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Learning with Non-Representative Data

Can you learn about a population from a sample
that only partially represents the population?

New general method — looking for additional applications.

Joint with: Max Autenrieth, David Stenning, and Roberto Trotta
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Learning with Non-representative Data
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A General Challenge
@ Aim: use training set (x, y) to predict target set (y from x).
@ Spectroscopic data more available for bright/near objects.

@ These object differ systematically from population. Imperial College

London

[Image Credit: Izbicki, Lee, Freeman, 2017, AoAS]
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Learning with Non-Representative Data

Covariate Shift:
ptraining(y | X) = ptarget(y | X) bUt ptraining(x) # ptarget(x)

Supernovae classification:
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Learning methods must be adapted to account forI e
mperial College

non-representative training data. London
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Does a new drug improve health outcomes?

Causal Inference:
@ Split subjects: treatment (Z = 1) and control (Z = 0) group

@ What if treatment group differs systematically from control
group, e.g., in terms of x.

?
ptreatment(x ) = pcontrol(x )

@ Randomiziation is the gold standard, not always possible.

Propensity Scores:
@ Rosenbaum and Rubin (1983) define propensity scores:

e(x)=Pr(Z=1|x).
@ Demonstrate that e(x) is a balancing score:

Prreatment (X | €(X)) = Peontrol (X | €(X)). obeion lege

... easy to diagnose in practice!
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StratLearn:! Improved Learning under Covariate Shift

Prope nsity scores Partition on two covariates

@ Estimate:
e(x) = Pr(target set | covariates)

brightness
o o

@ Check: puin(X | (X)) = Prarget(X | €(X))

@ Given e(x), expected loss of predictor,
f(x), is same in target & training sets.

0 o5 as
redshift

Partition on all covariates

StratLearn
@ Stratify target & training sets on &(x).
@ Classify data separately in each strata.

brightness
. o

Reduce covariate shift and thus expected
classification/prediction error. o e

Imperial College
London

1Autenrieth, van Dyk, Trotta, and Stenning (2023). Stratified Learning: A General-Purpose Statistical
Method for Improved Learning under Covariate Shift, SADM, to appear
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Supernova classification — updated SPCC:

Data: Updated “Supernova photometric classification
challenge” (SPCC, Kessler et al. 2010)
@ LC data of 21,319 simulated supernovae of type la, Ib, Ic
and Il
@ Training Set: 1102 spectroscopically confirmed SNe
with known types
@ Target Set: 20,216 SNe with photometric information
alone

Preprocessing:
@ Gaussian process fit of LCs (four color bands, g, r, i, z)
combined with diffusion map, plus redshift and a measure
of brightness, to extract 102 covariates imperial College
(Revsbech et al., 2018; Richards et al.. 2012) rondon
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Results for Supernova Classification

Random forest classification, cross validation to select
hyperparameter

ROC for StratLearn and several existing weighting methods.
@ “Biased” ignores Covariate Shift.
@ With an unbiased training set

AUC = 0.965. 2
é © |
Weighting Methods for Covariate Shift % .
@ Reweight training set: prarget (X)/Prraining (X)- g 39
@ ULSIF (Kanamori et al. 2009); = Biased:  AUC = 0.902
@ NN: Nearest-Neighbor (Kremer et al. 2015); 7 BLSIF: - AUC 20902
@ IPS: probabilistic classification (Kanamori PS: | AuC=0921
et al. 2009): g ! ‘ ‘ Stratl‘_eam. AL‘JC = 0.95?
0.0 0.2 0.4 06 08 1.0
False Positive Rate Imperial College
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Photo-z conditional density estimation

Objective:
Conditional density estimation f(z|x) of
redshift given photometric magnitudes.

Significant covariate shift is magnitudes.

Data (following Izbicki et al., 2017):

@ 468k galaxies (Sheldon et al. 2012), spectro-
scopic redshift, 5 photometric magnitudes.

@ Create non-representative training set.
@ Add k € {10,50} i.i.d. Gaussian covariates.

What is the effect of high-dimensional
irrelevant covariates?
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Photo-z — Stress Test:

¢ Biased uLSIF NN * IPS e KLIEP e StratLearn
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Target risk of photometric redshift estimates, using different
sets of predictors.

StratLearn especially advantageous in presence of high
dimensional covariate space.

