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Why Euclidean Wormholes?
• Theoretical laboratory for sharpening concepts such as locality in gravitational systems.

• Play crucial roles in Holography, especially from the quantum information perspective. 

• Explicit role in producing the Page-curve of entanglement entropy, as a fine-grained 
entropy, of the black hole radiation degrees of freedom. [Penington];[Almheiri, Mahajan, Maldacena, Zhao];..

• Results demonstrating the utility of wormholes in black hole information were obtained in 
2D gravity in which explicit calculations are under control.

• Do Euclidean wormholes play similar roles in  where gravity is dynamical?

• Do they arise as Euclidean saddles of UV complete theories such as string theory?

• Are they genuine saddle points? Perturbatively stable?

• Can we construct Euclidean wormholes from compactification of string theory?

D ≥ 4



Plan of the Talk

• Complex saddles and Euclidean wormholes in the Lorentzian path integral [Loges, GS, Sudhir, ’22]:

• Evaluate Lorentzian path integral using Picard-Lefschetz theory: Lorentzian, Euclidean 
& complex saddles treated democratically. Allowability criterion [Kontsevich, Segal, ’21]; [Witten, ’21].

• Wormhole stability: Consider gauge invariant perturbations and correct boundary 
conditions. No homogenous perturbation (pure gauge) while inhomogeneous modes 
increase the Euclidean action. Axionic wormhole is perturbatively stable.

• A 10d construction of Euclidean axion wormholes in flat and AdS space [Loges, GS, Van Riet ’23]:

• Explicit 10d embedding of Euclidean axion wormhole from universal hypermultiplet of 
IIA compactification on . 

• Explicit 10d embedding of Euclidean axion wormholes in : test of positivity 
bound  in the dual CFT.

T6

AdS5 × T1,1

Tr(F ± ⋆F)2 ≥ 0



Giddings-Strominger Wormhole



Giddings-Strominger Solutions

• Consider the following Euclidean action in d ≥ 3 dimensions:

• A simple set of solutions with O(d) symmetry take the form [Giddings, Strominger, ’88]: 

•  is a harmonic function, normalized to  so that ; plays the 
role of affine parameter along the geodesic.
h(r) h′￼ = f/ad−1 ⋆ h = vold−1

enough wormholes.

The remainder of this paper is organized as follows. In section 2 we review GS wormholes
in AdS and their regularity conditions. In section 3 we make explicit the uplift of flat space
wormholes in type IIA supergravity on a 6-torus. In section 4 we turn to the uplifts of AdS
wormholes in type IIB supergravity where we construct solutions numerically and discuss
implications for AdS/CFT. Finally, we conclude in section 5. A more detailed discussion of
the numerical methods used has been relegated to appendix B, where we discuss the uplift of
AdS wormholes in massive type IIA on S

3 ⇥ S
3. The accompanying source code is publicly

available at github.com/gloges/typeII-wormholes [32].

2 Regular Giddings-Strominger wormholes

In this section we recall the generalised Giddings-Strominger wormholes and their associated
regularity condition pioneered in [29]. Consider the following Euclidean action in d � 3
dimensions:
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where h(r) is a harmonic function, normalized to h
0 = f/a

d�1 so that ?dh = vold�1, and
⇤ = �(d � 1)(d � 2)`�2. The scalars trace out a geodesic curve on the target space: the
constant c is the geodesic velocity and the harmonic function h plays the role of the a�ne
parameter along the geodesic.

Wormhole geometries have c < 0 and correspond to time-like geodesics on the target
space. In Euclidean spacetime signature the metric on the target space has indefinite signature
with the time-like directions being axion directions. The above wormhole metrics are always
regular, but the expressions for the geodesic curves (i.e. the axion and dilaton profiles) need
not be. For example, a consistent truncation of Euclidean type IIB supergravity compactified
over S5 gives an action of the above form with the following kinetic term for the axio-dilaton:
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The corresponding wormholes have singular axion and dilaton profiles [33]. The reason for
this was understood in [29] in a general fashion and requires the notion of the geodesic length
D for the time-like geodesics, which can be computed using
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Three Classes of Euclidean GeometriesGS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

G. J. Loges 10D Axion Wormholes 5 / 34

Core instanton Extremal instanton, e.g. D-instanton Wormhole

GS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

Gij(') d'
id'j = �d�2 only time-like geodesics
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Core instanton Extremal instanton, e.g. D-instanton Wormhole

GS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

Gij(') d'
id'j = d�2

� e
�� d�2 c R 0 all possible, but longest

time-like geodesic has length 2⇡
|�|
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Wormhole Regularity

• Required geodesic length for wormholes only depends on the wormhole size in AdS units:

•  is monotonic in :

• There must exist a time-like geodesic longer than  [Arkani-Hamed, Orgera, Polchinski, ‘07]

