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Quantum Circuit Complexity ‘

—iHt

Unitary evolution from
reference state |YR) to
target state |Y1)

target

ST W)

s=0
[¥R)

reference

e.g. e

th) _{atarget_> hpT) [Yr) = ﬁtarget [Yr)

Model as continuous application of operators Nielsen et al

1 ~
~ . ~ {0} basis of gates
Utarget = P exp U Vi(s) O dS] V’I(s): tangent vectors
0

Assign a circuit depth to path

D = D[V’ (— “gate cost”
D[VI] = /GU Vvl ds with Gl] = 61]

Circuit Complexity is depth minimized over paths

C = minD[V']
{vhy



Quantum Circuit Complexity ‘

Unitary evolution from
reference state |YR) to
target state |Y1)

target

ST W)

s=0
[¥R)

reference

also K-Complexity/Spread
Complexity

Dixit, Magan, Kim, Dymarsky, Watanabe

[Yr) Utarget > [V 7)

* Model as continuous application of operators

1
Utarget = P exp [ j Vi(s) 0, ds
0

Operator Circuit Complexity

* Characterize gates by structure constants
A A1 . KA
[01,0)] =i fif Ok
*  Minimization:
= Euler-Arnold eq on group manifold

av’
Gy = fij G VIV

L Advantage: Not restricted to subset of states
Disadvantage: Euler-Arnold eq can be difficult
to solve

Balasubramanian, Decross, Kar, Parrikar
Basteiro, Erdmenger, Fries, Goth, Matthaiakakis, Meyer

[Yr) = ﬁtarget [Yr)

Nielsen et al
{0} basis of gates
VI(s):  tangent vectors

(Gaussian) State Circuit Complexity

* Characterize target operator by its action
on Gaussian states

1 2
~ —E (‘)OZk xk
(x[Yg) e a1
0, ~ e kP —> (x[Pr) ~ e 2 =k
{0,}: basis for GL(N, R) or GL(N, C)

[ Advantage: Simple to set up and find optimal path
L Disadvantage: Restricted to Gaussian states

Qg x,zc

Jefferson, Myers
Ali, Bhattacharyya, Haque, Kim, Moynihan, Murugan



Complexity: Free Harmonic Oscillator ‘

Example: Free Harmonic Oscillator Operator Circuit Complexity
lYr) = ﬂtarget |YR) * Model as continuous application of operators

i 1 "
lYr) = e~ tHot [Yr) 1 _ D 1 A {0} basis of gates
/T\/ § Utarget = P exp 0 Vi(s) 0 ds Vi(s): tangent vectors

I PSS PP, - ~ta  oaat
Hy=—(a'a+aa Hagque, Jana, BU az+a - ac—a ~ aa+aa
2 Op=——— 0Op=i—r— Oz3=—,——
1 4 2 3 4

Characterize gates by structure constants [(5,, (5]] =1 f,’f@K

[(51, (52] == _i63, [(53, @1] = iéz, [(52,@3] = lél su(lll)
*  Minimization:
= Euler-Arnold eq on group manifold (G;; = 6y)

av’ vt =0,
K J L
. | 2(wt — 2mn
*  Complexity V? = min {zgmn - wtg

Cree = \/(Vl)z + (V2)2 4+ (V3)2 R

V3 is a compact direction x\___/e _iv3/2

-/

N
ey
ey

o~




Complexity: Free Scalar Field

Free scalar field ¢ in (d + 1)-dimension, mass m, box L

/N A= N/l UV cutoff

Nmax

N 1 A i_)ﬁ“f ~T - _)71“32')
¢ = \/ﬁ az e + dze
n

—

Target Unitary

ma —ilEﬁ(dT&
_ n\“n
Utarget = e

—

n

Complexity of free scalar field

Nmax

AV
> )~ 12 || () atp

continuum‘limit/

L3272 (At)  early times t < /A

LG e late times t > m/A

—

Mode expansion:

copies of free oscillator
for each mode

Linear Growth:
complexity of only one

mode growing \40’

20

Saturation:
complexity of all modes
oscillating, average out

60}

0f

Haque, Jana, BU
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Squeezed States

Vacuum States Squeezed Vacuum State Squeezed, Rotated
q? p? L p? _, Vacuum State
Y@ ~e 2, @) ~e 2 Yl ~e z2°, @) ~e z°
Gy =psing + X cos ¢
1 1 ~ R o
1 1 A2\ =21 A2\ — _ 2T g_=pcos¢p —Xsing
A’\Z = — AAZ = — <AQ)— e (Ap>_ e
(Ag%) =3 (4p%) = 2 2
. R 1 . . 1 AGL2WAG. 2Y = =
(Ag*)8p*) = 7 (AG*Nap*) = 4 (42,7085 =
P
P
A
le
q q
v
e—2r
r=20 r=20.5




