Systematic Uncertainties in Neutrino Oscillation analyses

Edward Atkin

e.atkin17@imperial.ac.uk

PhyStat Systematics, 2023

24th April

Banff International Research Station for Mathematical Innovation and Discovery

Introduction

There have been several PhyStats dedicated to neutrinos in the past:

- IMPMU 2016, Fermilab 2016, CERN 2019 ... Somewhere else 202X??
- Excellent talk from Chrisophe Bronner at remote workshop PHYSTAT-Systematics 2021
- If you're interested in learning more about systematics and statistical challenges for neutrino experiments take a look at the summaries.

Disclaimers:

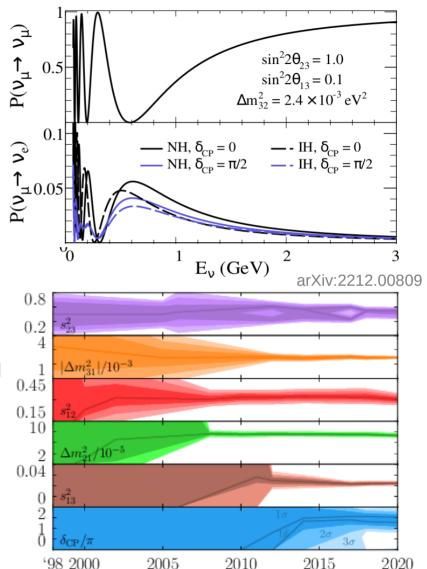
- This is very focused on the T2K 3-flavour oscillation analysis
 - Other analysis techniques exist like NOvA and PRISM techniques for DUNE
- I'm not going to mention other interesting statistical areas in neutrinos such as cross-section measurements, BSM searches, reactor neutrinos, atmospheric neutrinos etc.
- Very much a Bayesian perspective

Neutrino Oscillations

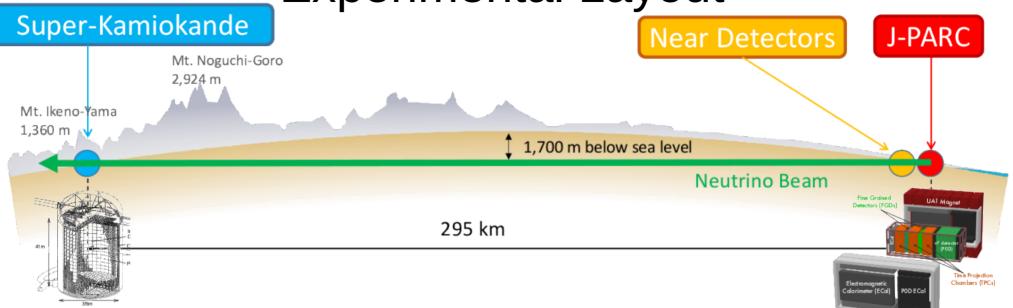
Neutrinos have a strange property where their mass and weak eigenstates mix.

6 parameters which describe 3-flavour neutrino oscillation probability

- Three mixing angles: θ_{23} , θ_{13} , θ_{12}
- Two mass splittings: $\Delta m_{32}^2 \Delta m_{13}^2$
- Complex-phase $\delta_{_{\mathbb{CP}}}$
- Ordering of mass states also unknown ($\Delta m_{32}^2 > 0$?)


Neutrinos only interact via the weak force

- Generally thought of as low stats experiments
- Huge amount of progress has been made since discovery

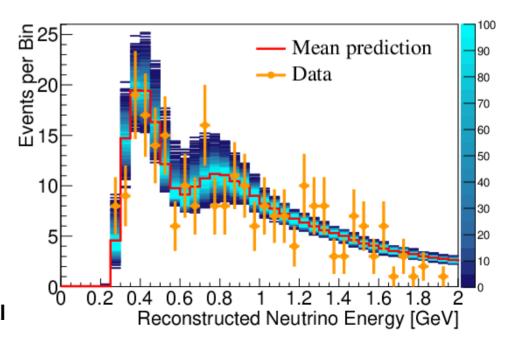

Current Generation long-baseline experiments are **T2K** (Japan) and **NOvA** (US).

Future experiments being built: Hyper-K (Japan) and DUNE (US)

- These experiments aim to make precision measurements of oscillation parameters
- Hopes to rule out particular values at 5σ e.g. $\delta_{CP} \neq 0$
- Understanding systematics is going to be key!

Experimental Layout

- Produce an intense beam of neutrinos at the J-PARC facility in Tokai, Japan
- Two detectors: one Near the neutrino source, Far from the neutrino source
- Far detector:
 - \rightarrow Measures neutrinos after they have oscillated \rightarrow this is where we **measure signal parameters**
 - → Lower statistics due to distance from neutrino source (T2K FD has ~1,000 selected data events total)
 - → (High statistics atmospheric neutrino samples)
- Near Detector:
 - Measures unoscillated neutrino beam
 - High(er) statistics, constrains sources of systematics uncertainty (~200,000 selected data events)


$$N_{pred}^{i} = \int_{E_{\min}}^{E_{\max}} \underbrace{P(\nu_{\alpha} \to \nu_{\beta})}^{\text{signal}} \times \underbrace{\Phi(E_{\nu})}^{\text{beam}} \times \underbrace{\sigma(E_{\nu}), \overrightarrow{x})}^{\text{cross section}} \times \underbrace{\epsilon(\overrightarrow{x})}^{\text{detector}} dE_{\nu}$$
nuisance parameters

- N_{pred}^{i} = number of predicted events in a bin, E_{v} is neutrino energy, x are the kinematics quantities of particles in the detector (lepton momentum, Q^{2} etc.)
- Signal: $P(v_{\alpha} \rightarrow v_{\beta})$ is the oscillation probability for a set of oscillation parameters

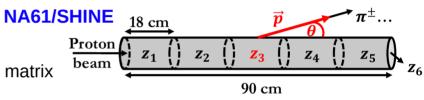
Sources of nuisance parameters:

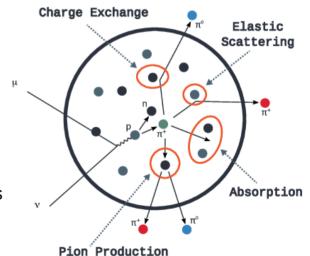
- Beam: how many neutrinos did we produce?
 What was their energy? What flavour?
- Cross section / Interaction model: probability of neutrino interacting? Energy, type and number of particles produced in the interaction?
- **Detector**: momentum scale, PID, acceptance, efficiency etc.
 - · Different for ND and FD
- Factorise nuisance parameters

Total number of parameters ~700 of which 6 are signal

The good, the bad and the ugly

The good(ish)...


- Beam systematics: ~100 nuisance parameters
 - constrained by T2K beam monitors, a dedicated ND (INGRID) and external data
 - Underlying "physics parameters" such as hadron scattering not fitted in analysis
 - Throw underlying parameters to produce a distribution of events in an energy range
 - Build a covariance matrix from all these throws
- Detector systematics: ~500 nuisance parameters
 - Calibration and control samples
 - Again, don't directly fit parameters but throw toys to produce covariance matrix
 - Apply these uncertainties to each analysis bin
 - N.B. moving away from this method and will fit detector systematics directly


The bad and the ugly...