Dd (q0) q0 ≡ a0/ℓ
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GS wormhole regularity

Required geodesic length for wormholes only depends on the wormhole size in AdS units:
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The geodesic speed c has been traded in favor of the wormhole size a0, which is the radius
of the cross-sectional Sd�1 at the wormhole neck and is the largest real root of the equation
a
0 = 0 in (2.2). This geodesic length is largest in the flat space limit, ` ! 1, and becomes

smaller when the wormhole size is large in AdS units, a0 � `:
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It is now easy to state the simple criterion which characterizes exactly when regular GS worm-
holes exist: there must exist a time-like geodesic for the target space ds2 = Gij(') d'id'j

which is longer than Dd(
a0
` ). For an axio-dilaton pair with coupling �,

Gij(') d'
id'j = d�2 � e

�� d�2
, (2.6)

the longest time-like geodesic is of length 2⇡
|�| and the flat space condition reads
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With several decoupled axio-dilaton pairs the geodesic length can be made larger by traversing
a “diagonal” direction and the regularity condition is weakened to
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In section 4 we will encounter AdS compactifications for which there is a scalar potential, in
which case the solutions are no longer described by geodesics in the target space. Neverthe-
less, these GS solutions and their simple regularity criterion can provide some intuition for
determining whether wormhole solutions exist in a more general setting.

3 Lifting flat space wormholes

3.1 The reduction

Consider IIA supergravity compactified on a 6-torus. We will only require the following
subsector of the 10d IIA action (in 10d Einstein frame) involving metric, dilaton and RR
4-form flux:
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This action can describe D2-branes, for instance. Indeed, the wormholes we will construct
will turn out to be regular “over-extremal” deformations of the following SUSY intersection
of Euclidean D2-branes wrapping 3-cycles on the 6-torus:
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(3.2)

Below, we present an ansatz for a consistent truncation of the 6-torus reduction that is inspired
by this intersection in the sense that it can at least capture the SUSY intersection. In 4d
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Euclidean Axion Wormholes in String Theory
A roadmap

IIA: T6 IIB: T
1,1 mIIA: S

3
⇥ S

3

flat space, GS-type AdS w/ massive scalars

identify consistent
truncation with enough
axio-dilatons to ensure
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numerical solutions

SUSY background
with known CFT dual

+

dual positivity bounds

numerical solutions

non-SUSY background
with no known CFT dual

G. J. Loges 10D Axion Wormholes 7 / 34

[Loges, GS, Van Riet, ’23]



Wormholes and Quantum Gravity



Euclidean Wormholes
• These wormholes lead to a breakdown of locality:

• Coleman’s -parameters [Coleman, ’89]:

• Euclidean wormhole, if embeddable into AdS compactification of string theory, poses a 
puzzle for AdS/CFT as they jeopardize factorization of the two bdy CFTs [Maldacena, Maoz, ’04].

•

α

Hebecker et al. Wormholes, Baby Universes and Applications

the continuation of instantons into the high-mass (or high-
tension) regime.

An object which fulfills such an expectation at least partially is
the Giddings-Strominger wormhole (Giddings and Strominger,
1988a), sometimes also referred to as a gravitational instanton. It
is based on the euclidean action (MP = 1)
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Equivalently, one can use the dual formulation in terms of a
2-form gauge theory with field strength H3 = dB2:
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At the classical level, the duality relation is simply H = f 2 ∗ dθ .
However, the equivalence of the two theories extends, of course,
to the full quantum systems. To see this, the dualization must
be done under the path integral and care must be taken to
get the signs of the kinetic terms right. The outcome is that,
both in the euclidean and in the lorentzian versions, the fields
have standard (non-ghostlike) kinetic terms on both sides of
the duality (see Burgess and Kshirsagar, 1989; Collinucci, 2005;
Bergshoeff et al., 2006; Arkani-Hamed et al., 2007b; Hebecker
et al., 2017 for details). The wormhole solution to be discussed
momentarily exists only in the euclidean theory, but both in the
0-form and 2-form formulation. However, while the B2/H3 fields
are real, the corresponding values of θ/dθ are imaginary.

Now, the relevance of an “instanton-like” euclidean solution
is, of course, that it defines a saddle point of the path integral
and hence a very specific, easily quantifiable contribution to
the partition function. For the B2 path integral, the Giddings-
Strominger saddle point is then right in the standard integration
domain, i.e., “on the real axis” of field space. By contrast, in the θ
path integral the corresponding saddle point is “on the imaginary
axis,” requiring the deformation of the contour and raising the
question whether such complex saddles contribute. Complex
saddles are certainly known to contribute in certain cases (for
a toy model relevant to the present setting see Arkani-Hamed
et al., 2007b). Thus, while we favor the (real) B2 formulation
for obvious reasons in what follows, there is nothing wrong in
principle with the θ formulation4.