Squeezed States

Described by squeezing parameter 1, squeezing angle ¢, and rotation angle 6

Ir,¢,0) = $(r, $) R(6) |0) U =S8(r,¢)R(9)

where S(r,¢) = exp |[—= (e—2i¢ a2 — e? &TZ)] squeezing operator

R(O) = exp =7 (d*d + dd*)] rotation operator

“World record” Squeezed States found in:
laboratory squeezing * Quantum Optics
r=~1.7 * Gravitational Wave Detection
Vahlbruch, et al, 2016 * | Cosmological Perturbations

Squeezed, Rotated
Vacuum State

L =psing + X cos ¢
_=pcos¢ —Xsin¢g

Sy

1
A 2\ AA 2\ _
(MG NAG_-") = 2

r=20.5
¢ =m/3



Squeezed States in Cosmological Perturbations

Cosmological Perturbations

ds? = a()? (—=dn? + (1 — 2 R) d&?) Mukhanov variable

=z zZ=av2
scale factor conformal curvature pert v=2R, av«e

time

Canonical Quantization

d3k - . L o
P = P elk~x v = —( - 4 a__,)
Accelerating background
stretches modes outside
horizon
" " 1 t, At z' t ot
_ 3 L = 3_ /\_)/\_) /\_)/\_)_-_ /\_)/\_)_/\_)/\_) _______
H = jd k Hy, jd k2[k ( r 0z +a_ka_k) i~ ( za_z ka_k)
Free-particle f Inverted Oscillator ,’/
Time-dependent l" S '
w frequency Y ' mode k .'
v N\N\NNNNNW /
Two-mode squeezed state (k, —k) .. Hubble Horizon ,~
Grishchuk, Sidorov ¢ ~. P >

Albrecht, Ferreira, Joyce, Prokopec



Squeezed States in Cosmological Perturbations

Squeezed Cosmological Perturbations Squeezing Parameters:

|7, s Ok) = S (rie, P1) R(64) |07, 0_3) Squeezing strength 7k = 7c(1) Time-dependence from
Squeezing angle b = Pi(n) expanding background
Example: e Rotation angle Ox = 0k ()
de Sitter (inflation) 50
| (" . ) R
o . N a0 | Outside Horizon:
Inside Horizon: . .
30 Horizon exit a’
a’ j k< —
k> — /\: | a
a . /
| * 1% ~Ina
Lt \ / *  “World record” laboratory squeezing e ¢, ~m/2 (constant)
" Pk Oy evolve T * 0 constant

J

Tk

Vi

Inflationary squeezing r ~ N, ~ 60!

0.01

100.00

105 100 10" 10 3

&

J

TT
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Cosmological Complexity

the complexity of quantum

cosmological perturbations |l/)T> = WUcosmo |l/)R>
Squeezed

Cosmological |1y, @y, Oy ) = S(rk» i) jé(gk) |0§’ 0_§>

Perturbations

Operator Circuit Complexity Haque, Jana, BU

a T‘k — 1 Py A 1 /\1- /\+
S =exp l; (e 29k gpa_y — e?'Pra,a

_%)] squeezing operator
= exp [—LQk (aﬁ ap + aTEa g)]

1
Utarget = P exp [f Vi(s) O, ds
0

o)

rotation operator

Characterize gates by structure constants

*  Minimization:
10,,0)] = i fff Ok

= Euler-Arnold eq on group manifold

G av’ fXGe VI VE

_ a a_§+aiat D 1 gs — 1y bkL
H. = K-k 1
1 2 V' (s): tangent vectors
~ pad_p—aza_; = solve for 1/ truct U
0, =1 K _kz 2 ad_z >—SU(1,1) solve for VV/(s), construct Urarget

R R A * Operator Circuit
A ap a; +a_zd_g
03 ==

Complexity
2 _ c© = /G,,VIVJ



Cosmological Complexity

the complexity of quantum
cosmological perturbations

Squeezed

[Yr) = ﬁcosmo [¥R)
Cosmological |1y, P, Ok) = S(rk; br) jé(gk) |0%, 0_§>

Perturbations

Operator Circuit Complexity Haque, Jana, BU

1
ﬂtarget =P exp [f Vi(s) Oy ds
0

p
Inside Horizon:

¢ T K1
* Complexity oscillates
el <om

cosmo —
due to rotation phase 6

J

Cosmological Complexity

Horizon exit

T

T

a ﬁ)] squeezing operator

rotation operator

P
Outside Horizon:

0.01

10

10*

Grows with squeezing, e-folds

a
Cc(ggmo X = ln< )

Aexit

Growth is linearin
cosmic time ¢t, a(t) = efast




Cosmological Complexity

the complexity of quantum
cosmological perturbations

|l/)T> = ﬁcosmo |l/)R>

Squeezed

Cosmological |1y, P, Ok) = S(rk; br) jé(gk) |0%, 0_%>

Perturbations

(Gaussian) State Circuit Complexity

Bhattacharyya, Das, Haque, BU

* Characterize Ucosmo bY its action on Gaussian states

Wsq = (g, 9_

T, Pk, Ox) ~ €

P
Inside Horizon:

¢ T K1
* Gaussian State Complexity
insensitive to phase

c® «1

cosmo

A(ag+a’y)-Baga g

Unbounded?
(s) /
C /

cosmo
10 ‘Horizon

Al — = Saturate?
gExn

\
Decrease?

