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Complexity

Central question: How hard is it to synthesize a desired target
state with the gates at your disposal?

Need, |ϕr ⟩, |ϕt⟩, {U1,U2, · · · ,Un}, g(U1,U2, · · · ,Un)

E.g. U1U2U1U3(U1)
3U2|ϕr ⟩ = U3U1U2U1U3(U1)

3U2U3|ϕr ⟩,
”complexity = 8”

Discrete notion of complexity closely related to quantum
computational setups

We will, however, be interested in a continuous notion of
complexity
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Nielsen Complexity

Accessible gates are taken to be from some symmetry group
[Nielsen, quant-ph/0502070]

E.g. SU(2): Gates U = e i(s1J1+s2J2+s3J3)

Target states: |ϕt(s1, s2, ..., sn)⟩ = U(s1, · · · , sn)|ϕr ⟩

We have a manifold of target states on which one can define a
metric

Complexity = shortest distance connecting points

Can introduce a circuit parameter si = si (σ)
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Nielsen Complexity

Two examples of metrics

F1 cost function: F1dσ = |⟨ϕr |U†dU|ϕr ⟩|

ds2FS = ⟨ϕr |dU†dU|ϕr ⟩ − ⟨ϕr |dU†U|ϕr ⟩|⟨ϕr |U†dU|ϕr ⟩

Group symmetries are encoded as metric isometries

F1 : Fi = ∂i (⟨ϕt(s
′
1, s

′
2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)|s′=s

FS metric:
gij = ∂i∂

′
j log (⟨ϕt(s

′
1, s

′
2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)

∣∣∣
s′=s
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Nielsen Complexity

The overlap ⟨ϕr |U†(s ′)U(s)|ϕr ⟩ is thus a key quantity

The states U(s)|ϕr ⟩ are generalized coherent states [Perelomov,

1972]

Stability subgroup H ⊂ G such that Uh|ϕr ⟩ = e iϕh |ϕr ⟩

Manifold of states ⇔ group elements of G/H
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Spread Complexity

A notion of complexity without the need to specify gates

Given a Hamiltonian and reference state one first builds the
basis |On) = Hn|ϕr ⟩

From a Gram-Schmidt process one then obtains the Krylov
basis |Kn⟩

The K-complexity of a state (or spread complexity) is then
given by CK =

∑
n n⟨ϕt |Kn⟩⟨Kn|ϕt⟩ ≡ ⟨ϕt |K̂ |ϕt⟩

The Krylov basis provides an ordered basis for the Hilbert
space of target states
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Spread Complexity

Given some basis for the Hilbert space of target space in
increasing complexity |Bn⟩

We can define complexity as C =
∑

n cn⟨ϕt |Bn⟩⟨Bn|ϕt⟩

With cn strictly increasing

The choice |Bn⟩ = |Kn⟩ minimises the complexity of the
time-evolved reference state
[Balasubramanian, Caputa, Magan, Wu, arXiv:2202.06957]
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Some Comments

Complexity is an ambiguous quantity - can likely be a proxy
for many physical quantities

It give an additional label to states ⇒ additional information
about quantum evolution

Spread complexity is dependent on the choice of reference
state - this may be unsatisfactory

Could average over different choices

Are there features that can be expected to be robust?

Topological phase transitions appear to be such a feature
[Caputa, Liu, arXiv:2205.05688], [Caputa, Gupta, Murugan, Haque, Liu, HJRvZ, arXiv:2208.06311]
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Low rank algebras

Fully analytic results can be obtained for su(1, 1), su(2),
Heisenberg-Weyl [Caputa, Magan, Patramanis, arXiv:2109.03824]

L+ = L†− ; [[L−, L+] , L±] = ±2fL±

Highest weight state L−|w⟩ = 0, [L−, L+] |w⟩ = w0|w⟩

An arbitrary group element action may be written as
e i(a+L++a∗+L−+a0[L−,L+])|w⟩ = NezL+ |w⟩

The manifold of target states is a two-dimensional manifold
⇔ elements of G/([L−, L+])

Krylov basis |Kn⟩ = (L+)n|w⟩√
⟨w |(L−)n(L+)n|w⟩

Spread complexity C = z∂z log⟨w |e z̄L−ezL+ |w⟩
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Low rank algebras

Can do a little better than this

If the Krylov basis is known for H, |ϕr ⟩ then the Krylov basis
for UHU†, U|ϕr ⟩ is given by |Kn⟩ → U|Kn⟩

This is particularly useful for the low-rank algebras, since the
Krylov basis is rather insensitive to the choice of H

Spread complexity C = z ′∂z ′ log⟨w |e z̄ ′L−ez ′L+ |w⟩
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Tensor Products