After these preliminaries, let us describe the solution
(Giddings and Strominger, 1988a). It can be motivated by
starting from a field theory instanton and including gravitational
backreaction: If an instanton couples to an axion θ , the dual
theory carries non-zero 3-form flux,

∫

S3
H = n , n ∈ Z , (9)

4Occasionally, the impression is raised that the θ formulation requires a wrong-
sign kinetic term if one wants the wormhole solution to exist. While this
perspective might technically be equivalent to what was said above, we find it
conceptually misleading. In our reading, one studies a well-defined physical theory
without ghost fields. It is only the desire to estimate the contribution from a certain
complex saddle which leads one to work with imaginary θ temporarily.

FIGURE 4 | Wormholes: A semiwormhole (Left), a wormhole connecting two

distinct large asymptotically flat universes (Center) and a wormhole on a

single universe (Right).

on any sphere containing n instantons (or an instanton of charge
n). Placing the instanton(s) at the origin and assuming spherical
symmetry, it is immediately clear that one must have

H =
n ε

2π2 . (10)

Here ε is defined as the volume form of S3 in the description of
R4 as R+ × S3.

The aboveH automatically satisfies the Bianchi identity dH =
0 and the equation of motion d ∗ H = 0 (for any spherically
symmetric metric). It induces a non-zero energy momentum
tensor and the corresponding Einstein equation is solved by

ds2 =
(
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C

r4

)−1
dr2 + r2d'2

3, C = −
n2

24π4f 2
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Here d'2
3 denotes the round metric on the unit sphere.

This geometry is asymptotically flat for r → ∞ and has
a coordinate singularity at r = r0 ≡ |C|1/4. The space
given by restricting r ∈ [r0,∞) forms what is often termed
a semiwormhole (see Figure 4). Gluing two such solutions at
the 3-spheres defined by r = r0, one obtains a smooth
wormhole connecting two flat universes (see Figure 4). A
topologically distinct, approximate solution can be obtained if
the two asymptotically flat regions of Figure 4 are interpreted
as distant parts of the same universe—cf. Figure 4. One then
has a wormhole joining two regions of the same large universe.
This becomes exact in the limit that the two wormhole ends are
infinitely far apart.

The wormhole action is particularly easy to compute using the
trace of the Einstein equation:
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(12)
Notice the factor 2 appearing because a wormhole consists of two
solutions of the form of (11), each restricted to r > r0.

The most straightforward interpretation of this is as follows:
Suppressed by an overall factor exp(−Sw), the partition function
includes processes in which an S3 baby universe supported byH3-
flux “bubbles off” at some space-time point x and is absorbed
later on at y (x, y ∈ R4). From the low-energy perspective, this
is equivalent to an instanton (of charge n and action Sw/2 ∼
|n|/f ) at x and a corresponding anti-instanton at y. Calculational
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Wormholes and Quantum Gravity

• Wormholes breaks global symmetries by Planck suppressed operators.

• They play a key role in the axionic Weak Gravity Conjecture [Brown, Cottrell, GS, 
Soler, ‘15];[Montero, Valenzuela, Uranga, ’15]; [Heidenreich, Reece, Rudelius, ’15]; [Hebecker,Mangat-Theissen-Witkowski, ’16]; 
[Hebecker, Mikhail, Soler, ’18]; …

 which constrains some large field inflation models.

• Derivative corrections lower the wormhole action, giving support to the 
axionic WGC [Andriolo, Huang, Noumi, Ooguri, GS, ’20]; [Andriolo, GS, Soler, Van Riet, ’22].

• -parameter interpretation leads to -1 form global symmetries [McNamara, Vafa, ’20]

• Factorization and AdS/CFT (ensemble average).

•  AdS wormholes which violate positivity bound  in the dual 
CFT: [Katmadas, Ruggeri, Trigiante, VR, ’18];[Loges, GS, Van Riet, ’23]

α

∃ Tr(F ± ⋆F)2 ≥ 0

f ⋅ Sinstanton ≲ MP



Wormhole Stability



Wormhole Stability

• Previous works (25+ years) on perturbative stability of axion wormholes 
have led to contradictory claims, casting doubts on their contributions 
to the Euclidean path integral.

Frame Stable Gauge-inv j=0,1 B.C.

Rubakov, Shvedov, ‘96 axion No No physical

Alonso, Urbano, ‘17 axion Yes Yes physical

Hertog, Truijen, Van Riet, ‘18 axion No Yes pure gauge

Loges, GS, Sudhir, ‘22 3-form Yes Yes pure gauge

Hertog, Meanaut, Tielemans, Van 
Riet, to appear axion Yes Yes pure gauge

✓

[Loges, GS, Sudhir, ’22]

✓

×
×
×



Boundary Conditions and Gauge Invariance

• Under diffeomorphism, metric and axion/3-form perturbations are mixed. Physically 
meaningful conclusions can only be drawn on gauge-invariant perturbations.

