Uncertainty quantification via influence functions

Joint work with: Larry Wasserman (CMU) Mikael Kuusela (CMU) (DESY) Olaf Behnke

Lucas Kania (CMU)

Is there a new fundamental particle?

counts

Normalized

No new fundamental particle = only background

und New fundamental particle = back. + signal

Signal detection requires estimating the background

counts

Normalized

We only know the theorized signal region

is the **bump** a significant deviation from the background?

Signal detection requires estimating the background

counts

Normalized

We only know the theorized signal region

is the bump a significant deviation from the background?

Signal detection

- 1. Estimate the background
- 2. Check if the bump is far away from the est. background

Deviance test [Algeri '19], LRT [Cowan'11]

Statistical problem

Model the data as a mixture of background and signal densities

Signal detection construct a confidence interval for the signal strength λ

We focus on constructing confidence intervals for λ

 $X \sim F$: $dF(x) = (1 - \lambda) \cdot dB(x) + \lambda \cdot dS_{\theta}(x)$

This talk

Characterise λ as a fixed function of $F \rightarrow \lambda(F)$

Quantify the uncertainty due to using $\hat{F} \rightarrow \lambda(\hat{F})$

Approach 1: use two samples

Assume access to a sample only from the background

Mass

Problem: it might not be available in all experiments

Approach 2: assume a signal model

Normalized counts

Assume a signal model a do joint optimisation

Model the data as a mixture of background and signal densities

$$X \sim F$$
 : $dF(x) = (1 - \lambda) \cdot dB(x) + \lambda \cdot dS_{\theta}(x)$
polynomials gaussia

Fit background, signal and signal strength together $\lambda_{MLE}(F) = \arg \min_{\lambda,\theta,dB \in \mathscr{B}} \operatorname{KL} \left(dF , (1 - \lambda) \cdot dB + \lambda \cdot dS_{\theta} \right)$

Problems the background density might fit some of the signal if $\lambda = 0$ the model is over-parametrised

Mass

We don't assume access to a pure sample from the background

We assume that the signal vanishes outside the signal region (SR)

$$X \sim F$$
 : $dF(x) = (1 - \lambda) \cdot dB(x) + \lambda \cdot dS_{\theta}(x)$

$$dS_{\theta}(x) = 0 \quad \forall x \notin SR$$

Outside the signal region the data follows a scaled background

$$dF(x) = (1 - \lambda) \cdot dB(x) \quad \forall x \notin SR$$

Represent signal strength as a function of measure F and B Prob. that $X \sim F$ falls in SR $\lambda(F, B) = 1 - \frac{1 - F(SR)}{1 - B(SR)}$ Prob. that $X \sim B$ falls in SR

We have data from observations from F but not from B

counting experiments [Behnke '13]

counts

Normalized

Mass

 $\lambda(F) = 1 - \frac{1 - F(SR)}{1 - B_F^*(SR)}$ where d

We assume that the signal vanishes outside the signal region (SR)

Represent signal strength as a function of measure F and B

$$\lambda(F,B) = 1 - \frac{1 - F(SR)}{1 - B(SR)}$$

The conditional density of the data on the control region is the conditional background density

$$X \mid X \notin SR \sim \frac{dF(x)}{1 - F(SR)} = \frac{dB(x)}{1 - B(SR)}$$

Assuming that the background can be identified using only the data outside the signal region

$$lB_{F}^{*} = \arg\min_{d\tilde{B}\in\mathscr{B}} d(\frac{dF}{1-F(SR)}, \frac{d\tilde{B}}{1-\tilde{B}(SR)})$$

