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Why Euclidean Wormholes?

Theoretical laboratory for sharpening concepts such as locality in gravitational systems.
Play crucial roles in Holography, especially from the quantum information perspective.

Explicit role in producing the Page-curve of entanglement entropy, as a fine-grained
entropy, of the black hole radiation degrees of freedom.

* Results demonstrating the utility of wormholes in black hole information were obtained in
2D gravity in which explicit calculations are under control.

Do Euclidean wormholes play similar roles in D > 4 where gravity is dynamical?
* Do they arise as Euclidean saddles of UV complete theories such as string theory?

* Are they genuine saddle points? Perturbatively stable?

* Can we construct Euclidean wormholes from compactification of string theory?



Plan of the Talk

Complex saddles and Euclidean wormholes in the Lorentzian path integral

Evaluate Lorentzian path integral using Picard-Lefschetz theory: Lorentzian, Euclidean
& complex saddles treated democratically. Allowability criterion

Wormhole stability: Consider gauge invariant perturbations and correct boundary
conditions. No homogenous perturbation (pure gauge) while inhomogeneous modes
increase the Euclidean action. Axionic wormhole is perturbatively stable.

A 10d construction of Euclidean axion wormholes in flat and AdS space

Explicit 10d embedding of Euclidean axion wormhole from universal hypermultiplet of
IIA compactification on 7°.

Explicit 10d embedding of Euclidean axion wormholes in AdSs X T'!: test of positivity
bound Tr(F £ %F)? > 0 in the dual CFT.



Giddings-Strominger Wormhole



Giddings-Strominger Solutions

Consider the following Euclidean action in d = 3 dimensions:
1 1 . .
S=_— (*(72 —2A) — iGZj(gp)dgpz A *dgpj)
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A simple set of solutions with O(d) symmetry take the form
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h(r) is a harmonic function, normalized to 4’ = f/a?~! so that % h = vol ,_;; plays the
role of affine parameter along the geodesic.



Three Classes of Euclidean Geometries
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c >0 c =20 c <0
space-like geodesic null geodesic time-like geodesic
Core instanton Extremal instanton, e.g. D-instanton Wormhole

P

Gii(p) dpidp’ = —dy? only time-like geodesics



Three Classes of Euclidean Geometries
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c >0 c =20 c <0
space-like geodesic null geodesic time-like geodesic
Core instanton Extremal instanton, e.g. D-instanton Wormhole

Gij(p)dp'dyp?’ = do* — e’? dy? C ; 0 all possible, but longest

time-like geodesic has length I%TI



Wormhole Regularity

Required geodesic length for wormholes only depends on the wormhole size in AdS units:

Dy (%O) = “length of geodesic required by geometry”

D ,(q,) is monotonic in gy = ay/¢:

d—1 d—2
27T\/2(d ) =Da(0) > Dalg) = Da(oo)= 27T\/Q(al — 1)

There must exist a time-like geodesic longer than D, (g,)




Euclidean Axion Wormholes in String Theory
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Wormholes and Quantum Gravity



Euclidean Wormholes

These wormholes lead to a breakdown of locality:

i Sun = =5 X, | x| dy0,0C0
IJ °
Coleman’s a-parameters
oS — J da, e~ 7€) @] d°x 3., 2/0/(x) ensembles

Euclidean wormhole, if embeddable into AdS compactification of string theory, poses a
puzzle for AdS/CFT as they jeopardize factorization of the two bdy CFTs



Wormholes and Quantum Gravity

_— Wormholes breaks global symmetries by Planck suppressed operators.

.. They play a key role in the axionic Weak Gravity Conjecture

f ' Sinstantan 5 MP

which constrains some large field inflation models.

.. Derivative corrections lower the wormhole action, giving support to the
~ axionic WGC

- a-parameter interpretation leads to -1 form global symmetries

L4

~_ Factorization and AdS/CFT (ensemble average).

"‘/h

~ ¢ 3 AdS wormholes which violate positivity bound Tr(F £ xF)* > 0 in the dual
U CFT:



Wormhole Stability



Wormhole Stability

Previous works (25+ years) on perturbative stability of axion wormholes
have led to contradictory claims, casting doubts on their contributions
to the Euclidean path integral.

Hertog, Meanaut, Tielemans, Van
Riet, to appear

Frame Stable Gauge-inv j=0,1 B.C.
Rubakov, Shvedov, ‘96 axion No No physical X
Alonso, Urbano, ‘17 axion Yes Yes physical X
Hertog, Truijen, Van Riet, ‘18 | axion No Yes pure gauge X
Loges, GS, Sudhir, ‘22 3-form  Yes Yes pure gauge /
v

axion Yes Yes pure gauge




Boundary Conditions and Gauge Invariance

Under diffeomorphism, metric and axion/3-form perturbations are mixed. Physically
meaningful conclusions can only be drawn on gauge-invariant perturbations.