• In analyzing scalar perturbations around the GS wormhole, the boundary conditions in the 
3-form picture can be imposed more straightforwardly. Finite energy perturbations:

 which corresponds to:

• Metric perturbations vanish at the boundaries. Gauge invariant perturbations are Dirichlet 
in the  picture [Loges, GS, Sudhir, ’22], while in the  picture, gauge invariant perturbations 
involve mixed b.c. [Hertog, Meanaut, Tielemans, Van Riet, to appear].

H3 θ

We have seen previously that there are several saddle points around N ⇠ q0, q1, ñ (see
Eqn. (3.12)). For these saddles the c-term is subdominant and shifts the locations of
the saddle points. A qualitative change to the Picard-Lefschetz analysis comes from the
appearance of new saddles points which occur for N � q0, q1, ñ. In this limit one has
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⇤ > 0 and a new saddle appears on the positive real axis and always

contributes as a Lorentzian saddle under the contour deformation for any q0, q1. If c < 0

then N
3
⇤ < 0 and these new saddles never contribute under the contour deformation. See

Fig. 3 for two representative cases.

4 Boundary conditions & stability

Gravitational path integrals famously suffer from issues of convergence. Candidate saddle
points of the Euclidean path integral should be minima so that the action at the critical
point truly represents the dominant contribution from configurations near this point in field
space. Saddle points (with their unstable directions) can be interpreted as mediating decay.
Of course, statements of stability should only refer to gauge-invariant degrees of freedom.

In the previous sections we have restricted attention to spatially-uniform fields which
obscures whether the contributing saddle points are truly stable in the appropriate sense.
In order to address the question of stability we will analyze scalar perturbations around the
GS wormhole in the 3-form picture, the spectrum of which depends intimately on the chosen
boundary conditions; it is natural to choose Dirichlet boundary conditions for the 3-form
because of flux quantization. As we saw in some detail in Sec. 2, the duality which relates the
3-form and axion includes a correspondence between boundary conditions in the two frames:
Dirichlet boundary conditions for the 3-form correspond to Neumann boundary conditions
for the axion (equivalently, the Fourier transform of Dirichlet boundary conditions for the
axion, in the sense discussed in Sec. 2). Normalizable perturbations of the 3-form, namely
those with finite energy for which

Z
�H ^ ?�H < 1 , (4.1)

correspond, via H $ ?d✓, to perturbations of the axion which approach constant values at
the boundaries and which have finite energy

Z
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cñ

16
N

4

◆
=) N

3
⇤ ⇡ 12

⇡2cñ
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Fig. 3 for two representative cases.

4 Boundary conditions & stability

Gravitational path integrals famously suffer from issues of convergence. Candidate saddle
points of the Euclidean path integral should be minima so that the action at the critical
point truly represents the dominant contribution from configurations near this point in field
space. Saddle points (with their unstable directions) can be interpreted as mediating decay.
Of course, statements of stability should only refer to gauge-invariant degrees of freedom.

In the previous sections we have restricted attention to spatially-uniform fields which
obscures whether the contributing saddle points are truly stable in the appropriate sense.
In order to address the question of stability we will analyze scalar perturbations around the
GS wormhole in the 3-form picture, the spectrum of which depends intimately on the chosen
boundary conditions; it is natural to choose Dirichlet boundary conditions for the 3-form
because of flux quantization. As we saw in some detail in Sec. 2, the duality which relates the
3-form and axion includes a correspondence between boundary conditions in the two frames:
Dirichlet boundary conditions for the 3-form correspond to Neumann boundary conditions
for the axion (equivalently, the Fourier transform of Dirichlet boundary conditions for the
axion, in the sense discussed in Sec. 2). Normalizable perturbations of the 3-form, namely
those with finite energy for which

Z
�H ^ ?�H < 1 , (4.1)

correspond, via H $ ?d✓, to perturbations of the axion which approach constant values at
the boundaries and which have finite energy

Z
d�✓ ^ ?d�✓ < 1 , (4.2)
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Wormhole Stability

• We determine the stability of GS wormhole by carrying out the following steps:

• Parametrization of scalar perturbations and their boundary conditions. 

• Diffeomorphisms and physical degrees of freedom.

• Quadratic action.

• Integrate out non-dynamical and unphysical, gauge-dependent modes.

• Analyze spectrum of remaining physical modes.

Steps akin to analyzing gauge invariant perturbations in inflationary cosmology. 
But as we shall show, not only is the spectrum of perturbations 

but on-shell value of the quadratic action is important for determining stability.



Scalar Perturbations

• 6 scalar perturbations: .

• Dirichlet boundary conditions: perturbations must go to zero.

