Systematic Uncertainties in Neutrino Oscillation analyses

Edward Atkin e.atkin17@imperial.ac.uk

Imperial College London PhyStat Systematics, 2023 24th April

Banff International Research Station for Mathematical Innovation and Discovery

Introduction

There have been several PhyStats dedicated to neutrinos in the past:

- IMPMU 2016, Fermilab 2016, CERN 2019 ... Somewhere else 202X??
- Excellent talk from Chrisophe Bronner at remote workshop PHYSTAT-Systematics 2021
- If you're interested in learning more about systematics and statistical challenges for neutrino experiments take a look at the summaries.

Disclaimers:

- This is very focused on the T2K 3-flavour oscillation analysis
 - Other analysis techniques exist like NOvA and PRISM techniques for DUNE
- I'm not going to mention other interesting statistical areas in neutrinos such as cross-section measurements, BSM searches, reactor neutrinos, atmospheric neutrinos etc.
- Very much a Bayesian perspective

Neutrino Oscillations

Neutrinos have a strange property where their mass and weak eigenstates mix.

6 parameters which describe 3-flavour neutrino oscillation probability

- Three mixing angles: θ_{23} , θ_{13} , θ_{12}
- Two mass splittings: $\Delta m_{32}^2 \Delta m_{13}^2$
- Complex-phase $\delta_{_{CP}}$
- Ordering of mass states also unknown ($\Delta m_{32}^2 > 0$?)

Neutrinos only interact via the weak force

- Generally thought of as low stats experiments
- Huge amount of progress has been made since discovery

Current Generation long-baseline experiments are **T2K** (Japan) and **NOvA** (US).

Future experiments being built: Hyper-K (Japan) and DUNE (US)

- These experiments aim to make precision measurements of oscillation parameters
- Hopes to rule out particular values at 5σ e.g. $\delta_{CP} \neq 0$
- Understanding systematics is going to be key!

Imperial College London

Experimental Layout

- Produce an intense beam of neutrinos at the J-PARC facility in Tokai, Japan
- Two detectors: one Near the neutrino source, Far from the neutrino source
- Far detector:
 - → Measures neutrinos after they have oscillated \rightarrow this is where we measure signal parameters
 - → Lower statistics due to distance from neutrino source (T2K FD has ~1,000 selected data events total)
 - (High statistics atmospheric neutrino samples)
- Near Detector:
 - Measures unoscillated neutrino beam
 - High(er) statistics, constrains sources of systematics uncertainty (~200,000 selected data events)

- N_{pred}^{i} = number of predicted events in a bin, E_{ν} is neutrino energy, x are the kinematics quantities of particles in the detector (lepton momentum, Q² etc.)
- Signal: $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ is the oscillation probability for a set of oscillation parameters

Sources of nuisance parameters:

- **Beam**: how many neutrinos did we produce? What was their energy? What flavour?
- **Cross section / Interaction model**: probability of neutrino interacting? Energy, type and number of particles produced in the interaction?
- **Detector**: momentum scale, PID, acceptance, efficiency etc.
 - Different for ND and FD
- Factorise nuisance parameters

Total number of parameters ~700 of which 6 are signal

The good, the bad and the ugly

The good(ish)...

- Beam systematics: ~100 nuisance parameters
 - constrained by T2K beam monitors, a dedicated ND (INGRID) and external data
 - Underlying "physics parameters" such as hadron scattering not fitted in analysis
 - Throw underlying parameters to produce a distribution of events in an energy range
 - Build a covariance matrix from all these throws
- Detector systematics: ~500 nuisance parameters
 - Calibration and control samples
 - Again, don't directly fit parameters but throw toys to produce covariance matrix
 - Apply these uncertainties to each analysis bin
 - N.B. moving away from this method and will fit detector systematics directly

The bad and the ugly...