Cgcs))smo ~ HdS ¢

001 10 10" 107 100

What is the long-term
behavior of
cosmological complexity?

p
Qutside Horizon:

* Grows with squeezing, e-folds

a
Cc((s))smo =T = ln( )

Aexit
e  Growthis linearin
. . — pHgst
cosmictimet, a(t) =e




Cosmological Complexity

the complexity of quantum
cosmological perturbations

C (s)

cosmo

Squeezed

Cosmological |1, P, O5) = S (1, Di) R(O}) |O§’ 0_%)

Perturbations

60
50?
30;
20?

10}

Tk

Vi

0.01

10 10* \ a

Vi

Vs

~

Unbounded growth of
complexity depends
sensitively on
squeezing angle ¢

O Complexity of dS is
maximal w.r.t. ¢
Why?



Cosmological Complexity

p
the complexity of quantum “De-Complexification”:
cosmological perturbations

o Complexity decreases for radiation-dominated, then
“freezes-in” upon horizon re-entry!

o Modes are still highly squeezed

o dS - radiation transition cuts off complexity growth
\ J

- e———

Inflation followed by “Reheating”
dS . Radiation

: Horizon
: Re-entry

10 :Horizon
Exit

Tk

001 10 10° 107 T
Bhattacharyya, Das, Haque, BU




Cosmological Complexity ‘

the complexity of quantum
cosmological perturbations

Accelerating, Expanding Backgrounds

ds? = a(n)? (—dn? +dx?) a(n) = <%

C (s)

cosmo

14}
12}

10+

>—2/(1+3w)

Bound on growth
rate % <+/2H

— w=-138
— w=-1.7
w=-16
w=-15
w=-14

w=-1.2
w=-1.1

w=-1.
— w=-09
— w=-08
— w=-0.7

- /
'l Al AL L LI

103 1072

10" »£10° 10" 102 10° 10°

a
Bhattacharyya, Das, Haque, BU

Equation of statep = wp

de Sitterw = —1

P
Growth rate of complexity
saturates at w = —-5/3

* de Sitteris not fastest growth in
cosmological complexity among all
possible accelerating backgrounds...

(but others violate NEC)

J




Cosmological Complexity

Decoherence

Pure State

ﬁpure = |1, Or, Ok, Pr, O | —

Cpurif

10

Horizon
exit

Thermal Density Matrix

(0]
n=0

dsS g radiation

Horizon
re-entry

Pred = m z tanh®" 1, |7’“' "—%)(T% n—%|

Complexity of Purification

* Assume decoherence occurs at re-entry

e Purification with ancillary dof
H - H Q Hanc

e Minimize complexity over purification

Cpurif = min C
purif {anc} tot

* | Complexity of purification O(1)
s
Vs

102102 107" 10° 10" 102 10° 10 10° 10° 107 10® 10° 10 10" 10" @

Co o ——
2 purif 2\/7

Haque, Jana, BU



Cosmological Complexity

Decomplexification

Inflation followed by “Reheating”

C(S)
cosmo
; : dS . Radiation :
10 :Horizon ; : Horizon

{Exit . Re-entry

3 Decoherence
Decoherence
Cpurif upon re-entry
ds radiation : ’
10 : :
Horizon Horizon
8l exit

re-entry

102 102 107" 109 C

Complexity of Purification

'0.10 1611 101é a

Rapidly changing
squeezing angle

Complexity of
decohered
mixed state

~y
~y



Aside: Complexity of Hawking Radiation ‘

Hawking radiation: two-mode squeezed states

10)i, = N} z o~ (4mGME) 1y e @ I tanhr, = e 41 |, K1 k> (GM)™! high freq
n by = 1/2 re > 1 k<« (GM)™! low freq

Ng

* Complexity of Hawking Radiation

1 1+ e—4-1TGMk
CHawk(k) = \/Eln 1 _ e—47TGM

0 k > (GM)~1 high freq

~ 1
-1
In <GMk> k <« (GM)~* low freq

O Complexity of Hawking radiation is maximal w.r.t. ¢
Why?
* Tracing out modes inside horizon
- Thermal density matrix
- Complexity of purification

T
Courif(k) = —
purlf() 2\/?

L Complexity of reduced state smaller than pure state
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Summary

Small - Scale -
Fluctuations

cosmo

‘ —— “Squeezing”

What is the (quantum circuit)
complexity of this process?

0 Cosmological Complexity in dS grows linearly with time C.osmo = Hgs t

O Complexity depends sensitively on squeezing angle ¢
= Complexity of dS is maximal w.r.t. ¢. Why?

O Growth rate of complexityZ—f is bounded from above for accelerating backgrounds

O Decomplexification during radiation-domination phase
= Connection between decomplexification and decoherence?




