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Study of high energy cosmic rays remains challenging

Useful for astrophysical research,
however

1 Ground-based facilities only
partially detect secondary
showers

2 Not every cosmic ray is
informative (e.g. uncertain
trajectory of charged particles)

Proposed SWGO1

1Source: swgo.org (Richard White, MPIK)
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Goals of the analysis

Given our observed detections associated with a secondary shower, we
hope to

1. Identify photonic cosmic rays 2. Estimate their orientation/energy
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Data: CORSIKA Cosmic Ray Simulation Software

Simulation of secondary showers induced by
cosmic ray interactions with atmophere.
• Input: primary cosmic ray parameters

• µ : particle identity
• E : energy
• Z ,A : zenith, azimuthal angles

• Output X : identity, momenta, location,
and timing of secondary particles
observed at ground level

Example Simulation1

1Source: https://www.iap.kit.edu/corsika/
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Goal 1: Setup

1 Likelihood L(θ) = L(µ, ν) where ν = (E ,Z ,A)

2 Simulated data {(µ1, ν1,X1), ..., (µB , νB ,XB)}
3 Inference on µ (signal vs background)

• Photonic CRs are very rare ≈ 1 : 105 → anomaly detection
• Type I error control over all (µ, ν) ∈ M×N → nuisance

parameterization

4 Directly predicting µ from X is insufficient
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Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 1: Nuisance-parameterized Anomaly Detection via
LF2I

Given an observed footprint X , we test

H0 : µ = 0 (proton) vs Ha : µ = 1 (photon) (∀ ν ∈ N )

Test statistic (BFF)

τ1(X ) =
Pr(X ;µ = 0)

Pr(X ;µ = 1)
=

∫
N
O(X ;µ = 0, ν)dπ(ν)∫

N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) can be estimated via classification on simulated data

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Reject if τ(X ) ≤ infν∈N Cα(ν)

Alex Shen (CMU) SBI for Cosmic Rays April 17, 2023 7 / 9



Goal 2: Neyman Confidence Sets for Energy/Direction via
LF2I

For photonic cosmic rays, want a 1− α confidence set for ν = (E ,Z ,A).
Neyman style test inversion:

H0 : ν = ν0 vs Ha : ν ̸= ν0 ∀ ν0 ∈ N

Test Statistic (BFF)

τ2(X ) =
Pr(X ;µ = 1, ν = ν0)

Pr(X ;µ = 1)
=

O(X ;µ = 1, ν = ν0)∫
N
O(X ;µ = 1, ν)dπ(ν)

1 O(·) is already estimated from previous step

2 Use quantile regression to estimate cutoffs Cα(ν)

3 Confidence Set: {ν0 : τ(X ) ≥ Cα(ν)}
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Summary

Cosmic ray reconstruction from ground based detector data

1 Identify photonic cosmic rays via LF2I nuisance parameterized
anomaly detection

2 For photons, construct Neyman confidence sets for energy and
orientation via LF2I

Thanks! Any questions?
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