- Neutrino interaction systematics: ~50 nuisance parameters
 - Not a lot of external datasets to constrain systematics
 - Often measurements taken with different neutrino beam energy, different target nuclei
 - Some systematics interpolate between different models
 - Often we add ad-hoc uncertainties motivated by differences seen in external datasets
 - Examples are uncertainties on nucleon form factors, nuclear effects
 - See NuSTEC white paper on Neutrino Interaction systematics for more information

$$\mathcal{L} = \prod_{bins} \left(\frac{Poisson(N_{obs}^{i}, N_{pred}^{i}(o, f))}{Poisson(N_{obs}^{i}, N_{obs}^{i})} \right) \times \mathcal{L}_{penalty}(o, f)$$

Poisson likelihood ratio for ND and/or FD, o = signal parameters, f = nuisance

• (N.B. include MC stat uncertainty based on Barlow-Beeston method)

We evaluate this Likelihood using two different techniques:

Simultaneous ND+FD fit

- Use MCMC to sample Likelihood.
 - Samples all ~700 parameters
- Marginalise across nuisance parameters to produce credible intervals in 1D and 2D
- Can perform ND-only fits as well

Sequential fit

1) Fit ND data using MINUIT based fitter. Gives covariance matrix describing ND constraint and correlations between all nuisance parameters

2) Hybrid-frequentist fitter uses matrix to make marginalisation toys of systematics

3) Build confidence intervals using $\Delta \chi^2$ method

Near Detector constraint

ND constrains systematics relative to priors. See some shifts away from prior central values.

- Flat priors on some parameters
- Some systematics deliberately not fitted at ND, unconstrained uncertainty propagated to far detector

Cross-section and flux parameters become highly (anti-)correlated

Preliminary

Edward Atkin, PhyStat Systematics

Ratio to generated value

ND constraint at FD

- The Near detector constraint significantly improves measurement at FD
- FD barely constrains any nuisance parameters
- See slight change in oscillation parameter constraints in simultaneous vs. sequential fits
 - Analysis A is simultaneous MCMC fit
 - Analysis B is sequential fit using Hybrid fitter
 - Analysis B, A-like is if Hybrid fitter throws toys from ND-only MCMC posteriors
- Statistics limited at far detector but choice of how propagate nuisance parameters does have a visible effect on our contours
 - Not a systematic uncertainty as such
 - Both results are officialised

Imperial College London

Implementation of nuisance parameters in fitters

- Implementation of nuisance parameters for all fitters fall into three broad types:
 - **Normalisation**: simple weight applied to some bin, events of particular types or a range of a kinematic parameter
 - Beam and detector systematics implemented like this
 - Splined response functions:
 - Most neutrino interaction systematics
 - Kinematics shifts:
 - directly modify individual MC events reconstructed quantities
 - Some specific systematics
 - Reweight MC event-by-event

Splined response functions

- Change parameters and evaluate change relative to nominal prediction
 - Typically evaluate change up to 3 sigma of prior uncertainty
- Interpolate between these points using cubic splines
 - Cubic response not always ideal, can lead to "ringing"
 - Moving more to monotonic cubic splines
- Then have two choices for the splines:
 - Bin all your splines to create a mean response function for a given analysis bin
 - Keep all splines for all events
- At the Near Detector evaluate all splines for every event for every change of nuisance parameters
 - For T2K MC (~2M events) this is not a problem
 - On average 3.5 splines per event gives 1.3GB of RAM
 - Accelerate this on a GPU. Evaluation time is very small (~0.05s)
 - Is this feasible for future experiments with O(100M) MC events?
- At the Far detector, less worried about the averaging splines since constraint on systematics is negligible.
 - Use a binned the splined response per analysis bin, per systematic, per interaction type

Kinematic Shifts

- Momentum scale systematics and Nuclear effects impact reconstructed variables directly
- Implement these systematics by directly modifying reconstructed variable
 - $X_{simulated}$ += F(f_i)
- Individual MC events migrate across analysis bins
- Finding the bin an event migrates to can be computationally expensive
 - Cache the original bin an MC event falls in
 - After shift, first check adjacent bins only then
 - Computationally expensive to find bin for every MCMC step
- Bin migration will cause discontinuities in your likelihood
 - Gradient based fitters have to find alternative implementations
 - Such as a splined responses, regularisation of bin widths
 - Metropololis-Hastings algorithm for MCMC doesn't care if likelihood is discontinuous as acceptance probability is a ratio of likelihoods

Fake Data Studies

We want to check our systematic model is robust to discrete changes to our model.

