0

ψn(t)|n⟩,

20



A comment

It has an advantage to express the Krylov complexity in terms of the trace

of density matrix.

C(t) = Tr(ℓρ(t)),

One can extend it to Krylov subregion complexity and also define Krylov

mutual complexity.

M. A., and S. Banerjee, arXiv: 2212.10583 [hep-th]



To further proceed exploring the complexity let us assume that the Hamil-

tonian of the system has continues spectrum.

Using the energy eigenstates, the Krylov complexity may be recast into the

following form

C(t) =
∫
dEa dEb e

i(Ea−Eb)tρ0(Ea, Eb)A(Ea, Eb) ,

where

ρ0(Ea, Eb) = ⟨Ea|ρ(0)|Eb⟩, A(Ea, Eb) = ⟨Ea|ℓ|Eb⟩ ,

which is the same expression proposed for complexity in which the A-function

is given by the matrix elements of label operator in energy basis.

At leading order in the dimension of the Hilbert space the density matrix

ρ0(Ea, Eb) is

ρ0(Ea, Eb) = ρ(Ea)ρ(Eb).

21



The behavior of Krylov complexity is encoded in the behavior of Lanczos

coefficients. It was conjectured that for a chaotic system, one has large n

linear growth; bn ≈ αn for large n.

Actually the large n linear growth is a typical behavior for Lanczos coefficients

and has noting to do with the chaotic nature of the system.

Under certain condition it may also exhibit saturation phase on which the

Lanczos coefficients saturate to a constant.

The saturation of Lanczos coefficients results in a linear growth for com-

plexity at late times.

A. Dymarsky and M. Smolkin, [arXiv:2104.09514 [hep-th]], B. Bhattacharjee, X. Cao, P. Nandy and T.

Pathak,[arXiv:2203.03534 [quant-ph]], A. Avdoshkin, A. Dymarsky and M. Smolkin, [arXiv:2212.14429 [hep-

th]], H. A. Camargo, V. Jahnke, K. Y. Kim and M. Nishida, [arXiv:2212.14702 [hep-th]].
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This behavior at late times imposes a condition on the function A(Ea, Eb)
to have a double pole structure

A(Ea, Eb) = −
a(E)

ω2
+ local terms, for ω → 0 ,

where ω = Ea − Eb and 2E = Ea+ Eb.

Actually using the expression for the matrix elements of the label operator in
the continuum limit, it is straightforward to see that for x(y) = y, it exhibits
a double point behavior.

(Continuum limit: x = ϵn, b(x) = 2ϵbn, dy = dx
b(x).)

Indeed in continuum limit one has

⟨E1|ℓ|E2⟩ =
1

ϵ2

∫ ∞

0
dy x(y) e−iωy

To conclude we note that the double pole structure is a consequence of
saturation of Lanczos coefficients.

M. A., and S. Banerjee, arXiv: 2212.10583 [hep-th]
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So far we have shown that if for a given operator -to be found for given

system- its matrix elements in energy basis exhibit a double pole structure at

late times, one may define a quantum object exhibiting the late time linear

growth which could be interpreted as quantum complexity.

Generally, in order to get a non-trivial time dependence at late times, the

A-function should have poles of order of n with n ≥ 2.

For general n > 2 one generally gets power low growth at late times, though

for n = 2 one has a linear growth.

Since having a linear growth at late times might be a signature of the

complexity that is expected to be the fastest growth, one may propose a

hypothesis:

The double pole structure is the highest pole structure the A-function could

have.
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Complexity Saturation

An other interesting feature of complexity is that it saturates at the very

late times given by the exponential of the entropy of the system. It is then

natural to see how the saturation could occur in this context.

To address this question we note that the density matrix ρ(E1, E2) appearing

in the expression of the quantum object AO has the following general form

ρ(E1, E2) = ρ(E1)ρ(E2) + ρc(E1, E2)

where ρc represents the connected term meaning that it cannot be written

in a factorized form of g1(E1)g2(E2).

The connected terms could have either perturbative or non-perturbative

origins which may have generally non-trivial pole structure that could result

in the saturation phase at very late times.
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This is a well known structure which has been seen in the literature for the

spectrum form factor of chaotic models such as JT-gravity in which the

connected part of ρ(E1, E2) results in the ramp phase.

Of course for the spectrum form factor there is no an A-function and the

whole time dependence is controlled by the density-density correlator.

On the other hand, for the holographic complexity of JT-gravity where there

is an A-function, the connected part of ρ(E1, E2), which has non-trivial pole

structure at late times is, indeed, responsible for the saturation phase.

We note, however, that in the present case, where we are dealing with a

general formalism which is not directly related to the holography picture, it is

not clear how the full expression of the connected term could be computed.
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For a chaotic system, as far as the late time behavior is concerned, one would

expect that the main contribution comes from the short range correlation

which is given by the universal sine-kernel term

ρc(ε, ω) ≈ −
sin2(Dωρ(ε))

(Dω)2
, for ω ≪ 1 .

Here D is the dimension of Hilbert space which is given by the exponential

of the entropy of the system.

The double point structure of the A-function leads to linear growth at the

leading disconnected part of the density-density correlation, while there is

the saturation phase which can be described by subleading connected term

given in the universal sine-kernel term multiplied by the double pole structure

of the A-function.

One can see that the saturation occurs at t ∼ D.

M. L. Mehta,“ Random Matrices.” (Elsevier, San Diego, 2004) Third edition
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Using the general expression for ρ(E1.E2) one finds

C = Constant−
∫ ∞

0
dϵe−βϵρ2(ϵ)a(ϵ)

∫ ∞

−∞
dω
e−itω

ω2

(
1−

sin2 (ρ(ϵ)Dω)

(ρ(ϵ)Dω)2

)
.

From this expression one observes that at late times when ω ∼ 1
t → 0 and

for ρω ≫ 1 essentially the first term in the bracket on the r.h.s of the above

equation dominates leading to a linear growth, while for ρω ≪ 1 which is

the case at t ∼ D, the second term starts dominating that essentially cause

the whole integral to approach zero leading to a constant complexity which

is the saturation phase.

L.V. Iliesiu, M. Mezei and G. Sárosi, arXiv:2107.06286, M. A., S. Banerjee and J. Kames-King, arXiv:2205.01150,

M. A. and S. Banerjee, arXiv:2209.02441 [hep-th].
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Summary

Quantum complexity may be defined as a quantum object associated with

an operator whose matrix elements in energy basis exhibit a double pole

structure at late times.

C(β, t) =
∫
dE1dE2e

−iE1+E22 βei(E1−E2)tρ(E1, E2)A(E1, E2)

The double pole structure is the highest pole structure the A-function could

have.

For JT-gravity it reduces to the quantum length connecting two boundaries.

It also reduces to Krylov complexity if one compute the quantum object for

label operator of Keylov basis.

There is a universal form for the saturation phase which occurs due to the

connected part of ρ− ρ correlation.
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Thank you
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