- Neutrino interaction systematics: ~50 nuisance parameters
 - Not a lot of external datasets to constrain systematics
 - Often measurements taken with different neutrino beam energy, different target nuclei
 - Some systematics interpolate between different models
 - Often we add ad-hoc uncertainties motivated by differences seen in external datasets
 - Examples are uncertainties on nucleon form factors, nuclear effects
 - See NuSTEC white paper on Neutrino Interaction systematics for more information

Replica-Target Data

Likelihood function

$$\mathcal{L} = \prod_{bins} \left(\frac{Poisson(N_{obs}^{i}, N_{pred}^{i}(o, f))}{Poisson(N_{obs}^{i}, N_{obs}^{i})} \right) \times \mathcal{L}_{penalty}(o, f)$$

Poisson likelihood ratio for ND and/or FD, o = signal parameters, f = nuisance

(N.B. include MC stat uncertainty based on Barlow-Beeston method)

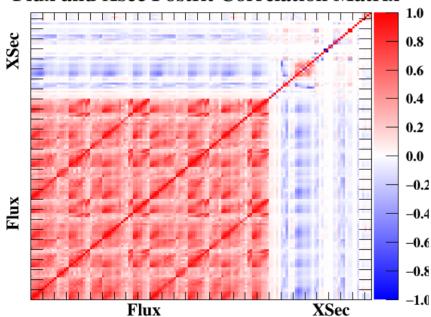
We evaluate this Likelihood using two different techniques:

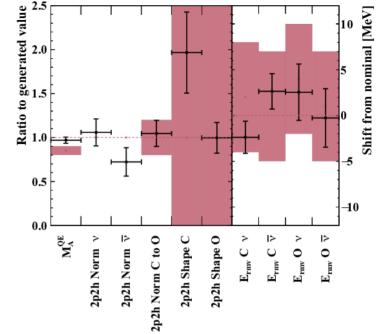
Simultaneous ND+FD fit

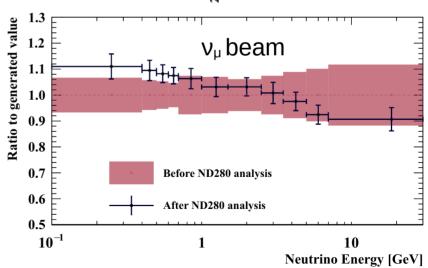
- Use MCMC to sample Likelihood.
 - Samples all ~700 parameters
- Marginalise across nuisance parameters to produce credible intervals in 1D and 2D
- Can perform ND-only fits as well

Sequential fit

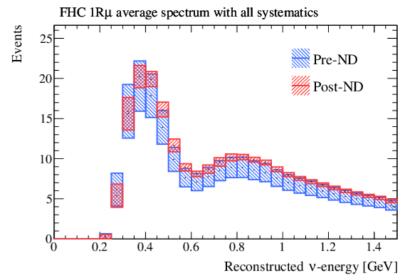
- 1) Fit ND data using MINUIT based fitter. Gives covariance matrix describing ND constraint and correlations between all nuisance parameters
- 2) Hybrid-frequentist fitter uses matrix to make marginalisation toys of systematics
- 3) Build confidence intervals using $\Delta \chi^2$ method

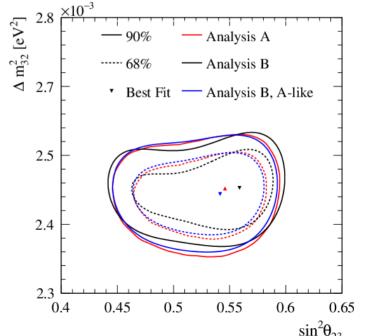

Near Detector constraint


ND constrains systematics relative to priors. See some shifts away from prior central values.


- Flat priors on some parameters
- Some systematics deliberately not fitted at ND, unconstrained uncertainty propagated to far detector

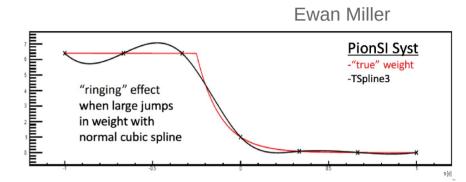
Cross-section and flux parameters become highly (anti-)correlated

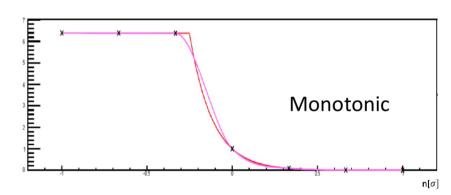




ND constraint at FD

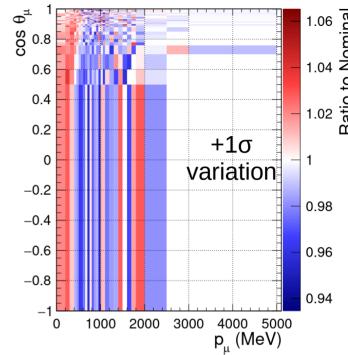
- The Near detector constraint significantly improves measurement at FD
- FD barely constrains any nuisance parameters
- See slight change in oscillation parameter constraints in simultaneous vs. sequential fits
 - Analysis A is simultaneous MCMC fit
 - Analysis B is sequential fit using Hybrid fitter
 - Analysis B, A-like is if Hybrid fitter throws toys from ND-only MCMC posteriors
- Statistics limited at far detector but choice of how propagate nuisance parameters does have a visible effect on our contours
 - Not a systematic uncertainty as such
 - Both results are officialised

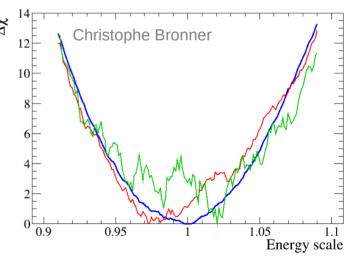



Implementation of nuisance parameters in fitters

- Implementation of nuisance parameters for all fitters fall into three broad types:
 - Normalisation: simple weight applied to some bin, events of particular types or a range of a kinematic parameter
 - Beam and detector systematics implemented like this
 - Splined response functions:
 - Most neutrino interaction systematics
 - Kinematics shifts:
 - directly modify individual MC events reconstructed quantities
 - Some specific systematics
 - Reweight MC event-by-event

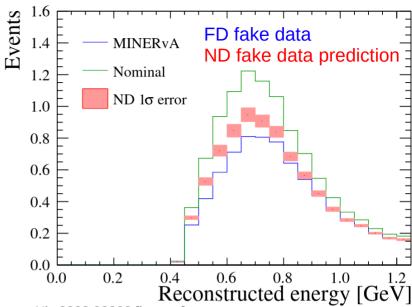
Splined response functions


- Change parameters and evaluate change relative to nominal prediction
 - Typically evaluate change up to 3 sigma of prior uncertainty
- Interpolate between these points using cubic splines
 - Cubic response not always ideal, can lead to "ringing"
 - Moving more to monotonic cubic splines
- Then have two choices for the splines:
 - Bin all your splines to create a mean response function for a given analysis bin
 - Keep all splines for all events
- At the Near Detector evaluate all splines for every event for every change of nuisance parameters
 - For T2K MC (~2M events) this is not a problem
 - On average 3.5 splines per event gives 1.3GB of RAM
 - Accelerate this on a GPU. Evaluation time is very small (~0.05s)
 - Is this feasible for future experiments with O(100M) MC events?
- At the Far detector, less worried about the averaging splines since constraint on systematics is negligible.
 - Use a binned the splined response per analysis bin, per systematic, per interaction type



Kinematic Shifts

- Momentum scale systematics and Nuclear effects impact reconstructed variables directly
- Implement these systematics by directly modifying reconstructed variable
 - $X_{simulated}$ += $F(f_i)$
- Individual MC events migrate across analysis bins
- Finding the bin an event migrates to can be computationally expensive
 - Cache the original bin an MC event falls in
 - After shift, first check adjacent bins only then
 - Computationally expensive to find bin for every MCMC step
- Bin migration will cause discontinuities in your likelihood
 - Gradient based fitters have to find alternative implementations
 - Such as a splined responses, regularisation of bin widths
 - Metropololis-Hastings algorithm for MCMC doesn't care if likelihood is discontinuous as acceptance probability is a ratio of likelihoods

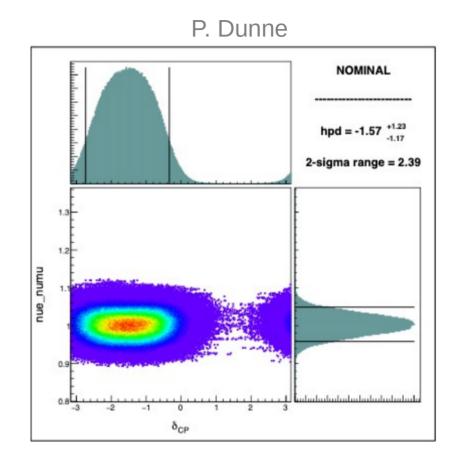


Fake Data Studies

We want to check our systematic model is robust to discrete changes to our model.

