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Obtaining the Hamiltonian: Unconstrained Systems

[Lagrangian density £ (q, q)

\’
Find momenta:
pi = g—j = f(q.9)
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Obtaining the Hamiltonian: Constrained Systems

r

Lagrangian density £ (q, q)
4
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Find momenta: p; = o= flq, 4)
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4
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.. ) determining \/
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Further Constraints

Constraints should be preserved during evolution

.. ) determining \/
§={o,H}=0= &

new constraints \/ = {¢i, 7—[} =0

and so on ...

In our example
. I | 2
pa= {pz, SPi=5 (@) —ap+dq+ >\P2} = —pi +q'
so we get a new constraint
X=-pi+q =0

and again
X = 0 = no new constraint

and the full Hamiltonian
| | 2 _
H=opi—5(a") — P +4'@+ 2+ X (—p1 +q')

Constraint

Ho Zero Hamiltonian




Further Constraints

Constraints should be preserved during evolution

. ’. determining \ xe
d={dH}=0= | xD
new constrajp N
%f
on®
and soon ... \ KX \
’ X
(In our example «6@ 9‘3«\5

X = 0 = no new constraint

| .
H=p = (q") =1 +q'@+Mp2 + A (b1 +')

Constraint

Ho Zero Hamiltonian
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Constraints and Gauge Transformations

First class constraint: If a constraint ¢' commutes with all other constraints

{¢,d}=0,v¢

First class constraints generate gauge transformations:
For any phase space function f{q, p)

{f, ¢i} =60f= gauge transformation due to ¢'
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Constraints and Gauge Transformations

First class constraints generate gauge transformations:
For any phase space function f(q, p)

{f.¢'} = 6f = gauge transf.

Example: V - E = 0 in Maxwell egs. is actually a first class constraint:

0Au = q Au(x), /d“y(

smearing with ¢

8E (y

) — [ @005 A0, E0)

:/d4y<b(y Haué(x— y)
:—/d4y By 6;6(x—y):—8u¢:6AM

and thus under gauge transformation generated by V - E = 0, we get

Ay — A, — 8,0




Dirac Observables

(Dirac) Observable: a function O(q, p) which is invariant under gauge transformations

{0,¢} =500 =0
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Dirac Observables

(Dirac) Observable: a function O(q, p) which is invariant under gauge transformations

{0,¢} =500 =0

rExample: E in EM is a Dirac observable!

ot = {ea. [ oy (o)=L ) | = [yt e 40
=0
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What is the Problem of Time?

Gravity and the problem of time



GR Hamiltonian

It turns out that the vacuum GR or GR+matter is a totally constrained system:
H= /d3x (NH + N°D, + N'G)

where
* ‘H: Hamiltonian constraint (Ist class)
* D,: Diffeomorphism constraint (Ist class)

* G;: Diffeomorphism constraint (st class)

N, N°, \': Lagrange multipliers

* There is no zero Hamiltonian

* H is nothing but a sum of Ist class constraints!
* Generally covariant (diffeomorphism-invariant) system

* time reparametrization invariant

10/27



Time Evolution in GR: Pure Gauge

For any function f, time evolution in GR is

f=1{fH} = {f,/d3y(NH + N"Da)}

= / @y | N{f. 1} +N° {f. Do)
——— ——

S(H)f 5(P)f

~
df=gauge transformation!
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Time Evolution in GR: Pure Gauge

The Problem of Time

In canonical GR (even with matter)

» All observables are constant of motion!
* There is no time evolution
* This is carried over to the quantum regime

* This is because t in GR is a pure gauge parameter: t — T(t) yields the same physics

For a Dirac observable O, by definition

0={0,H} =60=0
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General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page & VWootters [PRD 27, 2885 (1983)],
Gambini & Pullin [PRD 79, 041501 (R) (2009)]

I. Relational evolution: we don’t have access to t, we measure relations between physical
objects

* Measured quantity Q(t), clock quantity T(t); Evolution of one vs another: Q(T)
* Use Dirac observables parametrized by t, called evolving constants of motion

2. Conditional probability
PQ=QNT=Tp) _JodTr |PPo(0)Pry(0)]
P(T =To) I dtTr [,37570 (t)}
7S AT [ Po()Pr (6P, (0]
[22 deTr [ﬁre (t) ,6}

P(Q=Qo|T=To) =

c 73T0(t) projector onto the subspace of eigenstates of T with eigenvalue Ty
. 75q(t) projector onto the subspace of eigenstates of Q with eigenvalue Qg
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The Model

¢ FLRW Universe
ds? = —dt® + a*(t) (dxf + d3 + dx%)
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The Model

¢ FLRW Universe
ds? = —dt® + a*(t) (dxf + d3 + dx%)

» Gravity sector canonical variables: ¢ = va and |p| = a?
* Volume of the Universe: V = ]p]3/2
* Two scalar matter fields ¢, ¢, with momenta py, , ps,

