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ESA and Planck Collaboration

Cosmic Microwave Background

Large - Scale Density 
Perturbations

Small - Scale
Quantum Fluctuations



What is the (quantum circuit) 
complexity of this process?
• Growth of complexity with time?
• Bounds on the growth of complexity?
• Total complexity of observed universe?
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Quantum Circuit Complexity

ோ ்୲ୟ୰୥ୣ୲ ் ୲ୟ୰୥ୣ୲ ோ
Unitary evolution from 
reference state 𝜓ோ to 
target state 𝜓்

|𝜓ோ〉

|𝜓்〉

reference

target

𝒰෠୲ୟ୰୥ୣ୲ = 𝑃 exp න 𝑉ூ 𝑠  𝒪෠ூ 𝑑𝑠
ଵ

଴

• Model as continuous application of operators

𝑠 = 0

𝑠 = 1

{𝒪෠ூ}: basis of gates
𝑉ூ 𝑠 : tangent vectors

• Assign a circuit depth to path
𝒟 = 𝒟 𝑉ூ

• Circuit Complexity is depth minimized over paths

𝒞 = min
௏಺

𝒟 𝑉ூ

𝒟 𝑉ூ = න 𝐺ூ௃ 𝑉ூ𝑉௃ 𝑑𝑠
ଵ

଴

with 𝐺ூ௃ = 𝛿ூ௃

Nielsen et al

“gate cost”

e.g.   𝑒ି௜ு෡௧
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Unitary evolution from 
reference state 𝜓ோ to 
target state 𝜓்

|𝜓ோ〉

|𝜓்〉

reference

target

𝒰෠୲ୟ୰୥ୣ୲ = 𝑃 exp න 𝑉ூ 𝑠  𝒪෠ூ 𝑑𝑠
ଵ

଴

• Model as continuous application of operators

𝑠 = 0

𝑠 = 1

{𝒪෠ூ}: basis of gates
𝑉ூ 𝑠 : tangent vectors

Nielsen et al

(Gaussian) State Circuit ComplexityOperator Circuit Complexity

also K-Complexity/Spread 
Complexity

• Characterize target operator by its action 
on Gaussian states

𝑥 𝜓ோ ∼ 𝑒ି
ଵ
ଶ ఠబ ∑ ௫ೖ

మ
ೖ

𝑥 𝜓் ∼ 𝑒ି
ଵ
ଶ ∑ ஐೖ ௫ೖ

మ
ೖ

Jefferson, Myers
Ali, Bhattacharyya, Haque, Kim, Moynihan, Murugan

{𝒪෠ூ}:  basis for GL 𝑁, ℝ or GL 𝑁, ℂ

• Characterize gates by structure constants
𝒪෠ூ, 𝒪෠௃ = 𝑖 𝑓ூ௃

௄𝒪෠௄

• Minimization: 
⇒ Euler-Arnold eq on group manifold

𝐺ூ௃

𝑑𝑉௃

𝑑𝑠
= 𝑓ூ௃

௄ 𝐺௄௅ 𝑉௃ 𝑉௅

Balasubramanian, Decross, Kar, Parrikar
Basteiro, Erdmenger, Fries, Goth, Matthaiakakis, Meyer

Dixit, Magan, Kim, Dymarsky, Watanabe

Quantum Circuit Complexity

 Advantage: Not restricted to subset of states
 Disadvantage: Euler-Arnold eq can be difficult 

to solve

 Advantage: Simple to set up and find optimal path
 Disadvantage: Restricted to Gaussian states