In analyzing scalar perturbations around the GS wormhole, the boundary conditions in the
3-form picture can be imposed more straightforwardly. Finite energy perturbations:

/5H/\*5H<oo,

which corresponds to:

/d&@/\*d50<oo,

Metric perturbations vanish at the boundaries. Gauge invariant perturbations are Dirichlet
in the H; picture , while in the @ picture, gauge invariant perturbations

iInvolve mixed b.c.



Wormhole Stability

We determine the stability of GS wormhole by carrying out the following steps:

Parametrization of scalar perturbations and their boundary conditions.
Diffeomorphisms and physical degrees of freedom.

Quadratic action.

Integrate out non-dynamical and unphysical, gauge-dependent modes.

Analyze spectrum of remaining physical modes.

Steps akin to analyzing gauge invariant perturbations in inflationary cosmology.
But as we shall show, not only is the spectrum of perturbations

but on-shell value of the quadratic action is important for determining stabillity.




Scalar Perturbations

ds® = a(n)? |~ (1+ 2¢) dn® + 20; Bdnda’ + ((1 — 20)y;; + 2V, E) da'da’

H=— _(1 + s)volg 4+ dn A (% *yeijkaiw da? A dxk)_

6 scalar perturbations: @, v, E, B, s, w.

Dirichlet boundary conditions: perturbations must go to zero.



Diffeomorphisms

Some of these perturbations are unphysical and only represent the freedom to perform
diffeomorphism.

Under a diffeomorphism generated by & = 060 + Y (0,$)0; parametrized by two scalar
functions ¢V, ¢, the perturbations transform:

S¢dp = ¢+ H( 6¢B =—(" +¢ 0¢s = AQ
Octh = —H(¢ oclr = ¢ bew = ¢

Only one physical scalar mode. Convenient to pick:

S:S—AE 55520



Quadratic Action

Expanding the action to quadratic order in perturbations:

1 1
S = / (§*R — §H /\*H) + (boundary terms) — S‘bkgd + 5o+ - -

So = /dndgaj ﬂaz{—3(¢+7{qb)2—l— (B—E)A(B—E) —2(¢+/H¢)A(B—E)
—3(1+H)[(p+30 — AE+5)2 — ¢> + (B — w)A(B — w)]
+(2¢—¢)(A+3)¢}—|— @ﬁ/dndgxﬁ(é—Aw)H,

Note: not all perturbations are dynamical (non-dynamical perturbations impose constraints)

Expand perturbations in angular momentum eigenstates:

A= 2 =j(j+2) € {038,15,...)



Homogeneous Modes (7 = 0)

In terms of conjugate momentum of the only dynamical field -

£ = 0|3 (o + Ma0)” = 9(1+H2) (260 + 3v0)vo + 3(260 — Yo)vin

-5 — 3a” (10 + 9H*)yf + (HITY — 6a%(2 + 3H*)bo | o

gauge-invariant

Integrate out non-dynamical field ¢:

£\j20 = 6a”H (2 4+ 3H*) Yoo + (2 + H*) Y] = cf_n 3a*H (2 + 3H?) g ]

No physical degrees of freedom (no conformal factor problem!). Similarly, j = 1 mode is
pure gauge.



Quadratic Action for Physical Perturbations

For each j > 2 there is one physical degree of freedom (S; = s; + A\ E)

_ 307 w2 ON(LEHD) o A (A9 > 3
JZ - -

|
J )\j—S | 1+H?2

Wick rotate # — — ir to GS wormhole: a(r) « \/cosh(2r) and Hg(r) = —iH(ir) = tanh(2r)
Canonical normalize Q; = (---)S; :
Sy = /er( i (U7 + +1)Q2+GE>

/= >0

Sf looks positive definite, but we will have to check the boundary term G].E.



Eigenvalue Problem

Schrodinger-like problem: Qg.k)” 4+ UJ.E (7") ng) — wj(.k) Q§'k)

(NN

A Y

7=
] =
J =
] =
j=

S —+0 = Q¥ must go to zero faster than e~ !"l. Look for bound states with a)j(k) < -1



Eigenfunctions

There is exactly one even and one odd bound state for each j > 2:




Spectrum and Stability

j w](oOdd) w](-Odd) + )\j + 1 ] wj(-Odd) wj(-Odd) + )\j + 1
2 | —1.9335 7.4665 6 | —1.0921 47.9079
3 | —1.2873 14.7127 7 | —1.0705 62.9295
4 | —1.1817 23.83183 8 | —1.0556 79.9444
o | —1.1256 34.8744 9 | —1.0450 98.9950

0 L,
Q=3 QMY = S=) (0N +1)d >0

J
J=>2 J=>2

The Euclidean action only ever increases under scalar perturbations:

the GS wormhole is perturbatively stable.