ϕ, ψ, E, B, s, w

Scalar perturbations

ds2 = a(⌘)2
h
�(1 + 2�) d⌘2 + 2@iB d⌘dxi +

�
(1� 2 )�ij + 2ri@jE

�
dxidxj

i

H =
n

2⇡2

h
(1 + s)vol3 + d⌘ ^

�
1
2

p
�✏ijk@

i
w dxj

^ dxk
�i

I Six scalar perturbations: �, , E,B, s, w

I Dirichlet boundary conditions: perturbations must go to zero
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Diffeomorphisms

• Some of these perturbations are unphysical and only represent the freedom to perform 
diffeomorphism.

• Under a diffeomorphism generated by  parametrized by two scalar 
functions , the perturbations transform:

• Only one physical scalar mode. Convenient to pick:

ξ = ζ0∂0 + γij(∂iζ)∂j
ζ0, ζ

Di↵eomorphisms

Some of these perturbations are unphysical and only represent the freedom to perform
di↵eomorphisms. Under a di↵eomorphism generated by ⇠ = ⇣

0
@0 + �

ij(@i⇣)@j (two scalar
functions ⇣0 and ⇣),

�⇠� = ⇣̇
0 +H⇣

0
�⇠B = �⇣

0 + ⇣̇ �⇠s = �⇣

�⇠ = �H⇣
0

�⇠E = ⇣ �⇠w = ⇣̇

Only one scalar mode will turn out to be physical. Convenient to pick

S = s��E �⇠S = 0
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Quadratic Action

• Expanding the action to quadratic order in perturbations:

• Note: not all perturbations are dynamical (non-dynamical perturbations impose constraints)

• Expand perturbations in angular momentum eigenstates:

Quadratic action

S =

Z ✓
1

2
?R�

1

2
H ^ ?H

◆
+ (boundary terms) �! S

��
bkgd

+ S2 + · · ·

S2 =

Z
d⌘ a2

h
�3

�
 ̇ +H�

�2
+
�
B � Ė

�
�
�
B � Ė

�
� 2

�
 ̇ +H 

�
�
�
B � Ė

�

� 3
�
1 +H

2
�⇥
(�+ 3 ��E + s)2 � �

2 + (B � w)�(B � w)
⇤

+ (2��  )(�+ 3) + a
�2

n(ṡ��w)✓
i

I Note: not all perturbations are dynamical

I Expand perturbations in angular momentum eigenstates:
�� ! �j = j(j + 2) 2 {0, 3, 8, 15, . . .}
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Δ → λj = j( j + 2) ∈ {0,3,8,15,…}

even if they are not normalizable in the sense that
Z
?(�✓2) ! 1 . (4.3)

This is natural in view of the axion’s shift symmetry; a constant shift to the background
field profile can be implemented with a constant perturbation which has zero energy but
divergent “norm”. Consequently the discussion of fluctuations around the GS wormhole is
most transparent in the 3-form picture where Dirichlet boundary conditions are required by
flux quantization and, perhaps more importantly, the criteria of normalizability and finite
energy coincide.

In similar spirit to the previous sections we will remain in Lorentzian signature until
absolutely necessary. We parametrize the fields as

ds2 = a(⌘)2
n
�(1 + 2�) d⌘2 + 2@iB dxid⌘ +

⇥
(1� 2 )�ij + 2ri@jE

⇤
dxidxj

o
,

H =
p
6 ñ


(1 + s) vol3 + d⌘ ^

✓
1

2

p
� �

ij
✏jkl@iw dxk ^ dxl

◆�
,

(4.4)

where �ij is the (fixed) round metric on S
3 and r the corresponding covariant derivative.

Note that we are using conformal time ⌘, so now Ȧ = dA
d⌘ . It will be useful to introduce

H = ȧ

a
, in terms of which the zeroth-order Einstein equations amount to

1 +H2 =
ñ
2

a4
> 0 . (4.5)

Returning to the action of Eqn. (2.1) and using the above parametrization results in the
following quadratic action for the perturbations,

S2 =

Z
d⌘d3x

p
� a

2
n
�3

�
 ̇ +H�

�2
+
�
B � Ė

�
�
�
B � Ė

�
� 2

�
 ̇ +H�

�
�
�
B � Ė

�

� 3
�
1 +H2

�⇥
(�+ 3 ��E + s)2 � �

2 + (B � w)�(B � w)
⇤

+ (2��  )(�+ 3) 
o
+

p
6 ñ

Z
d⌘d3x

p
� (ṡ��w)✓ ,

(4.6)

where we have used integration by parts on S
3 liberally. The individual perturbations are

not gauge-invariant; under a diffeomorphism ⇠ = ⇣
0
@⌘+�ij(@i⇣)@j parametrized by the two

scalar functions ⇣0, ⇣ the perturbations transform according to L⇠g and L⇠H:

�⇠� = ⇣̇
0 +H⇣0 , �⇠B = �⇣0 + ⇣̇ , �⇠s = �⇣ ,

�⇠ = �H⇣0 , �⇠E = ⇣ , �⇠w = ⇣̇ .
(4.7)

Physically meaningful statements can only be made about linear combinations of pertur-
bations which are gauge-invariant.