- On T2K we have a home brewed procedure to do this:
 - Create "fake data" at ND and FD with change to our model
 - Fit this fake data at the ND and propagate to FD
 - If our systematic model is robust we still extract the oscillation parameters with a small bias
 - If 1D interval on signal parameters change by more than 50% of our systematic uncertainty "action" is taken
 - We might add in an ad-hoc parameter to inflate our systematic uncertainty
 - We might smear our final contours
 - Calculate systematic uncertainty as $\sqrt{(\sigma_{total}^2 \sigma_{stat}^2)}$... not reliable to do around physical boundaries
 - If any of our statements on excluding values also has to be true in the fake data studies
 - e.g. dCP = 0 is excluded at 3σ has to be true in all our fake data studies as well as the real data fits

Simulated data set	Relative to	$\sin^2 \theta_{23}$	Δm^2_{32}	$\delta_{ ext{CP}}$
CCQE 3-comp nom.	Total Syst.	1.0% 2.5%	$0.4\% \\ 1.1\%$	0.8% 3.1%
CCQE 3-comp high	Total Syst.	1.3% 3.2%	$0.7\% \\ 1.8\%$	0.3% 1.1%
CCQE 3-comp low	Total Syst.	$0.7\%\ 1.7\%$	$0.2\% \\ 0.6\%$	$0.2\% \\ 0.8\%$
CCQE z-exp nom.	Total Syst.	2.5% 6.1%	0.2% 0.6%	0.6% 2.2%
CCQE z-exp high	Total Syst.	0.3% 0.7%	2.1% 5.7%	0.4% 1.7%
CCQE z-exp low	Total Syst.	3.1% 7.5%	0.2% 0.6%	0.1% 0.6%

Shrink and Pull studies

- From the MCMC analysis, we then have a large posterior to study
- One way to assess the impact of key systematics is to reweight steps in the Markov chain to have a tighter prior
 - Weight = p_{new} / p_{old}
 - i.e. "what we happen is constraint on systematics was tighter?"
 - Caveat: we can only do this for single systematics at a time due to MCMC statistics
- Shows how oscillation parameter constraints change for particular systematics changes

Shrink and Pull studies

- From the MCMC analysis, we then have a large posterior to study
- One way to assess the impact of key systematics is to reweight steps in the Markov chain to have a tighter prior
 - Weight = p_{new} / p_{old}
 - i.e. "what we happen is constraint on systematics was tighter?"
 - Caveat: we can only do this for single systematics at a time due to MCMC statistics
- Shows how oscillation parameter constraints change for particular systematics changes

Summary

- Neutrino Oscillation analyses
 - Near detector has high statistics and constrains our systematics
 - Far detector has much fewer statistics but is sensitive to signal parameters
 - We have to be careful how we propagate our systematic constraint to the far detector
- Systematics parameters in fitters:
 - Event-by-event treatment of systematics parameters
 - Marginalise over large number of nuisance parameters
- Post-fit studies of systematics
 - Fake data studies can be used to check robustness of our systematic model
 - Shrink and pull studies are a nice simplistic method for checking how tighter systematic constraints would affect our result
- In the next 5-10 years new experiments will collect 100 times more data.
 - Results will not be statistics limited for much longer!
 - We want to make sure our treatment of systematics and statistical techniques are up to the challenge!

Marginalisation of nuisance parameters

- For all the fitters we marginalise across all nuisance parameters
 - marginalise across ~700 nuisance parameters down to 1D or 2D posteriors on signal param
 - Report a 4D highest posterior density point as well
- Some nuisance parameters are very gaussian others can be very non-gaussian

ND280 fit results

- ND280 data constrains systematic uncertainties before oscillations
- Significantly reduces uncertainty on prediction at SK
- The ND280 fit matches our data well (prior model p-value of 74%)

v_e appearance results

- T2K prefers value of $\delta_{_{CP}} \approx -\pi/2$
- Disfavour CP conserving values of 0 and π at 90% confidence

• T2K-only measurement of θ_{13} compatible with PDG average.

v_{μ} disappearance results

T2K prefers Normal Ordering.

