Template morphing

Continuous modelling in a multidimentional space of parameters

Lydia Brenner

Introduction

Start with the formulation of a likelihood: $L(\vec{x} \mid \vec{\mu}, \vec{\theta})$

(B)SM physics model * Soft physics model * ATLAS detector description * ATLAS analysis reconstruction

Problem: We don't have a continuous description of $L(\vec{x} \mid \vec{\mu}, \theta)$

► Can only calculate L(x) for any point $\vec{\mu}, \vec{\theta}$

Introduction

Can approximate statistical procedure with grid scan

Introduction

Morphing The procedure to turn a collection of points into a continuous function

Interpolating between models

- > Need to define a morphing algorithm to define s(x) for any value of a
 - We only know s(x) for a=-1,0,1

Interpolating between models

Linear interpolation

When does this stop working?

Linear interpolation

Horizontal interpolation

Interpolate the cumulative distribution function

Moment morphing

Constructs a morphed interpolated function that has linearly interpolated moments

First two moments of template models are the mean and variance

Multidimensional interpolation option

Computationally expensive, but only once

Comparing the methods

Different ways to create a continuous distribution of the likelihood

s Gaussian varying width Gaussian varying mean

Gaussian

to

Uniform

(this is

conceptually ambigous!)

Effective lagrangian morphing

This method allows for more complicated distributions

- Continuous
- Analytic
- Fast

Combines rate and shape information simultaneously

Can use any Lagrangian as starting point, I will use effective models in my examples

Model prametrisation

Morphing function for an observable T_{out} at any coupling point \vec{g}_{target} constructed from weighted sum of input samples T_{in} at fixed coupling points \vec{g}_i

Example with two free parameters in one vertex

Distribution of a kinematic observable proportional to the matrix element squared

 $\mathcal{M}(g_{SM}, g_{SM}) = g_{SM} \mathcal{O}_{SM} + g_{BSM} \mathcal{O}_{BSM}$ $|\mathcal{M}(g_{SM}, g_{SM})|^2 = g_{SM}^2 |\mathcal{O}_{SM}|^2 + g_{BSM}^2 |\mathcal{O}_{BSM}|^2 + 2 g_{SM} g_{BSM} \mathcal{R}(\mathcal{O}_{SM}^* \mathcal{O}_{BSM})$

Process with two parameters applied in one vertex: g_{SM} and g_{BSM} Matrix element can be factorized

Example with two free parameters in one vertex

Three generated distributions T_{in} (g_{SM} , g_{BSM}) needed to obtain distribution with arbitrary parameters

 $T_{in}(1,0) = |\mathcal{O}_{SM}|^2$

 $T_{in}(0,1) |\mathcal{O}_{BSM}|^2$

 $T_{in}(1,1) = |\mathcal{O}_{SM}|^2 + |\mathcal{O}_{BSM}|^2 + 2 \mathcal{R}(\mathcal{O}_{SM}^* \mathcal{O}_{BSM})$

Going now to arbitrary parameters (g_{SM}, g_{BSM}) using

 $|\mathcal{M}(g_{SM}, g_{SM})|^2 = g_{SM}^2 |\mathcal{O}_{SM}|^2 + g_{BSM}^2 |\mathcal{O}_{BSM}|^2 + 2 g_{SM} g_{BSM} \mathcal{R}(\mathcal{O}_{SM}^* \mathcal{O}_{BSM})$ We get

 $T_{out}(g_{SM}, g_{BSM}) = (g_{SM}^2 - g_{SM}^2 - g_{$

 $-g_{\rm SM} \cdot g_{\rm BSM}$

 $-g_{\rm SM} \cdot g_{\rm BSM}$

 $+g_{\rm SM} \cdot g_{\rm BSM}$

BSM

Interference

 $g^2_{\rm BSM}$

Generalisation to n dimentions

$$T(\vec{g}) \propto |\mathcal{M}(\vec{g})|^2 = (\sum_{i=1}^{n_p + n_s} g_i \mathcal{O}_i)^2 + (\sum_{j=1}^{n_d + n_s} g_j \mathcal{O}_j)^2$$

production vertex <u>decay vertex</u>

Where n_p is the number of parameters in the production vertex, n_d the number in the decay vertex, and n_s the number shared in both vertices

So the number of input parameters needed is

$$\begin{split} n_{input} &= \frac{n_p(n_p+1)}{2} \frac{n_d(n_d+1)}{2} + \binom{4+n_s-1}{4} + \binom{n_p n_s + \frac{n_s(n_s+1)}{2}}{2} \frac{n_d(n_d+1)}{2} \\ &+ \left(n_d n_s + \frac{n_s(n_s+1)}{2}\right) \frac{n_p(n_p+1)}{2} + \frac{n_s(n_s+1)}{2} n_p n_d + (n_p+n_d) \binom{3+n_s-1}{3} \end{split}$$