* The Hamiltonian (constraint) of the system

7
—_———

gravity

2
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C == ZCZ,/|p|+ |P’% Zpél
i=I
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The Model

¢ FLRW Universe
ds? = —dt® + a*(t) (dxf + d3 + dx%)

» Gravity sector canonical variables: ¢ = va and |p| = a?
* Volume of the Universe: V = ]p]3/2
* Two scalar matter fields ¢, ¢, with momenta py, , ps,

* The Hamiltonian (constraint) of the system

7
—_———

gravity

2
6 87G
C=- zcz\/ pl+— ZP%@-
Ipl2 o
matter

* Algebra

{c,p} = 3 {1, by, } =0y
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Dirac Observables

EoM of the system

. 87GN sgn (p) [2 412G 2]
c:{C,NC}:— Pi 2
7 Vbl p? S
. 327GN
b ={p,NC} = 7; /Ipl.
¢i ={$i, NC} = 167GN P¢’;, i=1,2,
%

I:)¢,. ={P¢,~7NC} =0, i=1,2.
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Dirac Observables

EoM of the system

. 87GN sgn (p) [2 417*G 2]
c:{C,NC}:— Pi 2
7 Vbl p? S

. 327GN

b ={p,NC} = 7; /Ipl.

b= {8uNC} = terGNEE, 112

Ip|2

Py ={ps,NC} =0, i=1,2.

Remember: O is Dirac observable if {O,C} = 0 so we get two Dirac observables

01 =py, 02 =py,.
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Dirac Observables

EoM of the system

. 87GN sgn (p) [2 417*G 2]
c:{C,NC}:— Pi 2
7 Vbl p? S
. 327GN
p=1p.NC} = ==/},
b ={o,NC} = 1exGNPeL i1 2,
Ip|2
b¢>i :{p¢i’NC} =0, i=1,2

Remember: O is Dirac observable if {O,C} = 0 so we get two Dirac observables
OI :P¢|7 02 :P¢7_'
The algebra {qb,-, p¢j} = Jjj, so we define the momenta conjugate to O; as

M =-ar, My = — ¢n,

so that

{o,m} =6, ij=1.2 16/27



Dirac Observables

Now O; look like positions and [1; as momenta = new Dirac observable mimicking L,

O3 = L3 = 0,1, — 0,11,
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Dirac Observables

Now O; look like positions and [1; as momenta = new Dirac observable mimicking L,

03 = L3 =0, — 0,11,
Finally, using EoM, we can get

%_%%i.n<|p|;):z =

since C is a constant, it is a Dirac observable

2 ¢,
a=In(lph) = Zep = = By (01 + 03,

17127



Evolving Constants of Motion

* Define a global time parameter

o]

= =
Ps,
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Evolving Constants of Motion

* Define a global time parameter
_ 9
P

* Construct the first evolving constant of motion

t

E|(t) = P¢>|¢2 =001, —0 T, + 0,0t =T

* Acts as our physical time
* Entirely made from matter

* Construct another evolving constant of motion; acts as evolving observable

Ex(t) := pg P, In (|p]) = 81/ 0% + 03 (0,1} + 0,0,1)

* Acts as the evolving observable
* Made out of gravitational (spacetime) DoF; volume of the universe

¢ Classical algebra

{E1(0), E2(6)} = By/0% + OF (0:11) — 0T, + O}t
18/27



T has discrete spectrum
Ty, (01,0;) = mrVr (04, 0,)

yields an ugly eigenstate

sgn (07)
0,0
T4/ 0 2+0 ( ! 2) \/2 7

<\/02—i—02 \/o%—i—o%) x
0+ 03

(of
exp [—ZhOﬂ] exp [:thmrtan <O_2) sgn (Oz)]

working with quantum clock!
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T has discrete spectrum
Ty, (01,0;) = mrVr (04, 0,)

yields an ugly eigenstate

sgn (07)
0,0
T4/ 0 2+0 ( ! 2) \/2 7

<\/02—i—02 \/o%—i—o%) x
0+ 03

(of
exp [—ZhOﬂ] exp [:thmrtan <O_2) sgn (Oz)]

working with quantum clock!