To proceed it is useful to reduce to 1D by writing all fields in terms of hyperspherical
harmonics, e.g.

�(⌘, xi) =
X

j�0

�j(⌘)Yj(x
i) (4.8)
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Homogeneous Modes ( j = 0)

• In terms of conjugate momentum of the only dynamical field : 

• Integrate out non-dynamical field :

• No physical degrees of freedom (no conformal factor problem!). Similarly,  mode is 
pure gauge.

ψ

ϕ0

j = 1

Homogeneous modes (j = 0)

L
��
j=0

= a
2
h
�3

�
 ̇0 +H�0

�2
� 9

�
1 +H

2
�
(2�0 + 3 0) 0 + 3(2�0 �  0) 0

i

= ⇧ 0  ̇0 +
(⇧ 0 )

2

12a2
� 3a2

�
10 + 9H2

�
 
2
0 +

⇥
H⇧ 0 � 6a2

�
2 + 3H2

�
 0| {z }

gauge-invariant

⇤
�0

Integrate out �0:

L
��
j=0

= 6a2H�1
⇥�
2 + 3H2

�
 0 ̇0 +

�
2 +H

2
�
 
2
0

⇤
=

d

d⌘

⇥
3a2H�1

�
2 + 3H2

�
 
2
0

⇤

No physical degrees of freedom! Similar story for j = 1.
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L
��
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= a
2
h
�3

�
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�2
� 9

�
1 +H

2
�
(2�0 + 3 0) 0 + 3(2�0 �  0) 0

i

= ⇧ 0  ̇0 +
(⇧ 0 )

2

12a2
� 3a2

�
10 + 9H2

�
 
2
0 +

⇥
H⇧ 0 � 6a2

�
2 + 3H2

�
 0| {z }

gauge-invariant

⇤
�0

Integrate out �0:

L
��
j=0

= 6a2H�1
⇥�
2 + 3H2

�
 0 ̇0 +

�
2 +H

2
�
 
2
0

⇤
=

d

d⌘

⇥
3a2H�1

�
2 + 3H2

�
 
2
0

⇤

No physical degrees of freedom! Similar story for j = 1.
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Quadratic Action for Physical Perturbations

• For each  there is one physical degree of freedom 

• Wick rotate  to GS wormhole:   

• Canonical normalize                      :

•  looks positive definite, but we will have to check the boundary term .

j ≥ 2

η → − ir

SE
2 GE

j

Action for physical perturbations

For each j � 2 there is one physical degree of freedom (Sj = sj + �jEj)

S2 =

Z
d⌘

X

j�2

3a2

�j

�
9

�j�3
+ 1

1+H2

�
h
Ṡ
2
j
+ 6�j(1+H

2)
(�j�3)H ṠjSj � �j

⇣
�j�9
�j�3

�
1 +H

2
�
� 1

⌘
S
2
j

i

Wick rotate ⌘ ! �ir and canonically normalize Qj = (· · · )Sj :

S
E
2 =

Z
dr

X

j�2

✓
1

2
(Q0

j
)2 +

1

2

�
U

E
j
+ �j + 1

| {z }
>0

�
Q

2
j
+G

E
j

◆

S
E
2 looks positive definite, but we will have to check the boundary terms GE

j
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E
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�
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j
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◆
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Z
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X

j�2

✓
1

2
(Q0

j
)2 +

1

2

�
U

E
j
+ �j + 1

| {z }
>0

�
Q

2
j
+G

E
j

◆

a(r) /
p

cosh(2r) and HE(r) = �iH(ir) = tanh(2r)

S
E
2 looks positive definite, but we will have to check the boundary terms GE

j
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All of  j , Ej , sj are dynamical and have conjugate momenta given by

⇧ 
j
= 2a2

h
�3

�
 ̇j +H�j

�
+ �j

�
Bj � Ėj

�i
,

⇧E

j = 2a2
h
��j

�
 ̇j +H�j

�
+ �j

�
Bj � Ėj

�i
,

⇧s

j = 6��1
j

a
2
�
1 +H2

�
(ṡj + �jBj) .

(4.12)

In terms of these we may write the Lagrangian in first-order form:

Lj = ⇧ 
j
 ̇j +⇧E

j Ėj +⇧s

j ṡj � (⇧E

j � �j⇧
s

j)Bj

+
⇥
H⇧ 

j
� 6a2

�
1 +H2

�
(3 j + �jEj + sj)� 2a2(�j � 3) j

⇤
�j

+ a
�2

"
�

(⇧ 
j
)2

4(�j � 3)
+

⇧ 
j
⇧E

j

2(�j � 3)
�

3(⇧E

j
)2

4�j(�j � 3)
�

�j(⇧s

j
)2

12(1 +H2)

#

� a
2
h
3
�
1 +H2

�
(3 j + �jEj + sj)

2 � (�j � 3) 2
j

i
.