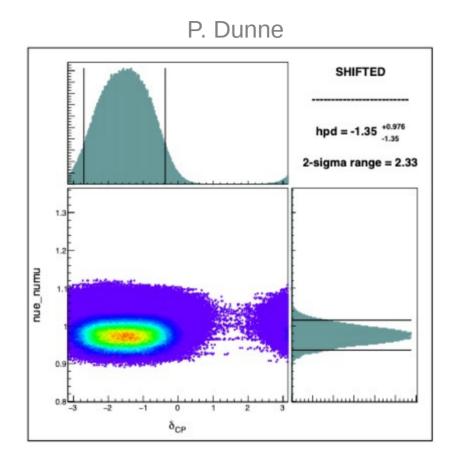
On T2K we have a home brewed procedure to do this:

- Create "fake data" at ND and FD with change to our model
- Fit this fake data at the ND and propagate to FD
- If our systematic model is robust we still extract the oscillation parameters with a small bias
- If 1D interval on signal parameters change by more than 50% of our systematic uncertainty "action" is taken
 - We might add in an ad-hoc parameter to inflate our systematic uncertainty
 - We might smear our final contours
- Calculate systematic uncertainty as $\sqrt{(\sigma_{total}^2 \sigma_{stat}^2)}$... not reliable to do around physical boundaries
- If any of our statements on excluding values also has to be true in the fake data studies
 - e.g. dCP = 0 is excluded at 3σ has to be true in all our fake data studies as well as the real data fits

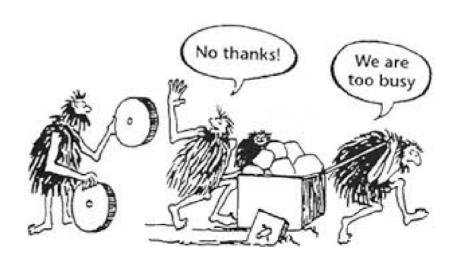


arXiv:2303.03222 [hep-ex]

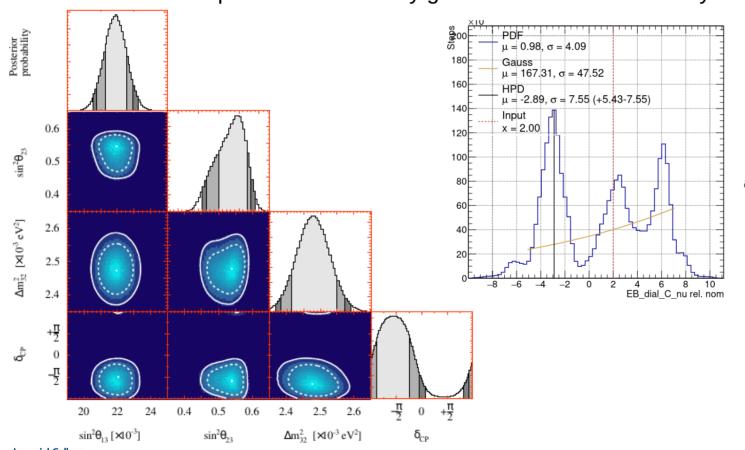
Simulated data set	Relative to	$\sin^2 \theta_{23}$	Δm^2_{32}	$\delta_{ ext{CP}}$
CCOE 2 comp nom	Total	1.0%	0.4%	0.8%
CCQE 3-comp nom.	Syst.	2.5%	1.1%	3.1%
CCQE 3-comp high	Total	1.3%	0.7%	0.3%
	Syst.	3.2%	1.8%	1.1%
CCQE 3-comp low	Total	0.7%	0.2%	0.2%
	Syst.	1.7%	0.6%	0.8%
CCOE	Total	2.5%	0.2%	0.6%
CCQE z-exp nom.	Syst.	6.1%	0.6%	2.2%
CCOE - ave high	Total	0.3%	2.1%	0.4%
CCQE z-exp high	Syst.	0.7%	5.7%	1.7%
CCOE 1	Total	3.1%	0.2%	0.1%
CCQE z-exp low	Syst.	7.5%	0.6%	0.6%

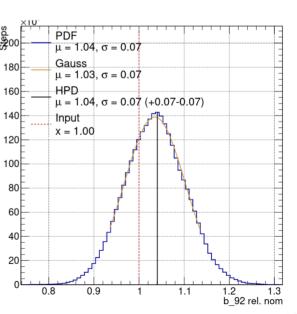

Shrink and Pull studies

- From the MCMC analysis, we then have a large posterior to study
- One way to assess the impact of key systematics is to reweight steps in the Markov chain to have a tighter prior
 - Weight = p_{new} / p_{old}
 - i.e. "what we happen is constraint on systematics was tighter?"
 - Caveat: we can only do this for single systematics at a time due to MCMC statistics
- Shows how oscillation parameter constraints change for particular systematics changes

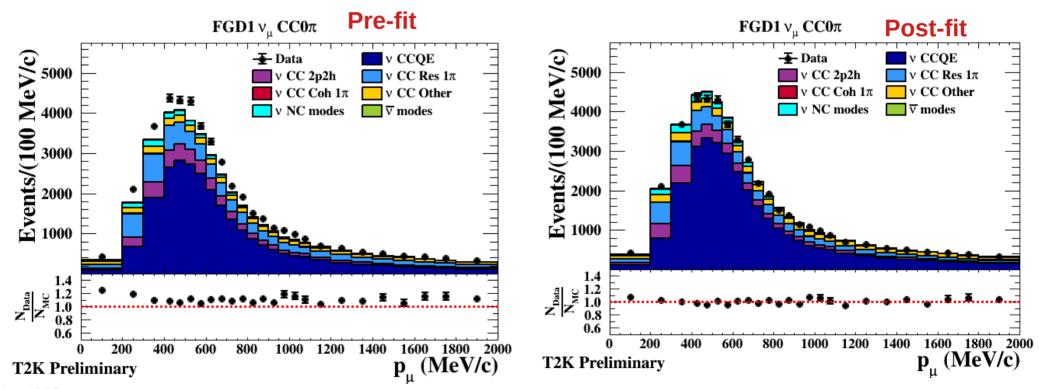

Shrink and Pull studies

- From the MCMC analysis, we then have a large posterior to study
- One way to assess the impact of key systematics is to reweight steps in the Markov chain to have a tighter prior
 - Weight = p_{new} / p_{old}
 - i.e. "what we happen is constraint on systematics was tighter?"
 - Caveat: we can only do this for single systematics at a time due to MCMC statistics
- Shows how oscillation parameter constraints change for particular systematics changes

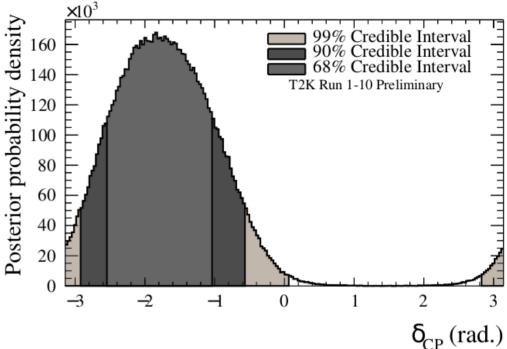

Summary


- Neutrino Oscillation analyses
 - Near detector has high statistics and constrains our systematics
 - Far detector has much fewer statistics but is sensitive to signal parameters
 - We have to be careful how we propagate our systematic constraint to the far detector
- Systematics parameters in fitters:
 - Highly correlated prior and post-fit models
 - Event-by-event treatment of systematics parameters
 - Marginalise over all nuisance parameters which often have non-gaussian shapes
- Post-fit studies of systematics
 - Fake data studies can be used to check robustness of our systematic model
 - Shrink and pull studies are a nice simplistic method for checking how tighter systematic constraints would affect our result
- In the next 5-10 years new experiments will collect 100 times more data.
 - Results will not be statistics limited for much longer!
 - We want to make sure our treatment of systematics and statistical techniques are up to the challenge!

Marginalisation of nuisance parameters


- For all the fitters we marginalise across all nuisance parameters
 - marginalise across ~700 nuisance parameters down to 1D or 2D posteriors on signal param
 - Report a 4D highest posterior density point as well
- Some nuisance parameters are very gaussian others can be very non-gaussian

ND280 fit results


- ND280 data constrains systematic uncertainties before oscillations
- Significantly reduces uncertainty on prediction at SK
- The ND280 fit matches our data well (prior model p-value of 74%)

v_e appearance results

- T2K prefers value of $\delta_{CP} \approx -\pi/2$
- **Disfavour** CP conserving values of 0 and π at **90%** confidence

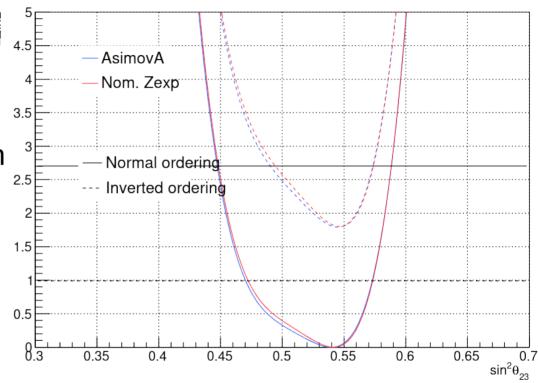
• T2K-only measurement of θ_{13} compatible with PDG average.

v_{\parallel} disappearance results

T2K prefers Normal Ordering.