Imperial College
London
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Cosmic Shear Tomography

Weak Gravitational Lensing R

@ Large mass along line of sight creates ,";\ )
distortion/shear in observed image. B ]

@ Shear Tomography bins galaxies on ' f.—,;,'

photo-z to map 3D distribution of mass.  |.. ‘;_ L ;

@ Resulting estimates of cosmological para-
meters under ACMD are inconsistent with those from CMD.

@ A possible source of bias is binning of galaxies and the
estimated redshift distribution within bins.

We use StratLearn to improve:
@ Tomographic binning of galaxies
@ Estimate z-distribution within bins (using hierarchical models)
@ Joint work with: Benjamin Joachimi and Angus Wright.

Imperial College

London

Image: TalldJimbo, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Cosmic Shear Tomography

Confusion matrices for (a) zg and (b) StratLearn:
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Reduce bias by 40% compared with best available alternative.

[Within bin mean of z, bias averaged across bins.] Imperial College



Two-Stage Analysis
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Studying the Expansion History of Universe?

Type la Supernovae had a
common “flashpoint”

Absolute magnitudes:
IVIan ~ N(Mla,ola).

int

Non-linear Regression: mg; = g(z;, Qa, Qu, Hp) + M}a
[function of density of dark energy and of total matter]
[part of a (second-stage) fully-Bayesian Hierarchical model * |

For Non Type la: M}“" ~ Distribution(M¥', o'} with ¢ » ol

int int int

First Stage Analysis: Classify Supernova into Type la, non Type la.

5 Imperial College
Shariff, Jiao, Trotta, and van Dyk (2016). BAHAMAS: New SNIla Analysis Reveals Inconsistencies London
with Standard Cosmology. The Astrophysical Journal, 827, 1
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Two-Stage Analysis

Let:
@ Y, = data used to classify supernovae
@ Y; = data used to fit cosmological parameters
@ Z = classification of supernovae (1 for Type 1a, 0 otherwise)
@ 0 = cosmological parameters

Pragmatic Bayes: m(Z,0) = p(Z | Yo) p(0 | Z, Y1)
@ Resample Z ~ p(Z | Yo).
@ Sample 60 ~ p(8 | ZOY;).

Fully Bayes: 7(Z,0) = p(Z | Yo, Y1) p(0 | Z, Yo, Y1)
@ Y, improves classification, Z (and thus 6 estimate).

Imperial College
London
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Pragmatic Bayesian — Simulation Study

@ Frequentist evaluation with 8 repetitions on simulated data
each with 500 SNe (5% contamination).

Qn, (total matter) Qa (dark energy)

Gold Standard{ -e= R ——— —— True values
® Mean
Mean +/- 1 sd
----- Mean +/- 2 sd
Pragmaticy -=e= e
Contaminated — 1 - —— ]
0 1 2 0 1 2

@ Pragmatic approach recovers true parameters well, with
slightly increased variance compared to Gold Standard.

Imperial College

@ Results shown consistent for other parameters. London
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For Further Reading |

@ Autenrieth, M., van Dyk, D. A., Trotta, R., and Stenning, D. C.
Stratified Learning: A General-Purpose Statistical Method for Improved Learning
under Covariate Shift
Statistical Analysis and Data Mining, 2023, 1-16.

@ Autenrieth, M., Joachimi, B., Stenning, D. C., Trotta, R., van Dyk, D. A., and
Wright, A. H.
Improved Weak Lensing Photometric Redshift Calibration via StratLearn and
Hierarchical Modeling
preprint, 2023+.

@ Revsbech, E., Trotta, R., and van Dyk, D. A.
STACCATO: A Novel Solution to Supernova Photometric Classification...
Monthly Notices of the Royal Astronomical Society, 473, 3969-3986, 2018.

@ Shariff, H., Jiao, X., Trotta, R., and van Dyk, D. A.
BAHAMAS: SNla Analysis Reveals Inconsistencies with Standard Cosmology.
The Astrophysical Journal, 827, 1 (25 pp), 2016.
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Photometric Classification of SNe®

Data:
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E.g., Supernova photometric classification challenges, such as Kessler (2010).

Training Set
. SNia
7 « non-SNla
Unfortunately Data are g, |y Test et
Subject to Covariate Shift. g %’;&{
ptraining(x) # ptarget(x)- "o
00 " o4 r;dsﬁ{f? 2 Imperial College

Londor
3Revsbech, Trotta, and van Dyk (2018). STACCATO: A Novel Solution to Supernova Photometric ondon
Classification with Biased Training Samples, 473, 3969-3986.
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