(4.13)

This is linear in both of the non-dynamical fields, �j and Bj , and performing the path
integral over them produces two more (gauge-invariant) �-function constraints. Using these
to integrate out ⇧ 

j
and ⇧E

j
gives

Lj = ⇧S

j Ṡj �
�j

12a2

✓
9

�j � 3
+

1

1 +H2

◆
(⇧S

j )
2

+
3�j(1 +H2)

(�j � 3)H ⇧S

j Sj �
3a2(1 +H2)2

H2

✓
�j

�j � 3
� 1

1 +H2

◆
S
2

(4.14)

(plus a total derivative involving  j), where we have introduced the gauge-invariant field
Sj and its gauge-invariant conjugate momentum ⇧S

j
defined by

Sj = sj + �jEj ,

⇧S

j = ⇧s

j � 6a2(1 +H2)H�1
 .

(4.15)

The fields  j , Ej no longer appear; we can interpret the path integral over these as giving
the gauge-orbit volume. Finally, integrating out ⇧S

j
returns the Lagrangian to second-order

form, now for the sole physical, gauge-invariant scalar perturbation:

Lj =
3a2

�j

�
9

�j�3 + 1
1+H2

�
"
Ṡ
2
j +

6�j
�
1 +H2

�

(�j � 3)H SjṠj �
�j

H2

✓
�j � 9

�j � 3

�
1 +H2

�
� 1

◆
S
2
j

#
.

(4.16)
A similar analysis for j = 0 and j = 1 reveals that these two sectors are pure-gauge and as
such do not correspond to any physical perturbations.1 In particular, there is no conformal

1For j = 0 the Lagrange multiplier imposes ṡ0 = 0, so s0 = 0 for the given boundary conditions.
Additionally, all terms involving B0, E0, w0 vanish and of the two remaining fields, �0 and  0, only  0 is
dynamical. Transforming to gauge-invariant variables and integrating out the remaining non-dynamical
field shows that L0 is a total derivative. Similarly, for j = 1 one can replace w1 ! �ṡ1 using the constraint
to find that there are two dynamical fields,  1 + E1 and s1, and two non-dynamical fields, �1 and B1

(the linear combination  1 � E1 does not appear). Integrating out the non-dynamical fields imposes two
gauge-invariant constraints which result in L1 being a total derivative.
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Eigenvalue Problem

• Schrodinger-like problem:

•                           must go to zero faster than . Look for bound states with .e−|r| ω(k)
j < − 1

Eigenvalue problem

Q
(k)
j

00 + U
E
j
(r)Q(k)

j
= !

(k)
j

Q
(k)
j

I S ! 0 =) Q
(k)
j

must go to zero faster than e
�|r|

I Looking for bound states with !
(k)
j

< �1
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Eigenfunctions
• There is exactly one even and one odd bound state for each :

• Total derivative term  is not integrable for the even eigenfunctions: 

j ≥ 2

GE
j

Eigenfunctions

There is an even and an odd bound state for each j � 2:

Total derivative G
E
j
is not integrable for the even eigenfunctions: S2[Q(even)] ! +1
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Spectrum and StabilitySpectrum and stability

j !
(odd)
j

!
(odd)
j

+ �j + 1 j !
(odd)
j

!
(odd)
j

+ �j + 1
2 �1.5335 7.4665 6 �1.0921 47.9079
3 �1.2873 14.7127 7 �1.0705 62.9295
4 �1.1817 23.8183 8 �1.0556 79.9444
5 �1.1256 34.8744 9 �1.0450 98.9550

Q =
X

j�2

cjQ
(odd)
j

(r)Yj(⌦) =) S2 =
X

j�2

1

2

�
!
(odd)
j

+ �j + 1
�
c
2
j
> 0

The Euclidean action only ever increases under scalar perturbations:
the GS wormhole is perturbatively stable
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The Euclidean action only ever increases under scalar perturbations:
the GS wormhole is perturbatively stable.