T2K prefers **Upper octant** of $\sin^2\theta_{23}$ and slight preference for **non-maximal** $\sin^2\theta_{23}$.

Results shown here are using the PDG reactor constraint. 2D credible intervals for Normal Ordering $\times 10^{-3}$ 2.9 $\Delta\,m_{32}^2~(eV^2)$ 68% credible interval 90% credible interval 99% credible interval $\Delta \, m_{32}^2$ MaCh3 best fit 2.7 T2K Run 1-10 Preliminary T2K Run 1-10 Preliminary -- 68% credible interval 2.6 () 90% credible interval 99% credible interval 2.5 MaCh3 best fit 2.4 -22.3 0.40.450.5 0.55 0.6 0.65 0.5 0.45 0.55 0.6 0.65 0.4Imperial College

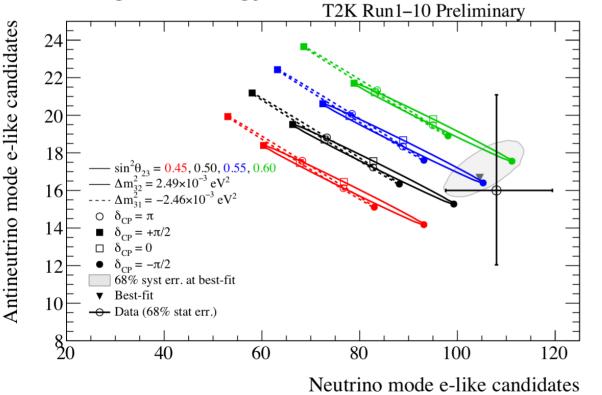

Edward Atkin, PhyStat Systematics

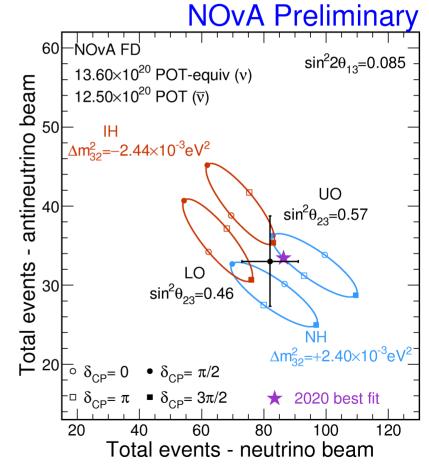
20

Robustness Studies

 Want to check analysis is robust to choice of MC.

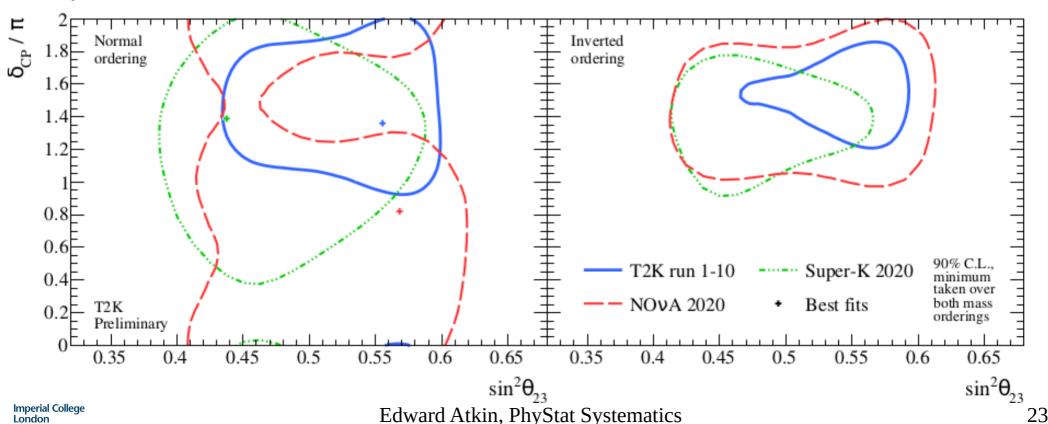
- Simulate data using alternative interaction models e.g. alternate form factors for CCQE, change in pion production model, data-driven changes to the model
- Small changes in δ_{CP} limits. Largest bias causes left (right) edge of 90% interval to move by 0.073 (0.080)
- Apply smearing to Δm_{32}^2 contours of 8.65 x 10⁻⁶ eV²/c⁴ from largest bias seen.

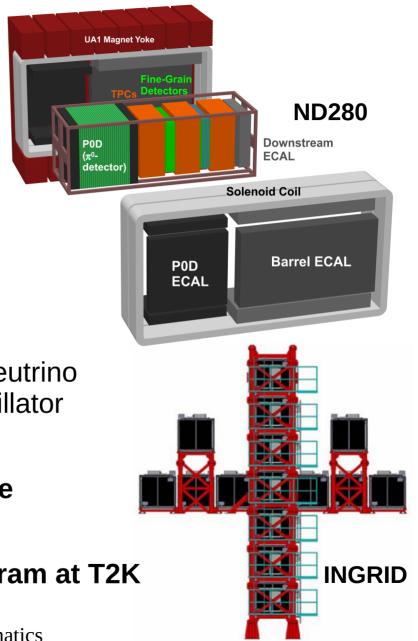

 $\sin^2 \theta_{23}$ with reactor constraint


Comparison of results to NOvA

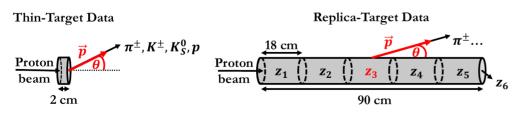
NOvA experiment is a long-baseline neutrino experiment in the USA.
 See Erika's talk next!

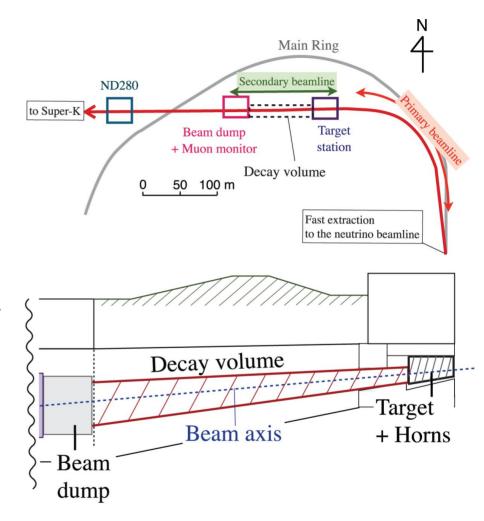
Baseline of 810 km


Higher energy and broader neutrino flux

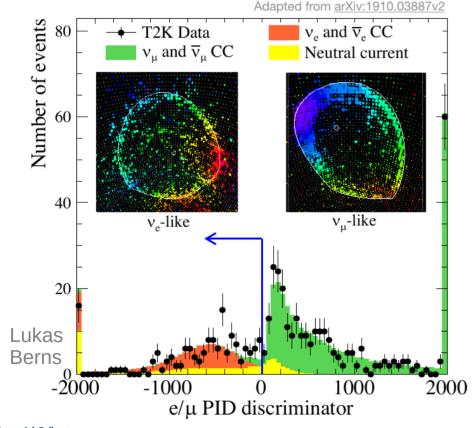

Comparison of results to NOvA

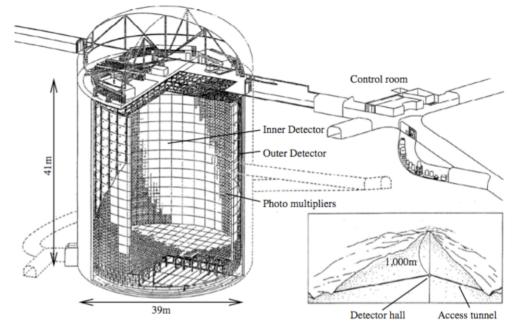
- T2K prefers $\delta_{_{CP}}\!\!\approx$ - π / 2 and NOvA disfavours this region slightly.
- In Normal Ordering slight disagreement. Inverted Ordering agrees well.
- **Reminder**: both experiments have different sensitivities and both experiments still statistics limited.