String Theory Embeddings

[Loges, GS, Van Riet, 23]



Euclidean Axion Wormholes in Flat Space

* Reduction ansatz motivated by the extremal solution:

2 —6b 2 2b 2 ' '
ds2, = e 5" ds? + e®? R2 M, dO'd o D % X %
./\/lz‘j :di&g(eﬁl.qg,GﬁZ.qg,...,656'5) D22 X X X

D2 X X X
. 123 145 250 346 3
Cs5 = x1d0"° + x2d0'™ + x3d0%° + x4 d6 D2, XX X

No Wick rotation that turns them into

* 4d theory contains 11 scalars: . .,
Lorentzian “overextremal” branes.

1 1 '
S4 — 5 9 —R + — Z 88 QSZ 8)(2) ] -+ 5 2(882)2
i=5 -

2K

There are four decoupled axio-dilaton pairs with 8 = 2:

4

1 3
E — =1 > - v
— B 4



Euclidean Axion Wormholes in AdS Space

a / (B3, Cy) axions
SQ
2 < SB

N\ ——’

k——) Fr flux

Background solution: Reduction ansatz:

1 =[SU(2) x SU(2)]/U(1) ~

dsfo — (? dsg + ¢? (ds%{E + 772) ds%o — (2¢~ 5 (4ut) ds% + 02 (62“ dsip + e 2)

1
e” = g e = gse?

By =0 By = 5291/% D,

Co=0 Co =19, Ly

Cy =0 Cy = il2g1/%¢c By

Fs = 40%(1 — ix)volpi.1 Fs = 40%(1 — ix)volpi.1



Consistent Reduction to 5D

HgNdb/\(I)Q F3N dC—de)/\(I)Q
Strmg dllaton ¢ (dF3 = Hz A )
1 \v

S5 = 9.2 d5a: \g\ 1 e Au—?¢ (Ob)* 1 2(’5 Ox)* + 16_4“’+¢(8c x Ob)?
5

| 238 (8u) 88U8U 4 4 (82}) i 26—%(4’UJ—|—U) (264u—|—4v o 1266u—|—2v 1+ 4) i|

\%—J .
e*" dsip + e*V n? \_/

[Cassani, Dall’Agata, Faedo — ‘10|
[Cassani, Faedo — ‘11

Not Giddings-Strominger wormhole!



Consistent Reduction to 5D

F3 ~ (dc — xdb) A &,

Hs ~ dbA oy
G

% / @z /|g| [ —R +3(00)° + %(é’b)2 + (é‘x)2 + %(80 — x Ob)?

S5 =

- 2(0u)? + S0udv + 2(9v)? 4 2¢7 5 Autv) (getutdy _ q96utu 4 y) }

— L .
e*" dsip + e*V n? \/

[Cassani, Dall’Agata, Faedo — ‘10|
[Cassani, Faedo — ‘11

Not Giddings-Strominger wormhole!



Dual CFT and Operators Positivity

Type IIB on T%1! is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten — 98]

1 1
N e Co <«— 01 +05
91 9o
1 1 .
/BQ YR 5 5 /(12 «—— 01— 065
52 91 92 52 _
(dCy = dCy — Cy d Bs)
Dual operators:
O@:TI'(Fl /\*Fl—I—FQ /\*FQ) OCO :Tr(Fl/\F1+F2/\F2)
OBQ :Tr(F1 /\*Fl—FQ /\*FQ) OC'Q :TI'(Fl/\Fl—FQ/\FQ)

Operator positivity:

<Tr[(F7; T *Fi)2]> >0 — <Oq>> T <OB2> > <OC’O> T <OC’2>



Violation of Positivity Bounds

[Loges, GS, Van Riet, 23]

With the fully explicit 10d gravity solution, we can check whether (Og) + (Op,) > (Oc,) £+ (Og,)

This is always violated (for all g, and y,)!

0.999 0
0.99 (b1 x4) — (1 — x0) |
—0.2
0.95 —0.d
g 0.9 —0.01
<
03 —0.02
—0.01
0.5
—0.004
0+ —0.002
102

40



One boundary vs two?

-

In gluing to a single asymptotic boundary,
the numerical solutions easily satisty the bounds

(monopole/dipole source for NSNS/RR fields):

o A
<OCO>: L Y2




Summary



Summary

- Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper
boundary boundary conditions transparent.

- Conclusion of stability may carry over to AdS space since the (physical) perturbations are localized to the
wormhole throat whose size is much less than the AdS curvature.

- Construct explicit Euclidean axion wormholes in flat and AdS space from string theory:

. Flat space wormholes from type IIA on T°: cannot Wick rotate to only Lorentzian branes.

- AdS space wormholes from type |IB on 711

o Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.
o Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.
© Massive scalars u, v dual to irrelevant operators may play a crucial role in identifying such CFT state.

« Other conceptual issues remain, e.g., a-parameters? Baby universes? For small wormholes (in AdS units)
where one might integrate out wormhole effects a la Coleman, the solutions break down.