String Theory Embeddings
[Loges, GS, Van Riet, ’23]



Euclidean Axion Wormholes in Flat Space
[Loges, GS, Van Riet, ’23]

Reduction ansatz

ds210 = e
�6b' ds24 + e

2b'
R

2
Mij d✓

id✓j

Mij = diag
�
e
~�1·~�, e

~�2·~�, . . . , e
~�6·~�

�

C3 = �1 d✓
123 + �2 d✓

145 + �3 d✓
256 + �4 d✓

346

1 2 3 4 5 6
D21 ⇥ ⇥ ⇥

D22 ⇥ ⇥ ⇥

D23 ⇥ ⇥ ⇥

D24 ⇥ ⇥ ⇥

I detM = 1 )
P

i
~�i = ~0

I Canonical normalization: b2 = 1/48 and ~�i ·
~�j = 2�ij �

1
3

Our reduction has 11 scalars:

String dilaton: � Radion: ' Torus moduli: �1, . . . ,�5 Axions: �1, . . . ,�4
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Diagonalization

S4 =
1

22
4

Z 
�R+

1

2
(@�)2 +

1

2
(@')2 +

1

2

5X

i=1

(@�i)
2

+
1

2
e
�6b'+�/2

⇣
e
�(~�1+~�2+~�3)·~�(@�1)

2 + e
�(~�1+~�4+~�5)·~�(@�2)

2

+ e
�(~�2+~�5+~�6)·~�(@�3)

2 + e
�(~�3+~�4+~�6)·~�(@�4)

2
⌘�

+

S4 =
1

22
4

Z 
�R+

1

2

4X

i=1

⇥
(@si)

2 + e
2si(@�i)

2
⇤
+

1

2

7X

i=5

(@si)
2

�

There are four decoupled axio-dilaton pairs with � = 2:

4X

i=1

1

�
2
i

= 1 >
3

4
X
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• Reduction ansatz motivated by the extremal solution:

• 4d theory contains 11 scalars: No Wick rotation that turns them into 
Lorentzian “overextremal” branes.



Euclidean Axion Wormholes in AdS Space
[Loges, GS, Van Riet, ’23]T 1,1

ansatz

T
1,1 = [SU(2)⇥ SU(2)]/U(1) ⇠

z}|{
S
2
⇥ S

3

| {z }

F5 flux

Z

S2

(B2, C2) axions

Background solution: Reduction ansatz;

ds210 = `
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e
� 2
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⌘
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Consistent Reduction to 5D
[Loges, GS, Van Riet, ’23]

Consistent reduction to 5D

S5 =
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22
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p
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h
�R+ 1

2 (@�)
2 + 1

2e
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�
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�
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i

V

string dilaton

H3 ⇠ db ^ �2

F1 ⇠ d�
F3 ⇠ (dc� � db) ^ �2

(dF3 = H3 ^ F1)

e
2u ds2KE + e

2v
⌘
2

[Cassani, Dall’Agata, Faedo – ‘10]

[Cassani, Faedo – ‘11]
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Dual CFT and Operators Positivity 
[Loges, GS, Van Riet, ’23]Dual CFT & operator positivity

Type IIB on T
1,1 is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten – ‘98]

e
��

 !
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g
2
1

+
1

g
2
2

C0  ! ✓1 + ✓2

Z

S2

B2  !
1

g
2
1

�
1

g
2
2

Z

S2

C̃2  ! ✓1 � ✓2

(dC̃2 = dC2 � C0 dB2)

Dual operators:

O� = Tr(F1 ^ ?F1 + F2 ^ ?F2) OC0 = Tr(F1 ^ F1 + F2 ^ F2)

OB2 = Tr(F1 ^ ?F1 � F2 ^ ?F2) OC̃2
= Tr(F1 ^ F1 � F2 ^ F2)

Operator positivity:

hTr[(Fi ± ?Fi)
2]i � 0 =) hO�i± hOB2i � hOC0i± hOC̃2

i
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Violation of Positivity Bounds
[Loges, GS, Van Riet, ’23]

 With the fully explicit 10d gravity solution, we can check whether 

                                    This is always violated (for all  and )!q0 χ∞

Dual CFT & operator positivity

Type IIB on T
1,1 is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten – ‘98]
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One boundary vs two?
[Loges, GS, Van Riet, ’23]

One boundary vs. two?

In gluing to a single asymptotic boundary,
the numerical solutions easily satisfy the bounds
(monopole/dipole source for NSNS/RR fields):

hOC0i = 0

hOC̃2
i = 0

)
=) �4 � ±

q2
4
�1 X
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Summary



Summary
• Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper 

boundary boundary conditions transparent.

• Conclusion of stability may carry over to AdS space since the (physical) perturbations are localized to the 
wormhole throat whose size is much less than the AdS curvature.

• Construct explicit Euclidean axion wormholes in flat and AdS space from string theory:

• Flat space wormholes from type IIA on : cannot Wick rotate to only Lorentzian branes.

• AdS space wormholes from type IIB on 

Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.

Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.

Massive scalars  dual to irrelevant operators may play a crucial role in identifying such CFT state.

• Other conceptual issues remain, e.g., -parameters? Baby universes? For small wormholes (in AdS units) 
where one might integrate out wormhole effects a la Coleman, the solutions break down.

T6

T1,1

u, v

α