Near Detectors


- Near Detector at 280m (ND280) is situated
 280m downstream of neutrino production point
 - Fine Grain Detectors (FGDs) Plastic scintillator based
 - Time Projection Chambers (TPCs) –
 measures momentum and gives excellent
 PID
 - All inside UA1 magnet provides 0.2 T field
- Interactive Neutrino Grid (INGRID) monitors neutrino beam position and direction. Made from 14 scintillator modules
- Measure neutrino beam characteristics before oscillations
- Very active cross-section measurement program at T2K

Neutrino Flux

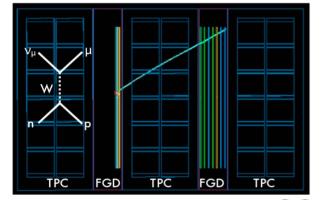

- Neutrino beam is produced by colliding protons from J-PARC facility with graphite target
- Many hadrons are produced in collision
- Hadrons are focussed by a series of magnetic horns
- These hadrons (mainly π , K) **decay** to produce neutrinos
- Ideally we would like a pure muon (anti-)neutrino beam
- Can run in neutrino mode and anti-neutrino mode by changing direction of field in horns
- Proton beam and neutrino beam are measured by a series of beamline monitors
- External constraints on production of hadrons on/in target used from NA61 experiment

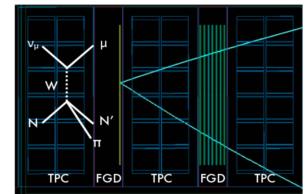


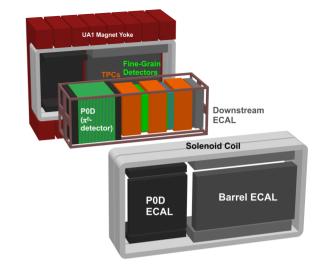
Super-Kamiokande

- 50 kt water-Cherenkov detector
- Split into two regions: inner and outer detector
- Instrumented with PMTs

- Particles are identified by their Cherenkov rings
 - Muons produce sharp Cherenkov rings
 - Electrons scatter more so produce "fuzzier" rings
- Pions tagged by looking for Michel electrons

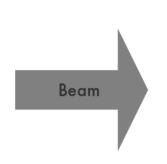

ND280 data samples

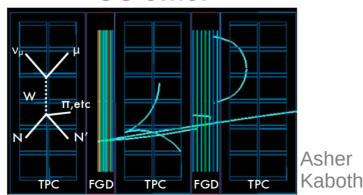

Always require one reconstructed muon.


Select events in FGD1 or FGD2.

Three topologies based on number of pions.

CC0 π CC1 π ⁺

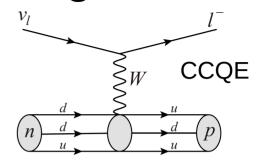


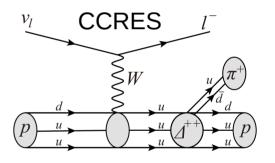


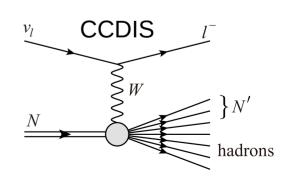
 $CC0\pi$ – no π in the final state

 $CC1\pi^{+(-)}$ — a charged pion in the final state

CC other

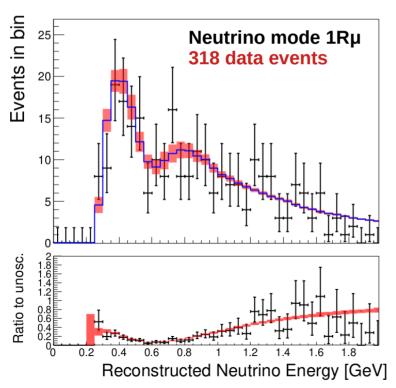


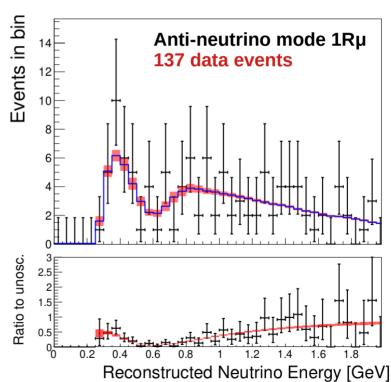

CC-Other – everything else! Multiple π s, gammas, π ⁰...


Selections in neutrino and anti-neutrino mode; 18 in total.

Neutrino interaction modelling

- Important to understand how neutrino interact otherwise we can't accurately reconstruct neutrino energy
- Interactions occur within a nucleus, propagation of particles through nucleus also needs to be modelled.
 Commonly referred to as Final State Interactions (FSI)
- At T2K energies, Charged Current (CC) Quasi-Elastic (QE) interactions are most dominant type, significant number of multi-nucleon interactions (2p-2h) and resonant pion production (RES). Some Deep Inelastic Scattering (DIS)
- T2K uses the NEUT (5.4.0) neutrino event generator for simulations
- Prior uncertainties motivated by external data sets (e.g. bubble chamber data) and theory

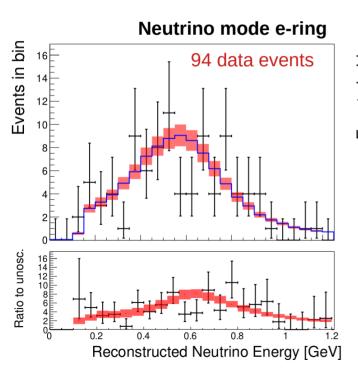


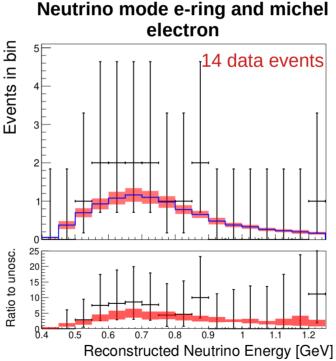

SK data fit results

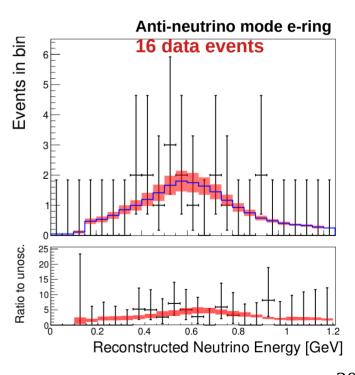
Two samples with 1 muon-like cherenkov ring: neutrino mode and anti-neutrino mode.

Systematic uncertainty band is given by red band and statistical uncertainty on data given by error bars.

Systematic uncertainty on rate is 3% for neutrino mode and 4% for anti-neutrino mode.

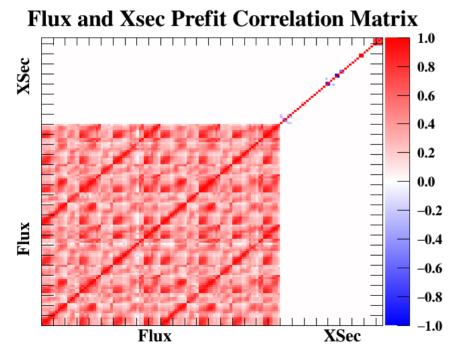


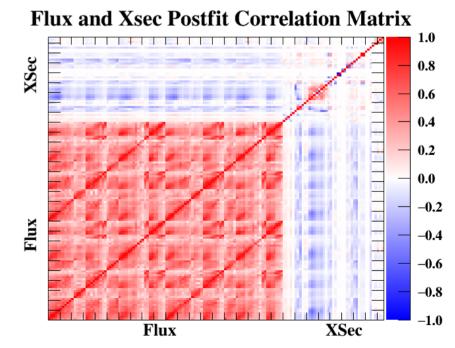

SK data fit results


Three samples with e-like cherenov rings:

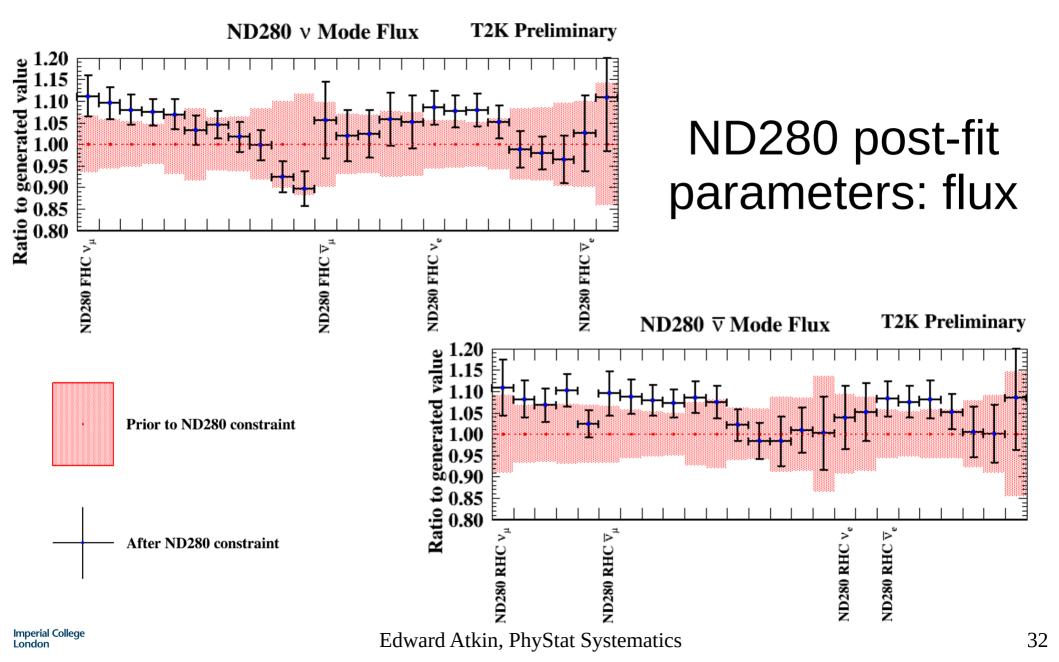
- Two samples with one e-like ring; one in neutrino mode and one in anti-neutrino mode
- One sample with one e-like ring and Michel electron from pion below cherenkov threshold

Uncertainty on rate is 4.7%-5.9% for single ring e-like samples and 14.3% for Michel electron sample.



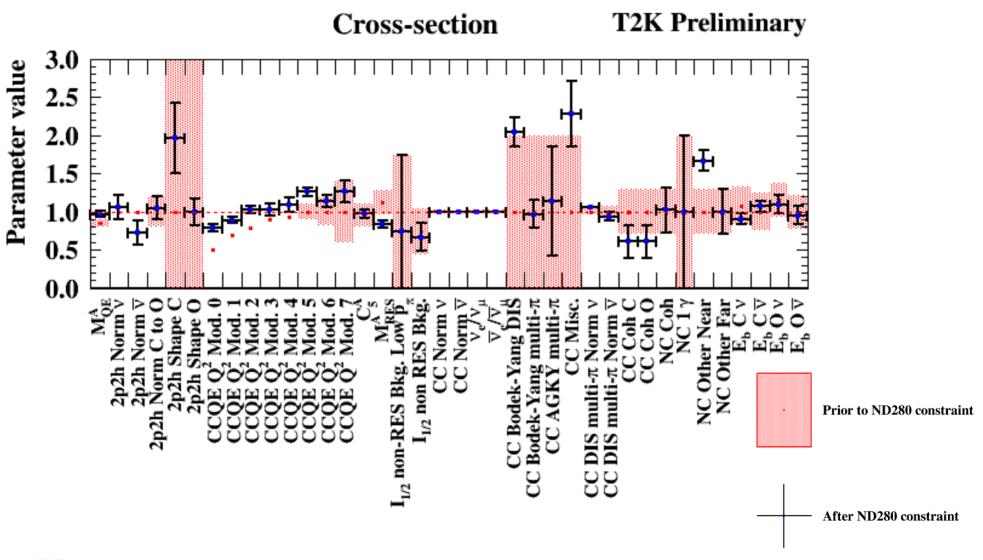

Imperial College London

Edward Atkin, PhyStat Systematics


ND280 fit results

- ND280 data constraints uncertainties on neutrino interactions and neutrino flux before oscillations have occurred
- Significantly reduces uncertainty on prediction at SK
- ND280 constrains systematics to the ~3% level
- The ND280 fit matches our data well (prior model p-value of 74%)

T2K Preliminary


Systematic uncertainty at SK

Systematic Uncertainty								
	Neutrino Mode			Anti-neutrino Mode				
	1 ring μ -like	1 ring e-like	1 ring e-like 1 d.e.	1 ring μ -like	1 ring e-like			
Before ND280 fit	11.1%	13.0%	18.7%	11.3%	12.1%			
After ND280 fit	3.0%	4.7%	14.3%	4.0%	5.9%			

Sources of uncertainty before ND280 fit

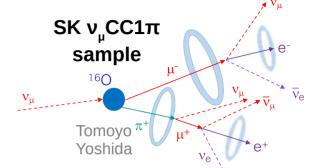
	\parallel 1R μ \parallel		1Re		
Error source (units: %)	FHC	RHC FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	5.1	4.7 4.8	4.7	4.9	2.7
Cross-section (all)	10.1	$10.1 \mid 11.9$	$4.7 \\ 10.3$	12.0	10.4
SK+SI+PN	2.9	2.5 3.3	4.4	13.4	1.4
Total	11.1	11.3 13.0	12.1	18.7	10.7

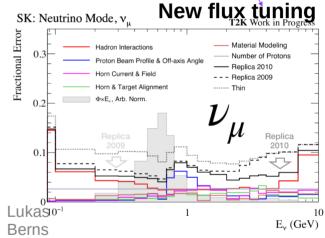
ND280 post-fit parameters: xsec

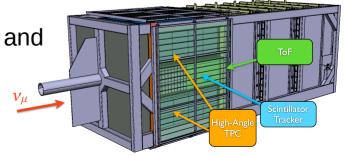
Future plans at T2K

T2K

- More data samples at ND280 and SK; muon-like sample with pion at SK, ND280 samples using proton and photon tagging
- Improved systematics; new neutrino flux tuning and neutrino interaction model
- Cross-section measurements with multiple Near Detectors

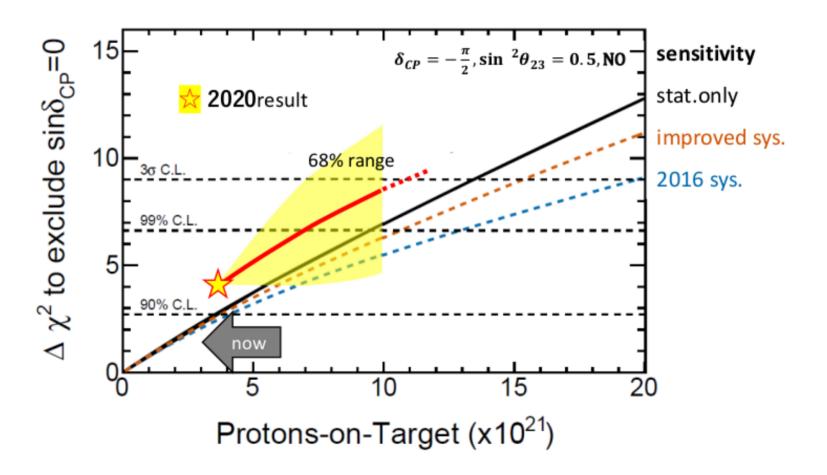

T2K phase-II


- Upgraded ND280 high angular coverage, 3D scintillator readout, better hadron tagging and reconstruction
- SK being doped with Gd neutron tagged samples for oscillation analysis
- J-PARC beam upgrade to 0.75 MW and then 1 MW


Joint-fits

 Joint-fits between T2K and SK atmospherics as well as T2K and NOvA

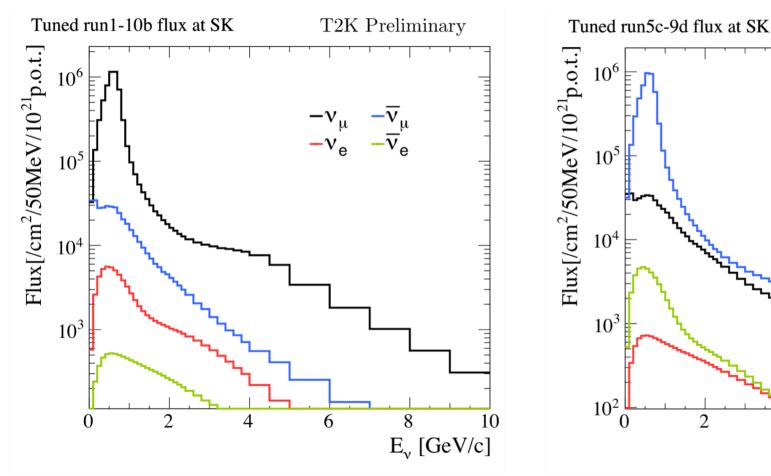
• These joint-fits should allow some of the **most precise constraints** on neutrino oscillation parameters.