Suppose we have a Hamiltonian H =
∑

i Hi with [Hi ,Hj ] = 0

Krylov basis, by definition, is the ordered orthonormal basis
obtained from |On) = Hn|ϕr ,1, ϕr ,2 · · · ⟩

In general C ̸=
∑

i Ci

Redefine: C̃ =
∑

i Ci which is intuitively appealing

For many spin 1
2 SU(2) tensor products they are equal
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Kitaev Chain

A model of Dirac fermions on an L-site lattice [Kitaev, 2001]

H =∑L
j=1

[
− J

2 (c
†
j cj+1 + c†j+1cj)− µ(c†j cj −

1
2 ) +

1
2 (∆c†j c

†
j+1 +∆∗cj+1cj)

]
Hopping amplitude J, chemical potential µ and
superconducting pairing strength ∆

cj ’s can be redefined to always produce a real ∆

Topological phase transition occurs at |J| = |µ|, gapless for
|µ| < |J|
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Kitaev Chain

cj =
1√
L

∑
n e

iknjakn

H =
−
∑

kn>0

[
2(µ+ J cos(kn))J

(kn)
0 − i∆sin(kn)

(
J
(kn)
+ − J

(kn)
−

)]
J
(kn)
0 = 1

2(a
†
kn
akn−a−kna

†
−kn

) J
(kn)
+ = a†kna

†
−kn

J
(kn)
− = a−knakn

Spin-12 representation of su(2)[
J
(kn)
0 , J

(kn)
±

]
= ±J

(kn)
±

[
J
(kn)
+ , J

(kn)
−

]
= 2J

(kn)
0
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Kitaev Chain

Eigenstates can be written as SU(2) coherent states - Krylov
complexity for simple groups such as SU(2) is well understood

To determine the Krylov basis we need to specify a reference
state (i.e. the zero complexity state)

Natural choices include the lowest energy state when ∆ → 0
or J, µ → 0 as well as the fermion vacuum

In principle the Krylov basis needs to be recomputed for all
these choices. Here they are related by a unitary
transformation
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Reference States

Our circuits will connect these different choices of reference
state (s = 0) to the Kitaev chain ground state (s = 1)

Reference state 1:

|Ωk(s = 0)⟩ = e
−i π

2
θ(µ+J cos(k))

(
J
(k)
+ +J

(k)
−

)
|12 ,−

1
2⟩k

Reference state 2:

|Ωk(s = 0)⟩ = e
−i π

4

(
J
(k)
+ +J

(k)
−

)
|12 ,−

1
2⟩k

Reference state 3:
|Ωk(s = 0)⟩ = |12 ,−

1
2⟩k
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Target State

Ground state |Ωk(s = 1)⟩ =
∏

k sin |ϕk |e−i cotϕkJ
(k)
+ |12 ,−

1
2⟩k

ϕk = 1
2 tan

−1 ∆ sin k
µ+J cos k

Can readily cast the above in the form

|Ωk(s = 1)⟩ = U(s)|12 ,−
1
2⟩k = ez(s)J

(k)
+ |12 ,−

1
2⟩k

Ck(s) = z∂z log k⟨12 ,−
1
2 |e

z̄(s)J
(k)
− ez(s)J

(k)
+ |12 ,−

1
2⟩k

C (J, µ,∆) = 1
L

∑
n>0 Ckn → 1

π

∫ π
0 dkCk

Will set J = 1
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Circuit 1

Complexity takes a ∆-dependent constant value in the
topological phase
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Circuit 1

-3 -2 -1 1 2 3
Δ

-0.3

-0.2

-0.1

0.1

0.2

0.3

C'(Δ)

µ = 1.1, 1.02, 0.98. A discontinuity develops when |µ| < 1
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Circuit 2

Complexity takes a ∆-dependent constant value in the
topological phase
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Circuit 3

Δ=1/2
Δ=1
Δ=2

-3 -2 -1 1 2 3
μ

0.2

0.4

0.6

0.8

1.0

C(μ)

Complexity asymptotes between 0 and 1, the expected values
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Circuit 3

Δ=1/2
Δ=1
Δ=2

-1.5 -1.0 -0.5 0.5 1.0 1.5
μ

5

10

15

20

25

1/C'(μ)

Derivative diverges as the topological phase transition is
crossed
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Outlook

Spread Complexity is sensitive to the topological phase
transition in the Kitaev chain see also [Caputa, Liu, arXiv:2205.05688]

This appears to be a rather robust feature

Which choices of reference state exhibit the plateau feature?
Presumably related to symmetries...

What are the effects of twisted boundary conditions? Gauging
the model?

In general, what features of quantum many-body systems can
be probed with spread complexity
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Thank you for your attention!

Research is supported by the ”Quantum Technologies for
Sustainable Development” grant from the National Institute for

Theoretical and Computational Sciences
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