𝒪෠௞ ∼ 𝑒ି௜௫ොೖ௣ොೖ



Complexity: Free Harmonic Oscillator
Example: Free Harmonic Oscillator

𝜓் = 𝑒ି௜ு෡బ௧  𝜓ோ

𝐻෡଴ =
𝜔

2
𝑎ො†𝑎ො + 𝑎ො 𝑎ො†

𝜓் = 𝒰෠୲ୟ୰୥ୣ୲ 𝜓ோ

𝒰෠୲ୟ୰୥ୣ୲ = 𝑃 exp න 𝑉ூ 𝑠  𝒪෠ூ 𝑑𝑠
ଵ

଴

• Model as continuous application of operators

{𝒪෠ூ}: basis of gates
𝑉ூ 𝑠 : tangent vectors

Operator Circuit Complexity

𝒪෠ଵ =
𝑎ොଶ + 𝑎ො†ଶ

4
𝒪෠ଶ = 𝑖

𝑎ොଶ − 𝑎ො†ଶ

4
𝒪෠ଷ =

𝑎ො†𝑎ො + 𝑎ො 𝑎ො†

4

• Characterize gates by structure constants  𝒪෠ூ, 𝒪෠௃ = 𝑖 𝑓ூ௃
௄𝒪෠௄

𝒪෠ଵ, 𝒪෠ଶ = −𝑖𝒪෠ଷ, 𝒪෠ଷ, 𝒪෠ଵ = 𝑖𝒪෠ଶ, 𝒪෠ଶ, 𝒪෠ଷ = 𝑖𝒪෠ଵ

• Minimization: 
⇒ Euler-Arnold eq on group manifold (𝐺ூ௃ = 𝛿ூ௃)

𝐺ூ௃

𝑑𝑉௃

𝑑𝑠
= 𝑓ூ௃

௄ 𝐺௄௅ 𝑉௃ 𝑉௅

su(1,1)

𝑉ଵ = 0,
𝑉ଶ = 0,

𝑉ଷ = min ቊ
2 𝜔𝑡 − 2𝜋𝑛
2 2𝜋𝑛 − 𝜔𝑡

𝑉ଷ is a compact direction

𝒆ି𝒊𝝎𝒕

𝒆ି𝒊𝑽𝟑/𝟐

𝒞୤୰ୣୣ

𝑡

𝟐𝝅

𝒞୤୰ୣୣ = 𝜔𝑡

• Complexity

𝒞୤୰ୣୣ = 𝑉ଵ ଶ + 𝑉ଶ ଶ + 𝑉ଷ ଶ

= 𝑉ଷ

Haque, Jana, BU



Complexity: Free Scalar Field

Free scalar field 𝜙 in (𝑑 + 1)-dimension, mass 𝑚, box 𝐿

𝜙෠ = ෍
1

2 𝐸௡

 𝑎ො௡ 𝑒௜௣⃗೙⋅௫⃗ + 𝑎ො௡
†𝑒ି௜௣⃗೙⋅௫⃗

ேౣ౗౮

௡

Mode expansion:  ൞
𝑝௡ = 𝑛𝜋/𝐿         

𝐸௡ = 𝑝௡
ଶ + 𝑚ଶ

Λ = 𝑁୫ୟ୶𝜋/𝐿 UV cutoff

Target Unitary

𝒰୲ୟ୰୥ୣ୲ = ෑ 𝑒
ି௜

ଵ
ଶா೙ ௔ො೙

†௔ො೙ା௔ො೙௔ො೙
†ேౣ౗౮

௡

copies of free oscillator 
for each mode

Complexity of free scalar field

𝒞థ = ෍ 𝑉௡
ଷ ଶ

ேౣ౗౮

௡

∼ 𝐿ௗ/ଶ න 𝑉ଷ 𝑝
ଶ

 𝑑ௗ𝑝
ஃ

continuum limit

∼
𝐿ௗ/ଶΛௗ/ଶ Λ𝑡      early times   𝑡 ≪ 𝜋/Λ

𝐿ௗ/ଶΛௗ/ଶ                late times   𝑡 ≫ 𝜋/Λ

Linear Growth:
complexity of only one 
mode growing

Saturation:
complexity of all modes 
oscillating, average out

𝒞థ

Haque, Jana, BU
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Vacuum States