0. Under our assumption, outside the signal region (SR)

 $dF(x) = (1 - \lambda) \cdot dB(x) \quad \forall \notin SR$

counts

Normalized

Mass

0. Under our assumption, outside the signal region (SR)

 $dF(x) = (1 - \lambda) \cdot dB(x) \quad \forall \notin SR$

1. Fit the background without the signal region

$$dB_F^* = \arg\min_{d\tilde{B}\in\mathscr{B}} \mathsf{KL}\left(\frac{dF}{1-F(SR)}, \frac{d\tilde{B}}{1-\tilde{B}(SR)}\right)$$

counts

Normalized

0. Under our assumption, outside the signal region (SR)

$$dF(x) = (1 - \lambda) \cdot dB(x) \quad \forall \notin SR$$

1. Fit the background without the signal region

$$dB_F^* = \arg\min_{d\tilde{B}\in\mathscr{B}} \mathsf{KL}\left(\frac{dF}{1-F(SR)}, \frac{d\tilde{B}}{1-\tilde{B}(SR)}\right)$$

2. Extrapolate the background to the signal region

counts

Normalized

Mass

0. Under our assumption, outside the signal region (SR)

$$dF(x) = (1 - \lambda) \cdot dB(x) \quad \forall \notin SR$$

1. Fit the background without the signal region

$$dB_F^* = \arg\min_{d\tilde{B}\in\mathscr{B}} \operatorname{KL}\left(\frac{dF}{1-F(SR)}, \frac{d\tilde{B}}{1-\tilde{B}(SR)}\right)$$

2. Extrapolate the background to the signal region

3. Check if the bump is far away from the background

$$\lambda(F) = 1 - \frac{1 - F(SR)}{1 - B_F^*(SR)}$$
Prob. that $X \sim F$ falls in S
Prob. that $X \sim B_F^*$ falls in

Confidence intervals via functional delta method

Given a sample from the distribution, we estimate the distribution and do the same

$$X_1, \dots, X_n \sim F \rightarrow \hat{F}(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A) \rightarrow \lambda(\hat{F})$$

Functional derivatives tell us how $\lambda(F)$ changes as we move from F to \widehat{F}

Given a distribution, we compute the parameter of interest as a fixed function of it $F \rightarrow \lambda(F) = 1 - \frac{1 - F(SR)}{1 - B_F^*(SR)}$

$$f(x,F) \cdot dH(x)$$
 where $\int \psi(x,F) dF(x) = 0$

Influence function

$$\frac{1}{n} \sum_{i=1}^{n} \psi(X_i, F) \right) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2(F))$$

Confidence intervals via functional delta method

Given a sample from the distribution, we estimate the distribution and do the same

$$X_1, \dots, X_n \sim F \rightarrow \hat{F}(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A) \rightarrow \hat{\lambda}(\hat{F})$$

We need to understand how $\lambda(F)$ changes as we move from F to \hat{F}

$$\sqrt{n}\left(\lambda(\hat{F}) - \lambda(F)\right) \asymp \sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\psi(X_i, F)\right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(F))$$

Delta method [van der Vaart '98], influence functions [Hines'22], error propagation in unfolding [Adye'11]

Given a distribution, we compute the parameter of interest as a fixed function of it $F \rightarrow \lambda(F) = 1 - \frac{1 - F(SR)}{1 - R + (SR)}$

$$-B_F^*(SR)$$

Compute the 95% asymptotically valid confidence interval $\lambda(\hat{F}) \pm 1.96 \cdot \sqrt{\frac{\sigma^2(F)}{n}}$

Toy problem: we take a background and add a signal

CMS open data

Toy problem: we take a background and add a signal

We produce 200 datasets of 20 000 observations

11

Percentage of the data from the signal (log scale)

Summary + Future work

- **Assuming**: The mixture $X \sim F$: $dF(x) = (1 \lambda) \cdot dB(x) + \lambda \cdot dS_{\theta}(x)$
 - The signal vanishes outside the signal region
 - The background can be identified from the control region
- **Re-define target** : Rewrite the target parameter $\lambda(F, B)$ as $\lambda(F)$ Construct confidence interval for $\lambda(F)$ using $\lambda(\hat{F})$ and influence functions
- **Next step:** We can reduce the statistical uncertainty of estimating $\lambda(F)$ by using sample splitting + influence functions

$$\sum_{F_2} \lambda(\hat{F}_1) + \int \psi(x, \hat{F}_1) d\hat{F}_2(x)$$

Thanks! Questions?