Propegation of sample uncertainties

Reminder: the morhping function for a bin in the distribution is $T_{out}^{bin}(\vec{g}_{target}) = \sum_{i} w_i(\vec{g}_{target}; \vec{g}_i) T_{in}^{bin}(\vec{g}_i)$ For one input distribution, the bin content is calculated as $T_{in}^{bin}(\vec{g}_i) = N_{MC,in}^{bin}(\vec{g}_i) \sigma_{in}(\vec{g}_i) \mathcal{L}/N_{MC,in}$

The uncertainty on that bin is $\sqrt{N_{MC,in}^{bin}(\vec{g}_i)}$

The propegated statistical uncertainty is

 $\Delta T_{out}^{bin}(\vec{g}_i) = \sqrt{\sum_i w_i^2 \left(\vec{g}_{target}; \vec{g}_i \right) N_{MC,in}^{bin} \left(\vec{g}_i \right) \left(\sigma_{in}(\vec{g}_i) \mathcal{L} / N_{MC,in} \right)^2}$

Dependent on chosen input paramters points \vec{g}_i as well as desired output parameter point \vec{g}_{target}

Input parameter point \vec{g}_i , or input distribuions T_{in} , can be chosen to reduce MC statistical uncertainties

Interpolation of systematic uncertainties

Following same method of template morphing for (total) uncertainty

- Try taking into account possible changing in uncertainties in the multi-dimentional space
 - Estimating all uncertainties in all input sample points can be too expensive or complicated
- Try taking into account possible changes in correlations between uncertainties in the multi-dimentional space
 - Physics of the uncertainties does not follow the same physics as the signal model

VBF $H \rightarrow WW$ example

VBF H \rightarrow WW process with one SM (g_{SM}) and two BSM (g_{HWW} , g_{AWW}) parameters

- > 15 samples needed as inputs
- > Each sample with a 50k sample size
- > Consider signals only, background free
- > Look at one kinematic observable $\Delta \phi_{jj}$

VBF $H \rightarrow WW$ example : Input samples

Expact only small deviation from SM

- > $g_{SM} = 1$ for all input samples
- > BSM parameter limits chosen such that $\sigma_{pure BSM} \sim \sigma_{SM}$

VBF $H \rightarrow WW$ example : Input samples

Expact only small deviation from SM

- > $g_{SM} = 1$ for all input samples
- > BSM parameter limits chosen such that $\sigma_{pure BSM} \sim \sigma_{SM}$

VBF H→ WW example : Distributions

23

VBF $H \rightarrow WW$ example : Fit

24

Summary

The morphing techniques provide a powerful way to model the distributions in combined likelihoods

All available with ROOT release v6.26.00

Different methods are correct in different situation

- Consider computational costs
- Uncertainty propagation of systematics non-trivial

back up

Parameters for input distribution

Choose to reduce statistical uncertainties

Generalisation to n dimentions

$$T(\vec{g}) \propto |\mathcal{M}(\vec{g})|^2 = (\sum_{i=1}^{n_p + n_s} g_i \mathcal{O}_i)^2 + (\sum_{j=1}^{n_d + n_s} g_j \mathcal{O}_j)^2$$

$$\overrightarrow{production vertex} \qquad \underbrace{decuv vertex}_{decuv vertex}$$

Where n_p is the number of parameters in the production vertex, n_d the number in the decay vertex, and n_s the number shared in both vertices

decuy vertex

So the number of input parameters needed is

$$\begin{split} n_{input} &= \frac{n_p(n_p+1)}{2} \frac{n_d(n_d+1)}{2} + \binom{4+n_s-1}{4} + \binom{n_p n_s + \frac{n_s(n_s+1)}{2}}{2} \frac{n_d(n_d+1)}{2} \\ &+ \left(n_d n_s + \frac{n_s(n_s+1)}{2}\right) \frac{n_p(n_p+1)}{2} + \frac{n_s(n_s+1)}{2} n_p n_d + (n_p+n_d) \binom{3+n_s-1}{3} \end{split}$$

So for example with 13 free parameters in VBF H \rightarrow VV you need 1605 input parameters

- Lots of input samples creation can be computationaly expensive
- Interpolation computationally cheap

Higgs characterisation model

$$\begin{split} \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{\mathrm{SM}} \Big[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \Big] \right. \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{2} \Big[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \Big] \\ &- \frac{1}{4} \frac{1}{4} \Big[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{2} \frac{1}{4} \Big[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \Big] \\ &- \frac{1}{4} \sum_{\alpha} \Big[c_{\alpha} [\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + (\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c.) \Big] \Big\} X_{0} \end{split}$$