𝜓 𝑞 ∼ 𝑒ି
௤మ

ଶ , 𝜑 𝑝 ∼ 𝑒ି
௣మ

ଶ

Δ𝑞ොଶ =
1

2
Δ𝑝̂ଶ =

1

2

Squeezed Vacuum State

𝜓 𝑞 ∼ 𝑒ି
௤మ

ଶ ௘మೝ
, 𝜑 𝑝 ∼ 𝑒ି

௣మ

ଶ ௘షమ

Δ𝑞ොଶ =
1

2
𝑒ିଶ௥ Δ𝑝̂ଶ =

1

2
𝑒ଶ௥

Squeezed, Rotated
Vacuum State

Δ𝑞ොଶ 〈Δ𝑝̂ଶ〉 =
1

4
Δ𝑞ොଶ 〈Δ𝑝̂ଶ〉 =

1

4
Δ𝑞ොା

ଶ 〈Δ𝑞ොି
ଶ〉 =

1

4

𝑟 = 0.5 𝑟 = 0.5
𝜙 = 𝜋/3

𝑞ොା = 𝑝̂ sin 𝜙 + 𝑥ො cos 𝜙

𝑞ොି = 𝑝̂ cos 𝜙 − 𝑥ො sin 𝜙

𝑒ଶ௥

𝑒ିଶ௥

𝑒ିଶ௥

𝑒ଶ௥

𝑟 = 0

𝜙 = 0

Squeezed States

𝜙



Described by squeezing parameter 𝒓, squeezing angle 𝝓, and rotation angle 𝜽

where squeezing operator

rotation operator

Squeezed States found in:
• Quantum Optics
• Gravitational Wave Detection
• Cosmological Perturbations

“World record” 
laboratory squeezing

𝑟 ≈ 1.7

Vahlbruch, et al, 2016

Squeezed States

𝑒ିଶ௥

𝑒ଶ௥

𝜙

Squeezed, Rotated
Vacuum State

Δ𝑞ොା
ଶ 〈Δ𝑞ොି

ଶ〉 =
1

4

𝑟 = 0.5
𝜙 = 𝜋/3

𝑞ොା = 𝑝̂ sin 𝜙 + 𝑥ො cos 𝜙

𝑞ොି = 𝑝̂ cos 𝜙 − 𝑥ො sin 𝜙

𝑟, 𝜙, 𝜃 = 𝒮መ 𝑟, 𝜙  ℛ෠ 𝜃  0

𝒮መ 𝑟, 𝜙 ≡ exp
𝑟 𝑡

2
 𝑒ିଶ௜థ 𝑎ොଶ  − 𝑒ଶ௜థ 𝑎ො†ଶ

ℛ෠ 𝜃 ≡ exp −𝑖𝜃 𝑎ො†𝑎ො + 𝑎ො𝑎ො†



Squeezed States in Cosmological Perturbations

Cosmological Perturbations
Mukhanov variable𝑑𝑠ଶ = 𝑎 𝜂 ଶ −𝑑𝜂ଶ + 1 − 2 ℛ  𝑑𝑥⃗ଶ

scale factor conformal 
time

curvature pert 𝑣 = 𝑧 ℛ, 𝑧 = 𝑎 2𝜖

Canonical Quantization

𝑣ො = න
𝑑ଷ𝑘

2𝜋 ଷ
 𝑣ො௞ 𝑒௜௞⋅௫⃗

Free-particle Inverted Oscillator

𝐻෡ = න𝑑ଷ𝑘 𝐻෡௞ = න 𝑑ଷ𝑘
1

2
𝑘 𝑎ො௞ 𝑎ො

௞
† + 𝑎ො

ି௞
† 𝑎ොି௞ − 𝑖

𝑧ᇱ

𝑧
 𝑎ො௞ 𝑎ොି௞ − 𝑎ො

௞
†𝑎ො

ି௞
†

Hubble Horizon

Accelerating background 
stretches modes outside 

horizon

mode 𝑘
Time-dependent 

frequency

Two-mode squeezed state (𝑘, −𝑘)
Grishchuk, Sidorov
Albrecht, Ferreira, Joyce, Prokopec

𝑣ො௞ =
1

2𝑘
 𝑎ො௞ +  𝑎ො

ି௞
†



Squeezed States in Cosmological Perturbations

Squeezed Cosmological Perturbations

Example: 

𝑟௞, 𝜙௞, 𝜃௞ = 𝒮መ 𝑟௞, 𝜙௞  ℛ෠ 𝜃௞  0௞, 0ି௞

Squeezing Parameters:

Squeezing strength
Squeezing angle 𝜙௞ = 𝜙௞ 𝜂

𝑟௞ = 𝑟௞ 𝜂

Rotation angle 𝜃௞ = 𝜃௞ 𝜂

Time-dependence from 
expanding background

Horizon exit
Inside Horizon:

𝑘 ≫
𝑎ᇱ

𝑎

• 𝑟௞ ≪ 1
• 𝜙௞, 𝜃௞ evolve

Outside Horizon:

𝑘 ≪
𝑎ᇱ

𝑎

• 𝑟௞ ∼ ln 𝑎
• 𝜙௞ ∼ 𝜋/2 (constant)
• 𝜃௞ constant

de Sitter (inflation)

• “World record” laboratory squeezing 
 𝑟 ≈ 1.7

• Inflationary squeezing 𝑟 ∼ 𝑁௘ ∼ 60!
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Cosmological Complexity

𝜓் = 𝒰෠ୡ୭ୱ୫୭ 𝜓ோ
Squeezed 

Cosmological 
Perturbations

𝑟௞, 𝜙௞, 𝜃௞ = 𝒮መ 𝑟௞, 𝜙௞  ℛ෠ 𝜃௞  0௞, 0ି௞

𝒰෠୲ୟ୰୥ୣ୲ = 𝑃 exp න 𝑉ூ 𝑠  𝒪෠ூ 𝑑𝑠
ଵ

଴

• Characterize gates by structure constants
𝒪෠ூ, 𝒪෠௃ = 𝑖 𝑓ூ௃

௄𝒪෠௄

Operator Circuit Complexity Haque, Jana, BU

𝒪෠ଵ =
𝑎ො௞ 𝑎ොି௞ + 𝑎ො

௞
†𝑎ො

ି௞
†

2

𝒪෠ଶ = 𝑖
𝑎ො௞ 𝑎ොି௞ − 𝑎ො

௞
†𝑎ො

ି௞
†

2

𝒪෠ଷ =
𝑎ො௞ 𝑎ො

௞
† + 𝑎ො

ି௞
† 𝑎ොି௞

2

SU 1,1

𝒮መ = exp
𝑟௞

2
𝑒ିଶ௜థೖ 𝑎ො௞𝑎ොି௞ − 𝑒ଶ௜థೖ𝑎ො

௞
†𝑎ො

ି௞
†

ℛ෠ = exp −𝑖𝜃௞ 𝑎ො௞ 𝑎ො
௞
† + 𝑎ො

ି௞
† 𝑎ොି௞

𝐺ூ௃

𝑑𝑉௃

𝑑𝑠
= 𝑓ூ௃

௄ 𝐺௄௅ 𝑉௃ 𝑉௅

• Minimization: 
⇒ Euler-Arnold eq on group manifold

𝑉ூ 𝑠 : tangent vectors

𝒞(୭) = 𝐺ூ௃𝑉ூ𝑉௃

• Operator Circuit 
Complexity

the complexity of quantum 
cosmological perturbations

⇒ solve for 𝑉௃ 𝑠 , construct 𝒰୲ୟ୰୥ୣ୲

squeezing operator

rotation operator



Cosmological Complexity

𝜓் = 𝒰෠ୡ୭ୱ୫୭ 𝜓ோ
Squeezed 

Cosmological 
Perturbations

𝑟௞, 𝜙௞, 𝜃௞ = 𝒮መ 𝑟௞, 𝜙௞  ℛ෠ 𝜃௞  0௞, 0ି௞

𝒰෠୲ୟ୰୥ୣ୲ = 𝑃 exp න 𝑉ூ 𝑠  𝒪෠ூ 𝑑𝑠
ଵ

଴

Operator Circuit Complexity
𝒮መ = exp

𝑟௞

2
𝑒ିଶ௜థೖ 𝑎ො௞𝑎ොି௞ − 𝑒ଶ௜థೖ𝑎ො

௞
†𝑎ො

ି௞
†

ℛ෠ = exp −𝑖𝜃௞ 𝑎ො௞ 𝑎ො
௞
† + 𝑎ො

ି௞
† 𝑎ොି௞

Cosmological Complexity

𝒞ୡ୭ୱ୫୭
(୭)