T2K prefers **Upper octant** of $\sin^2\theta_{23}$ and slight preference for **non-maximal** $\sin^2\theta_{23}$.

Results shown here are using the PDG reactor constraint.

Robustness Studies

- Want to check analysis is robust to choice of MC.
- Simulate data using alternative interaction models e.g. alternate form factors for CCQE, change in pion production model, data-driven changes to the model
- Small changes in δ_{CP} limits. Largest bias causes left (right) edge of 90% interval to move by 0.073 (0.080)
- Apply smearing to Δm²₃₂ contours of 8.65 x 10⁻⁶ eV²/c⁴ from largest bias seen.

 $\sin^2 \theta_{23}$ with reactor constraint

Comparison of results to NOvA

 NOvA experiment is a long-baseline neutrino experiment in the USA. See Erika's talk next!

NOvA Preliminary

Edward Atkin, PhyStat Systematics

Comparison of results to NOvA

- T2K prefers $\delta_{CP} \approx -\pi$ / 2 and NOvA disfavours this region slightly.
- In Normal Ordering slight disagreement. Inverted Ordering agrees well.
- **Reminder**: both experiments have different sensitivities and both experiments still statistics limited.

Near Detectors

- Near Detector at 280m (ND280) is situated 280m downstream of neutrino production point
 - Fine Grain Detectors (FGDs) Plastic scintillator based
 - Time Projection Chambers (TPCs) measures momentum and gives excellent PID
 - All inside UA1 magnet provides 0.2 T field
- Interactive Neutrino Grid (INGRID) monitors neutrino beam position and direction. Made from 14 scintillator modules
- Measure neutrino beam characteristics before oscillations
- Very active cross-section measurement program at T2K

Imperial College London

Neutrino Flux

- Neutrino beam is produced by colliding protons from J-PARC facility with graphite target
- Many hadrons are produced in collision
- Hadrons are focussed by a series of magnetic horns
- These hadrons (mainly π , K) **decay** to produce neutrinos
- Ideally we would like a pure muon (anti-)neutrino beam
- Can run in **neutrino mode** and **anti-neutrino** mode by changing direction of field in horns
- Proton beam and neutrino beam are measured by a series of beamline monitors
- External constraints on production of hadrons on/in target used from NA61 experiment

Imperial College London

Super-Kamiokande

- 50 kt water-Cherenkov detector
- Split into two regions: inner and outer detector
- Instrumented with PMTs

Imperial College

London

- Particles are identified by their Cherenkov rings
 - Muons produce sharp Cherenkov rings
 - Electrons scatter more so produce "fuzzier" rings
- Pions tagged by looking for Michel electrons

ND280 data samples

Always require one reconstructed muon. Select events in FGD1 or FGD2. Three topologies based on number of pions. $CC0\pi$ $CC1\pi^+$

Π,etc

FGD

TPC

FGD

ТРС

$CC0\pi$ – no π in the final state

 $CC1\pi^{+(-)}$ – a charged pion in the final state

CC-Other – everything else! Multiple π s, gammas, π^0 ...

Selections in neutrino and anti-neutrino mode; 18 in total.

Edward Atkin, PhyStat Systematics

Asher Kaboth

Beam

Neutrino interaction modelling

- Important to understand how neutrino interact otherwise we can't accurately reconstruct neutrino energy
- Interactions occur within a nucleus, propagation of particles through nucleus also needs to be modelled. Commonly referred to as Final State Interactions (FSI)
- At T2K energies, Charged Current (CC) Quasi-Elastic (QE) interactions are most dominant type, significant number of multi-nucleon interactions (2p-2h) and resonant pion production (RES). Some Deep Inelastic Scattering (DIS)
- T2K uses the NEUT (5.4.0) neutrino event generator for simulations
- Prior uncertainties motivated by external data sets (e.g. bubble chamber data) and theory

SK data fit results

Two samples with 1 muon-like cherenkov ring: neutrino mode and anti-neutrino mode.