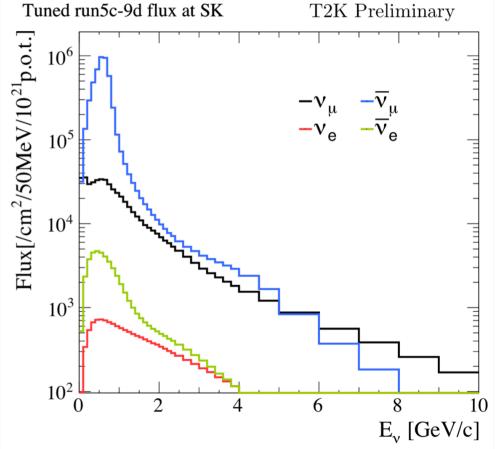


ND280 Upgrade

T2K Future Sensitivity

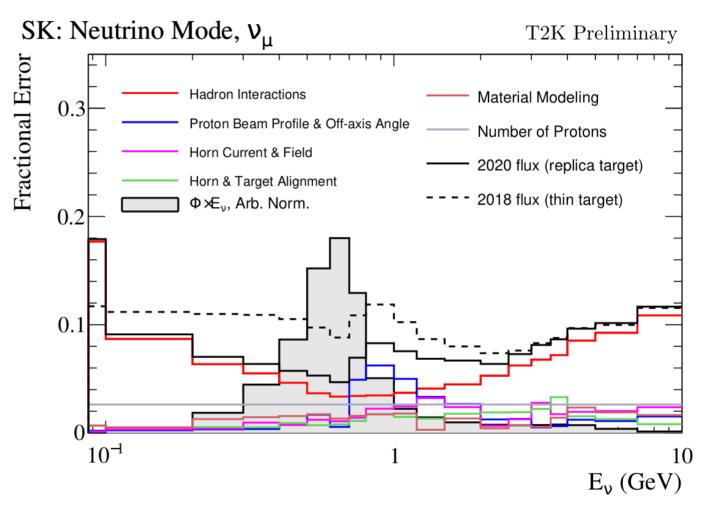
Expected evolution of CPV sensitivity for maximal CPV case




Summary of Data at SK

Selection	Run 1-10 POT	Events in Data
FHC $1R\mu$		318
FHC 1Re	19.644×10^{20}	94
FHC 1Re1d.e		14
RHC $1R\mu$	16.34556×10^{20}	137
RHC 1Re		16

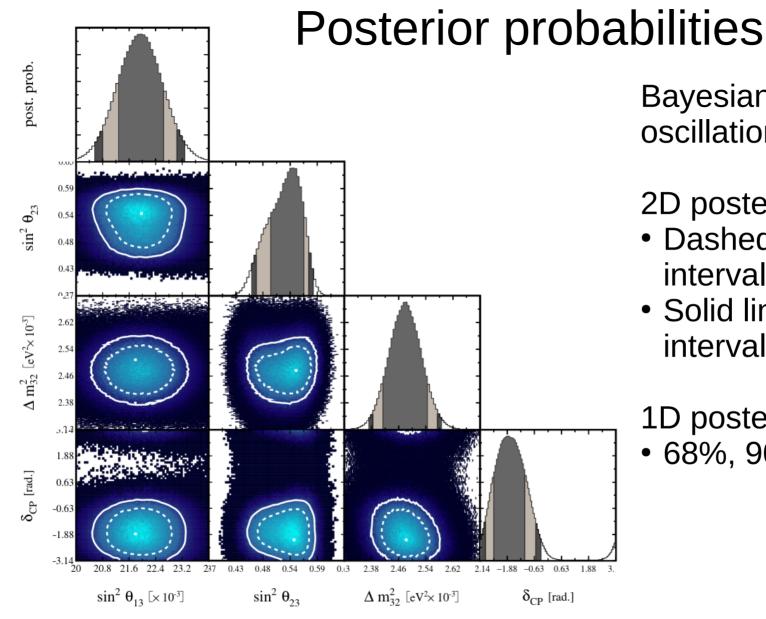
SK flux prediction


Flux predictions at SK for different flavour components for neutrino mode (left) and anti-neutrino mode (right).

Flux Uncertainties

- Flux uncertainties come from a variety of sources; hadron interactions, proton beam, horn current, target alignament etc.
- Use beam monitors and external data from NA61 to make pre-fit flux prediction.

Neutrino energy reconstruction at SK


Neutrino energy reconstructed assuming CCQE interaction for single-ring samples.

Only uses lepton kinematics, particle masses and nuclear model.

$$E_{reco} = \frac{m_p^2 - m_n^2 - m_l^2 + 2m_n E_l}{2(m_n - E_l + p_l \cos \theta_{\nu l})}$$

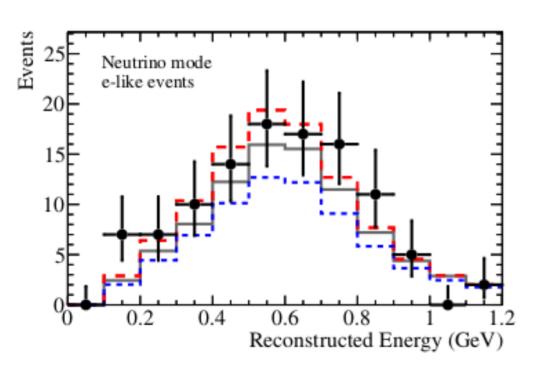
For single-ring with 1 michel electron sample, events assumed to have come from delta++ decay.

$$E_{reco} = \frac{m_{\Delta++}^2 - m_p^2 - m_l^2 + 2m_p E_l}{2(m_p - E_l + p_l \cos \theta_{\nu l})}$$

Bayesian "triangle plot" of all oscillation parameters.

2D posteriors:

- Dashed lines 68% credible interval
- Solid lines 90% credible interval


1D posteriors:

68%, 90% and 95.4% (2σ)

Appearance dCP comparison

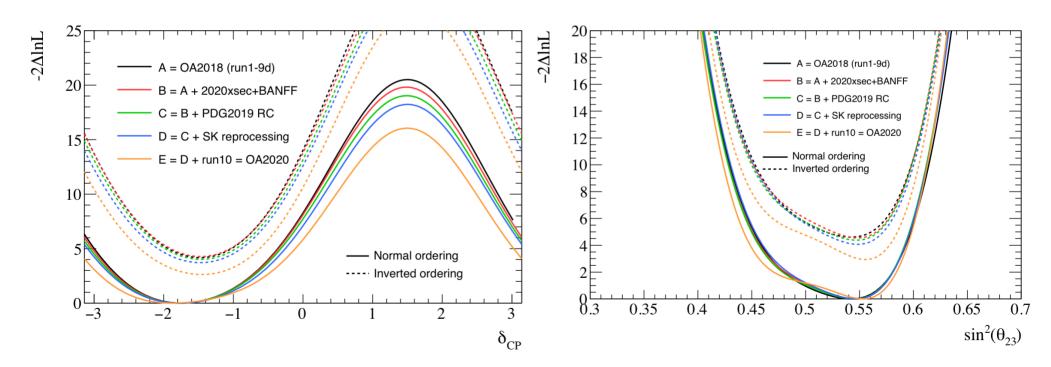
Comparison of 1 e-like ring samples at SK for different values of dCP

Other oscillation parameters set at best-fit values.