≈ 𝑟௞ ≈ ln
𝑎

𝑎ୣ୶୧୲

• Grows with squeezing, e-folds

the complexity of quantum 
cosmological perturbations

squeezing operator

rotation operator

𝑎

𝒞ୡ୭ୱ୫୭
(୭)Inside Horizon:

• 𝑟௞ ≪ 1
• Complexity oscillates 

𝒞ୡ୭ୱ୫୭
(୭)

≤ 2𝜋
due to rotation phase 𝜃 Horizon exit

Outside Horizon:

• Growth is linear in            
cosmic time 𝑡, 𝑎 𝑡 = 𝑒ு೏ೄ௧

𝒞ୡ୭ୱ୫୭
(୭)

= 𝐻ௗௌ𝑡

Haque, Jana, BU



Cosmological Complexity

𝜓் = 𝒰෠ୡ୭ୱ୫୭ 𝜓ோ
Squeezed 

Cosmological 
Perturbations

𝑟௞, 𝜙௞, 𝜃௞ = 𝒮መ 𝑟௞, 𝜙௞  ℛ෠ 𝜃௞  0௞, 0ି௞

(Gaussian) State Circuit Complexity
• Characterize 𝒰෠ୡ୭ୱ୫୭ by its action on Gaussian states

Ψୱ୯ = 𝑞௞, 𝑞ି௞ 𝑟௞, 𝜙௞, 𝜃௞⟩ ∼ 𝑒
஺ ௤

ೖ
మା௤

షೖ
మ ି஻ ௤

ೖ
 ௤

షೖ

Bhattacharyya, Das, Haque, BU

𝒞ୡ୭ୱ୫୭
(ୱ)

≈ 𝐻ௗௌ 𝑡

Unbounded?

Saturate?

Decrease?

What is the long-term 
behavior of 

cosmological complexity?

the complexity of quantum 
cosmological perturbations

Inside Horizon:

• 𝑟௞ ≪ 1
• Gaussian State Complexity 

insensitive to phase 
𝒞ୡ୭ୱ୫୭

(ୱ)
≪ 1

𝒞ୡ୭ୱ୫୭
(ୱ)

≈ 𝑟௞ ≈ ln
𝑎

𝑎ୣ୶୧୲

• Grows with squeezing, e-folds

Outside Horizon:

• Growth is linear in            
cosmic time 𝑡, 𝑎 𝑡 = 𝑒ு೏ೄ௧

𝑎

𝒞ୡ୭ୱ୫୭
(ୱ)



𝑎

𝒞ୡ୭ୱ୫୭
(ୱ)

Cosmological Complexity

Squeezed 
Cosmological 
Perturbations

𝑟௞, 𝜙௞, 𝜃௞ = 𝒮መ 𝑟௞, 𝜙௞  ℛ෠ 𝜃௞  0௞, 0ି௞

Unbounded growth of 
complexity depends 

sensitively on 
squeezing angle 

the complexity of quantum 
cosmological perturbations

 Complexity of dS is 
maximal w.r.t. 𝜙
Why?



Cosmological Complexity

Bhattacharyya, Das, Haque, BU

“De-Complexification”:
o Complexity decreases for radiation-dominated, then 

“freezes-in” upon horizon re-entry!
o Modes are still highly squeezed
o dS → radiation transition cuts off complexity growth

the complexity of quantum 
cosmological perturbations

Inflation followed by “Reheating”

𝑎

𝒞ୡ୭ୱ୫୭
(ୱ)



Cosmological Complexity
the complexity of quantum 
cosmological perturbations

𝑎

𝒞ୡ୭ୱ୫୭
(ୱ)

Bound on growth 
rate ୢ𝒞

ௗ௧
≤ 2𝐻

Growth rate of complexity 
saturates at 𝑤 = −5/3

𝑑𝑠ଶ = 𝑎 𝜂 ଶ −𝑑𝜂ଶ + 𝑑𝑥⃗ଶ

Accelerating, Expanding Backgrounds

𝑎 𝜂 =
𝜂଴

𝜂

ିଶ/(ଵାଷ௪)

