Likelihood Free Frequentist Inference (LF2I) of atmospheric cosmic-ray showers

Alex Shen¹ Ann Lee¹ Luca Masserano¹ Tommaso Dorigo ² Michele Doro ^{2 3} Federico Nardi ³

> ¹Department of Statistics and Data Science Carnegie Mellon University

²Istituto Nazionale Fisica Nucleare

³Department of Physics and Astronomy Università di Padova

April 17, 2023

Study of high energy cosmic rays remains challenging

¹Source: swgo.org (Richard White, MPIK)

¹Source: swgo.org (Richard White, MPIK)

Alex Shen (CMU)

SBI for Cosmic Rays

 Ground-based facilities only partially detect secondary showers

¹Source: swgo.org (Richard White, MPIK)

- Ground-based facilities only partially detect secondary showers
- Not every cosmic ray is informative (e.g. uncertain trajectory of charged particles)

¹Source: swgo.org (Richard White, MPIK)

- Ground-based facilities only partially detect secondary showers
- Not every cosmic ray is informative (e.g. uncertain trajectory of charged particles)

Proposed SWGO¹

¹Source: swgo.org (Richard White, MPIK)

SBI for Cosmic Rays

Goals of the analysis

Given our observed detections associated with a secondary shower, we hope to

Goals of the analysis

Given our observed detections associated with a secondary shower, we hope to

1. Identify *photonic* cosmic rays

Goals of the analysis

Given our observed detections associated with a secondary shower, we hope to

Simulation of secondary showers induced by cosmic ray interactions with atmophere.

- Input: primary cosmic ray parameters
 - μ : particle identity
 - E : energy
 - Z, A : zenith, azimuthal angles
- Output X: identity, momenta, location, and timing of secondary particles observed at ground level

Example Simulation¹

¹Source: https://www.iap.kit.edu/corsika/

Data: CORSIKA Cosmic Ray Simulation Software

Alex Shen (CMU)

April 17, 2023

ヨト イヨト

Image: A matrix and a matrix

æ

1 Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$

Alex Shen (CMU)

SBI for Cosmic Rays

▲ ■ ▶ < ■ ▶ ■</p>
April 17, 2023

6/9

1 Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$ 2 Simulated data $\{(\mu_1, \nu_1, X_1), ..., (\mu_B, \nu_B, X_B)\}$

- **1** Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$
- **2** Simulated data $\{(\mu_1, \nu_1, X_1), ..., (\mu_B, \nu_B, X_B)\}$
- **3** Inference on μ (signal vs background)

- **1** Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$
- **2** Simulated data $\{(\mu_1, \nu_1, X_1), ..., (\mu_B, \nu_B, X_B)\}$
- **3** Inference on μ (signal vs background)
 - Photonic CRs are very rare $\approx 1:10^5 \rightarrow$ anomaly detection

- **1** Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$
- **2** Simulated data $\{(\mu_1, \nu_1, X_1), ..., (\mu_B, \nu_B, X_B)\}$
- **3** Inference on μ (signal vs background)
 - Photonic CRs are very rare $\approx 1:10^5 \rightarrow$ anomaly detection
 - Type I error control over all $(\mu, \nu) \in \mathcal{M} \times \mathcal{N} \rightarrow$ nuisance parameterization

- **1** Likelihood $\mathcal{L}(\theta) = \mathcal{L}(\mu, \nu)$ where $\nu = (E, Z, A)$
- **2** Simulated data $\{(\mu_1, \nu_1, X_1), ..., (\mu_B, \nu_B, X_B)\}$
- **3** Inference on μ (signal vs background)
 - Photonic CRs are very rare $\approx 1:10^5 \rightarrow$ anomaly detection
 - Type I error control over all $(\mu, \nu) \in \mathcal{M} \times \mathcal{N} \rightarrow$ nuisance parameterization
- **4** Directly predicting μ from X is insufficient

- (日)

э

Given an observed footprint X, we test

$$m{H_0}: \mu = 0 \; ({ t proton}) \quad { t vs} \quad m{H_a}: \mu = 1 \; ({ t photon}) \quad (orall \;
u \in \mathcal{N})$$

Given an observed footprint X, we test

 $H_0: \mu = 0$ (proton) vs $H_a: \mu = 1$ (photon) ($\forall \nu \in \mathcal{N}$) Test statistic (BFF)

$$\tau_1(X) = \frac{\Pr(X; \mu = 0)}{\Pr(X; \mu = 1)} = \frac{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 0, \nu) d\pi(\nu)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

Alex Shen (CMU)

April 17, 2023

Given an observed footprint X, we test

 $H_0: \mu = 0 \text{ (proton)} \text{ vs } H_a: \mu = 1 \text{ (photon)} (\forall \nu \in \mathcal{N})$

Test statistic (BFF)

$$\tau_1(X) = \frac{\Pr(X; \mu = 0)}{\Pr(X; \mu = 1)} = \frac{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 0, \nu) d\pi(\nu)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

 $oldsymbol{0}$ $\mathbb{O}(\cdot)$ can be estimated via classification on simulated data

Given an observed footprint X, we test

 $H_0: \mu = 0 \text{ (proton)} \text{ vs } H_a: \mu = 1 \text{ (photon)} (\forall \nu \in \mathcal{N})$