Systematic uncertainty band is given by red band and statistical uncertainty on data given by error bars.

Systematic uncertainty on rate is 3% for neutrino mode and 4% for anti-neutrino mode.

SK data fit results

Three samples with e-like cherenov rings:

London

- Two samples with one e-like ring; one in neutrino mode and one in anti-neutrino mode
- One sample with one e-like ring and Michel electron from pion below cherenkov threshold

Uncertainty on rate is 4.7%-5.9% for single ring e-like samples and 14.3% for Michel electron sample.

ND280 fit results

- ND280 data constraints uncertainties on neutrino interactions and neutrino flux before oscillations have occurred
- Significantly reduces uncertainty on prediction at SK
- ND280 constrains systematics to the ~3% level
- The ND280 fit matches our data well (prior model p-value of 74%)

T2K Preliminary Imperial College London

Edward Atkin, PhyStat Systematics

Systematic uncertainty at SK

Systematic Uncertainty						
	Neutrino Mode Anti-neutrino Mode					
	1 ring μ -like	1 ring e-like	1 ring μ -like	1 ring e-like		
Before ND280 fit	11.1%	13.0%	18.7%	11.3%	12.1%	
After ND280 fit	3.0%	4.7%	14.3%	4.0%	5.9%	

	Error source (units: %)	$\left\ \begin{array}{c}1\mathrm{FHC}\\\mathrm{FHC}\end{array}\right $		RHC	$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC
Sources of uncertainty before ND280 fit	Flux Cross-section (all) SK+SI+PN	$\begin{array}{ c c c c } 5.1 \\ 10.1 \\ 2.9 \end{array}$	$\begin{array}{c ccc} 4.7 & & 4.8 \\ 10.1 & 11.9 \\ 2.5 & & 3.3 \end{array}$	$4.7 \\ 10.3 \\ 4.4$	$4.9 \\ 12.0 \\ 13.4$	$ \begin{array}{c c} 2.7 \\ 10.4 \\ 1.4 \end{array} $
	Total	11.1	$11.3 \parallel 13.0$	12.1	18.7	10.7

ND280 post-fit parameters: xsec

Edward Atkin, PhyStat Systematics

Future plans at T2K

T2K

- More data samples at ND280 and SK; muon-like sample with pion at SK, ND280 samples using proton and photon tagging
- Improved systematics; new neutrino flux tuning and neutrino interaction model
- Cross-section measurements with multiple Near Detectors

T2K phase-II

- **Upgraded ND280** high angular coverage, 3D scintillator readout, better hadron tagging and reconstruction
- SK being doped with Gd neutron tagged samples for oscillation analysis
- J-PARC beam upgrade to 0.75 MW and then 1 MW

Joint-fits

- Joint-fits between T2K and SK atmospherics as well as T2K and NOvA
- These joint-fits should allow some of the **most precise constraints** on neutrino oscillation parameters.

T2K Future Sensitivity

Expected evolution of CPV sensitivity for maximal CPV case

Summary of Data at SK

Selection	Run 1-10 POT	Events in Data
FHC $1R\mu$		318
FHC 1Re	19.644×10^{20}	94
FHC 1Re1d.e		14
RHC $1R\mu$	$16.34556 imes 10^{20}$	137
RHC 1Re		16

SK flux prediction

Flux predictions at SK for different flavour components for neutrino mode (left) and anti-neutrino mode (right).

Imperial College London

Flux Uncertainties

- Flux uncertainties come from a variety of sources; hadron interactions, proton beam, horn current, target alignament etc.
- Use beam monitors and external data from NA61 to make pre-fit flux prediction.

Neutrino energy reconstruction at SK

Neutrino energy reconstructed assuming CCQE interaction for single-ring samples.

Only uses lepton kinematics, particle masses and nuclear model.

$$E_{reco} = \frac{m_p^2 - m_n^2 - m_l^2 + 2m_n E_l}{2(m_n - E_l + p_l \cos \theta_{\nu l})}$$

For single-ring with 1 michel electron sample, events assumed to have come from delta++ decay.

$$E_{reco} = \frac{m_{\Delta + +}^2 - m_p^2 - m_l^2 + 2m_p E_l}{2(m_p - E_l + p_l \cos \theta_{\nu l})}$$

Posterior probabilities

Bayesian "triangle plot" of all oscillation parameters.