Equation of state 𝑝 = 𝑤𝜌

de Sitter 𝒘 = −𝟏

• de Sitter is not fastest growth in 
cosmological complexity among all 
possible accelerating backgrounds… 
(but others violate NEC)

Bhattacharyya, Das, Haque, BU



𝜌ො୮୳୰ୣ = 𝑟௞, 𝜙௞, 𝜃௞ 𝑟௞, 𝜙௞, 𝜃௞ 𝜌ො୰ୣୢ =
1

coshଶ 𝑟௞
෍ tanhଶ௡ 𝑟௞  𝑛௞, 𝑛ି௞ 𝑛௞, 𝑛ି௞

ஶ

௡ୀ଴

Cosmological Complexity

Pure State Thermal Density Matrix

Decoherence

Complexity of Purification

Haque, Jana, BU

ℋ → ℋ ⊗ ℋୟ୬ୡ

• Purification with ancillary dof

• Minimize complexity over purification

𝒞୮୳୰୧୤ = min
ୟ୬ୡ

𝒞୲୭୲

• Complexity of purification 𝒪 1

𝒞୮୳୰୧୤ ≈
𝜋

2 2

• Assume decoherence occurs at re-entry

𝒞୮୳୰୧୤

𝑎

𝜋

2 2

Horizon 
exit

Horizon 
re-entry

dS radiation



Cosmological Complexity

Decomplexification vs Decoherence

Inflation followed by “Reheating”

Horizon 
exit

Horizon 
re-entry

dS radiation

Decoherence 
upon re-entry

𝒞୮୳୰୧୤ ≈
𝜋

2 2
Complexity of Purification

𝒞୮୳୰୧୤

𝑎𝑎

𝒞ୡ୭ୱ୫୭
(ୱ)

Rapidly changing 
squeezing angle 

Complexity of 
decohered 
mixed state



Aside: Complexity of Hawking Radiation

in

out

I

II

Hawking radiation: two-mode squeezed states

0 ୧୬ = 𝒩௞  ෍ 𝑒ି ସగீெ௞  ௡ೖ

௡ೖ

 𝑛௞ ୍ ⊗ 𝑛௞ ୍୍
tanh 𝑟௞ = 𝑒ିସగீெ

𝜙௞ = 𝜋/2
൝
𝑟௞ ≪ 1   𝑘 ≫ 𝐺𝑀 ିଵ   high freq

𝑟௞ ≫ 1   𝑘 ≪ 𝐺𝑀 ିଵ   low freq

• Complexity of Hawking Radiation

𝒞ୌୟ୵୩ 𝑘 =
1

2
ln

1 + 𝑒ିସగீெ௞

1 − 𝑒ିସగீெ

≈ ൞

0                      𝑘 ≫ 𝐺𝑀 ିଵ  high freq

ln
1

𝐺𝑀𝑘
    𝑘 ≪ 𝐺𝑀 ିଵ   low freq

• Tracing out modes inside horizon
- Thermal density matrix
- Complexity of purification

𝒞୮୳୰୧୤ 𝑘 ≈
𝜋

2 2

 Complexity of reduced state smaller than pure state

 Complexity of Hawking radiation is maximal w.r.t. 𝜙
Why?



ESA and Planck Collaboration

Summary



Summary

Large - Scale 
Density Perturbations

Small - Scale
Quantum 

Fluctuations

What is the (quantum circuit) 
complexity of this process?

 Cosmological Complexity in dS grows linearly with time 𝒞ୡ୭ୱ୫୭ = 𝐻ௗௌ 𝑡

 Complexity depends sensitively on squeezing angle 𝜙
 Complexity of dS is maximal w.r.t. 𝜙. Why?

 Growth rate of complexity ௗ𝒞

ௗ௧
is bounded from above for accelerating backgrounds

 Decomplexification during radiation-domination phase
 Connection between decomplexification and decoherence?

“Squeezing”