Test statistic (BFF)

$$\tau_1(X) = \frac{\Pr(X; \mu = 0)}{\Pr(X; \mu = 1)} = \frac{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 0, \nu) d\pi(\nu)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

1 $\mathbb{O}(\cdot)$ can be estimated via classification on simulated data **2** Use quantile regression to estimate cutoffs $C_{\alpha}(\nu)$

Given an observed footprint X, we test

 $H_0: \mu = 0 \text{ (proton)} \text{ vs } H_a: \mu = 1 \text{ (photon)} (\forall \,
u \in \mathcal{N})$

Test statistic (BFF)

$$\tau_1(X) = \frac{\Pr(X; \mu = 0)}{\Pr(X; \mu = 1)} = \frac{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 0, \nu) d\pi(\nu)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

 $oldsymbol{0}$ $\mathbb{O}(\cdot)$ can be estimated via classification on simulated data

- 2 Use quantile regression to estimate cutoffs $C_{\alpha}(\nu)$
- **3** Reject if $\tau(X) \leq \inf_{\nu \in \mathcal{N}} C_{\alpha}(\nu)$

- ∢ 🗗 ▶

э

For photonic cosmic rays, want a $1 - \alpha$ confidence set for $\nu = (E, Z, A)$. Neyman style test inversion:

$$H_0: \nu = \nu_0 \quad \text{vs} \quad H_a: \nu \neq \nu_0 \quad \forall \ \nu_0 \in \mathcal{N}$$

For photonic cosmic rays, want a $1 - \alpha$ confidence set for $\nu = (E, Z, A)$. Neyman style test inversion:

$$H_0: \nu = \nu_0 \quad \text{vs} \quad H_a: \nu \neq \nu_0 \quad \forall \nu_0 \in \mathcal{N}$$

Test Statistic (BFF)

$$\tau_2(X) = \frac{\Pr(X; \mu = 1, \nu = \nu_0)}{\Pr(X; \mu = 1)} = \frac{\mathbb{O}(X; \mu = 1, \nu = \nu_0)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

For photonic cosmic rays, want a $1 - \alpha$ confidence set for $\nu = (E, Z, A)$. Neyman style test inversion:

$$H_0: \nu = \nu_0 \quad \text{vs} \quad H_a: \nu \neq \nu_0 \quad \forall \nu_0 \in \mathcal{N}$$

Test Statistic (BFF)

$$\tau_2(X) = \frac{\Pr(X; \mu = 1, \nu = \nu_0)}{\Pr(X; \mu = 1)} = \frac{\mathbb{O}(X; \mu = 1, \nu = \nu_0)}{\int_{\mathcal{N}} \mathbb{O}(X; \mu = 1, \nu) d\pi(\nu)}$$

1 $\mathbb{O}(\cdot)$ is already estimated from previous step

For photonic cosmic rays, want a $1 - \alpha$ confidence set for $\nu = (E, Z, A)$. Neyman style test inversion:

$$H_0: \nu = \nu_0 \quad \text{vs} \quad H_a: \nu \neq \nu_0 \quad \forall \nu_0 \in \mathcal{N}$$

Test Statistic (BFF)

$$au_2(X) = rac{\mathsf{Pr}(X;\mu=1,
u=
u_0)}{\mathsf{Pr}(X;\mu=1)} = rac{\mathbb{O}(X;\mu=1,
u=
u_0)}{\int_{\mathcal{N}} \mathbb{O}(X;\mu=1,
u) d\pi(
u)}$$

- **1** $\mathbb{O}(\cdot)$ is already estimated from previous step
- 2 Use quantile regression to estimate cutoffs $C_{\alpha}(\nu)$

For photonic cosmic rays, want a $1 - \alpha$ confidence set for $\nu = (E, Z, A)$. Neyman style test inversion:

$$H_0: \nu = \nu_0 \quad \text{vs} \quad H_a: \nu \neq \nu_0 \quad \forall \nu_0 \in \mathcal{N}$$

Test Statistic (BFF)

$$au_2(X) = rac{\mathsf{Pr}(X;\mu=1,
u=
u_0)}{\mathsf{Pr}(X;\mu=1)} = rac{\mathbb{O}(X;\mu=1,
u=
u_0)}{\int_{\mathcal{N}} \mathbb{O}(X;\mu=1,
u) d\pi(
u)}$$

- **1** $\mathbb{O}(\cdot)$ is already estimated from previous step
- 2 Use quantile regression to estimate cutoffs $C_{\alpha}(\nu)$
- **3** Confidence Set: $\{\nu_0 : \tau(X) \ge C_{\alpha}(\nu)\}$

Image: A matrix

æ

 Identify photonic cosmic rays via LF2I nuisance parameterized anomaly detection

- Identify photonic cosmic rays via LF2I nuisance parameterized anomaly detection
- 2 For photons, construct Neyman confidence sets for energy and orientation via LF2I

- Identify photonic cosmic rays via LF2I nuisance parameterized anomaly detection
- 2 For photons, construct Neyman confidence sets for energy and orientation via LF2I

Thanks! Any questions?