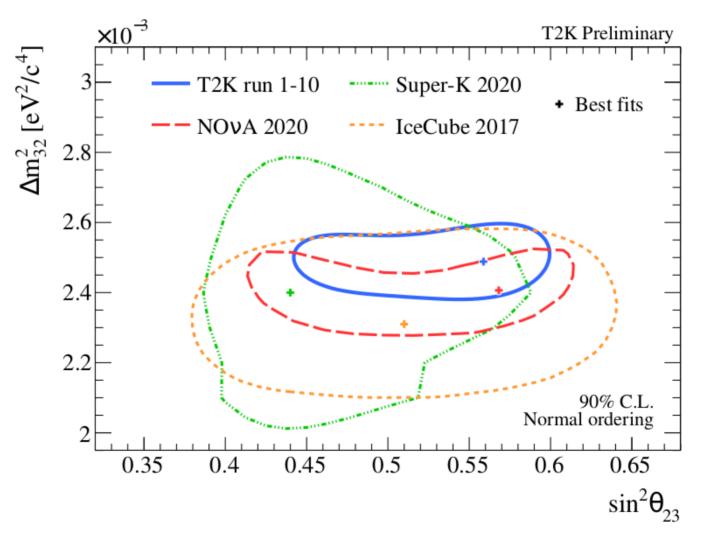
SK p-values

SK p-values using reactor constraint.

Sample / p-value	Shape-based	Total Rate-based
FHC $1R\mu$	0.48	0.18
FHC 1Re	0.19	0.49
RHC $1R\mu$	0.85	0.74
RHC 1Re	0.61	0.39
FHC 1Re1d.e.	0.86	0.22
Total	0.73	0.30


T2K Analysis

$$-\ln(P(\vec{\theta}|D)) = \sum_{i}^{ND280bins} N_{i}^{ND,p}(\vec{f},\vec{x},\vec{d}) - N_{i}^{ND,d} + N_{i}^{ND,d} ln[N_{i}^{ND,d}/N_{i}^{ND,p}(\vec{f},\vec{x},\vec{d})]$$
 Data at ND280
$$+ \sum_{i}^{SKbins} N_{i}^{SK,p}(\vec{f},\vec{x},s\vec{k}d,\vec{o}) - N_{i}^{SK,d} + N_{i}^{SK,d} ln[N_{i}^{SK,d}/N_{i}^{SK,p}(\vec{f},\vec{x},s\vec{k}d,\vec{o})]$$
 Data at SK
$$+ \frac{1}{2} \sum_{i}^{osc} \sum_{j}^{osc} \Delta o_{i}(V_{o}^{-1})_{i,j} \Delta o_{j}$$
 Oscillation Parameters
$$+ \frac{1}{2} \sum_{i}^{flux} \sum_{j}^{flux} \Delta f_{i}(V_{f}^{-1})_{i,j} \Delta f_{j}$$
 Flux want!!
$$+ \frac{1}{2} \sum_{i}^{sec} \sum_{j}^{sec} \Delta x_{i}(V_{x}^{-1})_{i,j} \Delta x_{j}$$
 Interaction Model Use priors from various sources
$$+ \frac{1}{2} \sum_{i}^{nd280det} \sum_{j}^{nd280det} \Delta d_{i}(V_{d}^{-1})_{i,j} \Delta d_{j}$$
 ND280 Sources
$$+ \frac{1}{2} \sum_{i}^{skdet} \sum_{j}^{skdet} \Delta skd_{i}(V_{skd}^{-1})_{i,j} \Delta skd_{j}$$
 SK Detector


Comparison to previous analyses

Comparison of 2020 analysis with 2018 analysis, showing the impact of different updates in the analysis on the sensitivity.

- BANFF is the ND280 fit
- SK reprocessing migrates some event due to new calibration
- Addition of new data has largest impact

Comparison to other experiments

Summary of oscillation results

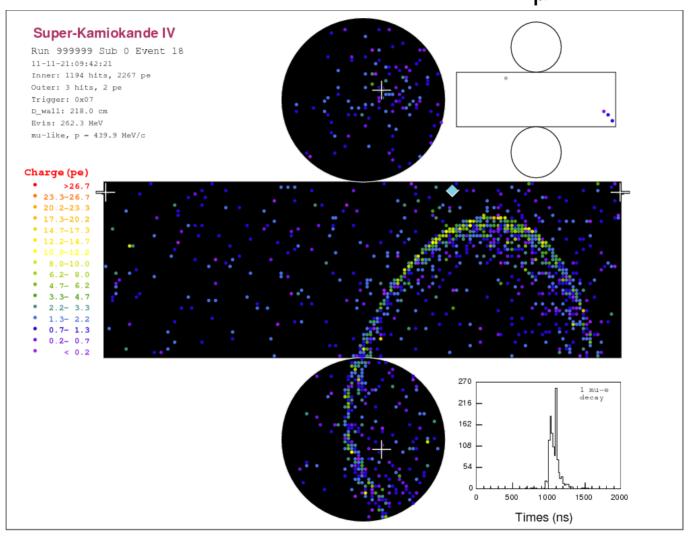
Disappearance best-fit and credible intervals with reactor constraint

	$\sin^2 \theta_{23}$	$\Delta m_{32}^2 (\times 10^{-3}) \text{eV}^2$
2D best fit	0.546	2.49
68% C.I. (1σ) range	0.50 - 0.57	2.408-2.548
90% C.I. range	$ig \ 0.460-0.587$	$ \left \begin{array}{c} -2.5962.452 \& 2.368 - 2.592 \end{array} \right $

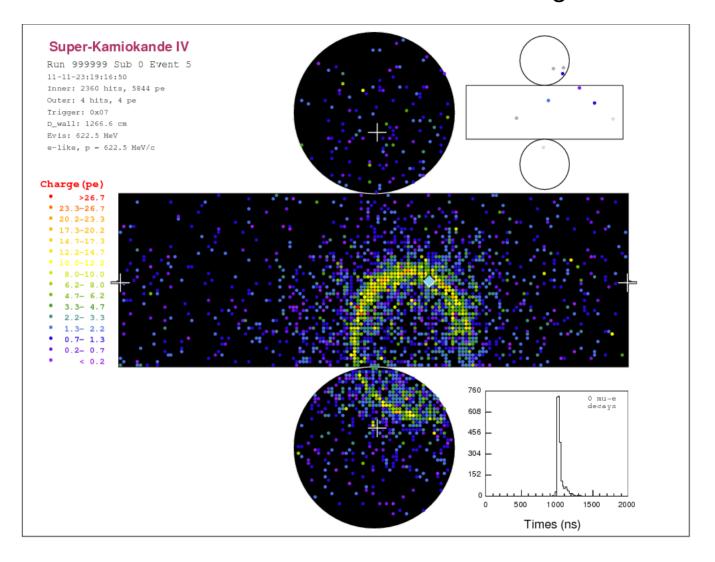
Appearance best-fit and credible intervals with reactor constraint

'	
$\sin^2 \theta_{13}$	δ_{CP}
0.0220	-1.967
0.0212 - 0.0226	-2.5451.037
0.0208 - 0.0231	-2.9220.565
$igg \ 0.0206 - 0.0234$	$-\pi0.346$
$ig \ 0.0201 - 0.0237$	$-\pi - 0.063~\&~2.827 - \pi$
0.0198 - 0.0240	$-\pi - 0.346 \ \& \ 2.545 - \pi$
	$\begin{array}{c} 0.0220 \\ 0.0212 - 0.0226 \\ 0.0208 - 0.0231 \\ 0.0206 - 0.0234 \\ 0.0201 - 0.0237 \end{array}$

Posterior probabilities for mass ordering and octant


	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum
NH $(\Delta m_{32}^2 > 0)$	0.195	0.613	0.808
IH $(\Delta m_{32}^2 < 0)$	0.034	0.158	0.192
Sum	0.229	0.771	1.000

Different fitters


Summary of the different statistical techniques used by the three fitters at T2K

	Analysis 1	Analysis 2	Analysis 3
Kinematic variables for 1Re sample at SK	Erec-θ	pe-θ	Erec-θ
Likelihood	Binned Poisson Likelihood Ratio	Binned Poisson Likelihood Ratio	Binned Poisson Likelihood Ratio
Likelihood Optimization	Markov Chain Monte Carlo	Gradient descent and grid scan	Gradient descent and grid scan
Contours/limits produced	Bayesian Credible Intervals	Frequentist Confidence Intervals with Feldman-Cousins (credible intervals supplemental)	Frequentist Confidence Intervals with Feldman- Cousins
Mass Hierarchy Analysis	Bayes factor from fraction of MCMC points in each	Bayes factor from likelihood integration	Frequentist p-value from generated PDF
Near Detector Information	Simultaneous joint fit	Constraint Matrix	Constraint Matrix
Systematics Handling	Simultaneous fit then marginalization	Marginalization during fit	Marginalization during fit

SK event display $\nu_{_{\!\mu}}$

SK event display v_e