* Small 0y, 0y: eigenvalues of O| and O,
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E; has continuous spectrum
E2Ve, (01,0,) = eV, (01,0,)

yields another ugly eigenstate

—1 0,
2e; tanh <\/m>
B0>

I ) (Oz = 02) i 2
wez@z (O|’02) = TEXP | —5% O|t:|:
\/ 27 3hoy (O% + O%) 3 2h

19/27



Probability

Conditional probability of E; € [egl), egz)} given that T = mr is expressed as

[ deTr [ﬁez(t)ﬁmT(t) ﬁﬁmT(t)]
[, dtTr [ﬁmr(t) ﬁ]

P (Ez € [egl),egz)} }T: m7-> =
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Probability

Conditional probability of E; € [egl), egz)} given that T = mr is expressed as

[ deTr [ﬁez(t)ﬁmT(t) ﬁﬁmT(t)]
[, dtTr [ﬁmr(t) ﬁ]

P (E2 € [egl),egz)} }T: m7-> =

* Projection operator for E;

R eg_o)-l-Aez 0o
Pego) (t) = /0 de2/ do; |e2, 02,t> (ez, 07, t‘
e

g_ )—Aez —00
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Probability

Conditional probability of E; € [egl), eg )} given that T = mr is expressed as

[ deTr [ﬁez(t)ﬁmT(t) ﬁﬁmT(t)]
[, dtTr [ﬁmr(t) ﬁ]

P(Ere [, [T=mr) =

* Projection operator for E;

R eg_o)-l-Aez 0o
Pego) (t) = /(0 d62 / dOz |e2, 07, t> (ez, 07, t‘
)

—Aez —00

* Projection operator for T

0= [ dor [ doafm

0% + 03, > <m(T°), \/0} + 03t
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Probability

Conditional probability of E; € [egl), egz)} given that T = mr is expressed as

% deTr [ﬁez(t)ﬁm(t),ﬁﬁmr(t)}
[ dtTr [ﬁmT(t),ﬁ}

P <E2 S {egl),egz)] ]T: mT) =

* Density operator p = [1,) (¢,| with

|@Z)p> :/_OO do, /_OO d0,© (OI _o(ll)) o (o(IZ) _ OI) <
©(0,-o{") & (o? ~ 0) N, (01, 0),

21727



Probability: Preliminary Results

Yields

P(Eze[

where

165Ae; Ao,

] Ir=m) (@)~

7) (o
o (o) )]

— mrBot? cos? (oéo)>

0
* o

: central value of O, = O% + O%
0p: central value of Oy = tan™! (—2
. central value of E;

AX: interval around X

(: a constant including G



Probability: Preliminary Results

0.00000 105

0.00012 —
0.00010 —
0.00008 —
0.00006 —
0.00004 —

0.00002 |-

-1000 -500 r 500 1000
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* Time is an illusive concept in physics: probably an emergent phenomenon

* Absolute time t in unphysical; we never have access to it, only to relation between
physical quantities

* No absolute-time evolution in totally constrained systems (GR+matter)

* On quantum gravity scales, probably time does not exists, it emerges as relations
between quantum observables as an approximation

* We can thus take the conditional probability interpretation and use evolving constants
of motion to formulate a relational time via physical clocks

* This probability seems to agree with what we know of time

* We studied this in the context of cosmology (preliminary) and will extend the study

24/27



Conditional Probability

* Conditional probability (continuous Q, discrete T)

S5, deTe [ Po(e)Pry(0)5Pry(1)
% deTr [ﬁro (1) ﬁ}

P(Qe[q,q]|T=To) =

* Interpretation of numerator:

Ensemble of noninteracting systems with two quantum variables Q and T, each to be
measured.

Each system equipped with a recording device that takes a single snapshot of Q and T at a
random unknown value of the ideal time t.

Take a large number of such systems, initially all in the same quantum state, wait for a
“long time” and concludes the experiment.

Recordings taken by the measurement devices are then collected and analyzed all
together.

Computes how many times n (T = Ty, Q € [qi, §2]) each reading with a given value
T=To, Q€ [q,qz] occurs

Take each of those values n (T = Ty, Q € [q), ¢2]) and divides them by the number of
systems in the ensemble; in the limit of infinite systems, a joint probability is given. 5c/57



Ashtekar formulation

* Tetrad formulation of gravity action

I
S= /bulk integral—i—;/boundary term

Hilbert‘-,PaIatini Nieh-Y\arn term

g

written in terms of tetrads gab:m_,e{,e{7

with v = Barbero-Immirzi parameter
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Ashtekar formulation

¢ Tetrad formulation of gravity action

I
S= /bulk integral+/boundary term
v

Hilbert‘-,PaIatini Nieh-Y\arn term

g

written in terms of tetrads gab:mje{,e{,

with v = Barbero-Immirzi parameter
* Decompose into spacet+time; Legendre transformation:

* Canonical variables: su(2) Ashtekar connection

i _ i i
Aa - ra +v Ka
~~ ~~
spin connection extrinsic curvature

. L ) . - N
Momenta: inverse triads E]', where spatial metric is qo» = 7;E,E,
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Cosmology

¢ FLRW Universe
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Cosmology

* FLRWV Universe
ds? = —dt® + a*(t) (dxf + d3 + dx%)
with a(t) =scale factor
« Al has only one independent component ¢ = ~ya
* E has only one independent component p where |p| = a?

* Volume of the Universe: V = |f,>]3/2

The Hamiltonian (constraint) of the system

6
C=—=¢c
< VPl
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