2D posteriors:

- Dashed lines 68% credible interval
- Solid lines 90% credible interval

1D posteriors:

68%, 90% and 95.4% (2σ)

Appearance dCP comparison

Comparison of 1 e-like ring samples at SK for different values of dCP

Other oscillation parameters set at best-fit values.

SK p-values

SK p-values using reactor constraint.

Sample / p-value	Shape-based	Total Rate-based
FHC $1R\mu$	0.48	0.18
FHC $1Re$	0.19	0.49
RHC $1R\mu$	0.85	0.74
RHC $1Re$	0.61	0.39
FHC $1Re1d.e.$	0.86	0.22
Total	0.73	0.30

T2K Analysis

Comparison to previous analyses

Comparison of 2020 analysis with 2018 analysis, showing the impact of different updates in the analysis on the sensitivity.

- BANFF is the ND280 fit
- SK reprocessing migrates some event due to new calibration
- Addition of new data has largest impact

Edward Atkin, PhyStat Systematics

Comparison to other experiments

Summary of oscillation results

Disappearance best-fit and credible intervals with reactor constraint

Appearance best-fit and credible intervals with reactor constraint

Posterior probabilities for mass ordering and octant

		$\sin^2 \theta_{23}$		$\Delta m_{32}^2 (imes 10^{-3}) \mathrm{eV}^2$		
2Γ) best fit	0.546	2.49			
58% C.	I. (1σ) range	0.50-0.57		2.408 - 2.548		
90%	C.I. range	0.460 - 0.587	-2	.5962.4	152 & 2.368 - 2	2.592
		$\sin^2 \theta_{13}$			δ_{CP}	
2	D best fit	0.0220		-	-1.967	
68% C	C.I. (1σ) range	0.0212 - 0.02	0.0212 - 0.0226 -2.54		51.037	
90%	6 C.I. range	0.0208 - 0.02	231	-2.92	20.565	
95.4	% C.I. range	0.0206 - 0.02	$0.0206 - 0.0234$ $-\pi$ -		0.346	
99%	6 C.I. range	0.0201 - 0.02	237	$-\pi - 0.0$	$53 \ \& \ 2.827 - \pi$	T
99.7	% C.I. range	0.0198 - 0.02	240	$-\pi - 0.34$	$46 \ \& \ 2.545 - \pi$	T
			•	20 05	C	
		$\sin^2 \theta_{23} < 0.5$	sın	$1^2 \theta_{23} > 0.5$	Sum	
	NH $(\Delta m_{32}^2 > 0)$) 0.195		0.613	0.808	
	IH $(\Delta m_{32}^2 < 0)$	0.034		0.158	0.192	
	Sum	0.229		0.771	1.000	

Different fitters

Summary of the different statistical techniques used by the three fitters at T2K

	Analysis 1	Analysis 2	Analysis 3
Kinematic variables for 1Re sample at SK	Erec-θ	p₀-θ	Erec-θ
Likelihood	Binned Poisson Likelihood Ratio	Binned Poisson Likelihood Ratio	Binned Poisson Likelihood Ratio
Likelihood Optimization	Markov Chain Monte Carlo	Gradient descent and grid scan	Gradient descent and grid scan
Contours/limits produced	Bayesian Credible Intervals	Frequentist Confidence Intervals with Feldman-Cousins (credible intervals supplemental)	Frequentist Confidence Intervals with Feldman- Cousins
Mass Hierarchy Analysis	Bayes factor from fraction of MCMC points in each	Bayes factor from likelihood integration	Frequentist p-value from generated PDF
Near Detector Information	Simultaneous joint fit	Constraint Matrix	Constraint Matrix
Systematics Handling	Simultaneous fit then marginalization	Marginalization during fit	Marginalization during fit

SK event display $\nu_{_{\!\mu}}$

SK event display v_e

