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Accounting for systematic 
uncertainties in unfolding 
uncertainty quantification
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Talk overview

1. Provide a brief mathematical overview of the unfolding problem and our 
uncertainty quantification (UQ) objective,


2. characterize how two types of systematic uncertainties, regularization bias 
and wide-bin bias, affect our UQ objective, and


3. present a framework and methods that can address these challenges
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The unfolding problem and

density deconvolution
Our goal is to estimate a true (unknown) probability distribution for some 
variable of interest (e.g., energy) via a finite-resolution detector observations
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Kuusela, 2016.
There are many true spectra that could 
result in this same smeared spectrum, 
making the problem ill-posed.



Mathematical formulation
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Let  be the true, particle-level spectrum and  the smeared, detector-level 
spectrum (both intensity functions for the underlying Poisson point process).

f g

Let  be the true space and  the smeared spaceT ⊂ ℝ S ⊂ ℝ

g(s) = ∫T
k(s, t)f(t) dt

,  true event and  smeared.k(s, t) = p(Y = s ∣ X = t, X obs)P(X obs ∣ X = t) X Y

Goal: infer the true spectrum  given observations from f g



We discretize into a histogram with uniform bins
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Create binnings for  and :  and T S {Tj}n
j=1 {Si}m

i=1

The data:  with y ∈ ℝm 𝔼[y] = μ = [ ∫
S1

g(s) ds … ∫
Sm

g(s) ds]
T

Parameters of interest: λ = [ ∫
T1

f(t) dt … ∫
Tn

f(t) dt]
T

Bin means are related via  where,μ = Kλ

.Kij =
∫

Si
∫

Tj
k(s, t)f(t) dt ds

∫
Tj

f(t) dt Can interpret as 

Prob(smeared event is in bin  | true event in bin )i j



Our discretized histogram model is 
approximately a linear-Gaussian model
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The data generating process for our histogram is

,y ∼ Poisson(Kλ)

which we approximate by

.y ∼ N(Kλ, Σ), Σii = (Kλ)i, ∀i



Our UQ goal is to compute confidence 
intervals (CIs) for particle-level bins
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More precisely, we want to compute CIs for θ(λ) = hTλ

For example, aggregated bins ( ) or a single bin ( )θ(λ) =
4k+3

∑
i=4k

λi θ(λ) = λk

Our UQ goal is to find a random interval with a coverage guarantee. I.e., for any 
, an interval  such thatα ∈ (0,1) Iα(y) = [θl(y), θu(y)]

.ℙ (θ(λ) ∈ Iα(y)) ≥ 1 − α



Four sources of

systematic uncertainty in unfolding
1. Regularization bias


2. Wide-bin bias


3. Missing auxiliary variables


4. Uncertainty in the response kernel k
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Covered in this talk

Covered in Richard’s talk



A Monte Carlo ansatz is a source of

systematic uncertainty
1. Computing  requires knowing …


2. We do not know , but we can use a Monte Carlo ansatz, , to approximate

K f

f fMC
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Kij =
∫

Si
∫

Tj
k(s, t)f(t) dt ds

∫
Tj

f(t) dt
≈ KMC

ij =
∫

Si
∫

Tj
k(s, t)fMC(t) dt ds

∫
Tj

fMC(t) dt

λMC = [ ∫
T1

fMC(t) dt … ∫
T1

fMC(t) dt]
T

Affects UQ with regularization

Affects UQ with wide-bins



Systematic 1 - Regularization bias
1. When the number of true bins ( ) is large, the smearing matrix  is severely ill-conditioned  

-> the LS estimator,  is very sensitive to noise


2. One solution to this sensitivity is to regularize using


1. Tikhonov regularization - SVD [Höcker and Kartvelishvili, 1996] or TUnfold [Schmitt, 
2012]


2. EM Iterations with early stopping [D’Agostini, 1995]


3. Both approaches bias the solution towards a Monte Carlo prediction  of the true 
histogram bin mean, 


4. Extensively discussed in [Kuusela, 2016]

n K
̂λLS = argminλ ∥y − KMCλ∥2

Σ−1

λMC

λ

10



Regularization bias impacts coverage
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Take-away: non-zero bias means coverage is not . Can we not regularize?1 − α

[Kuusela, 2016]



Systematic 2 - Wide-bin bias

1. An alternative to explicit regularization is to implicit regularization by using 
fewer wider bins 


2. Intuitively, we should choose the bin width to be of the order of the detector 
resolution (as opposed to the fine-bin explicit regularization approach)


3. However, using wide-bins exposes us to the Monte Carlo misspecification of 
, resulting in intervals that under-cover

{Tj}n
j=1

KMC
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We simulate using a GMM
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Allows empirical study of interval coverage

f(t) = λtot (π1𝒩(t; μ1, σ2
1) + π2𝒩(t; μ2, σ2

2))True Intensity:
(π1, π2) = (0.3,0.7)
(μ1, μ2) = (−2,2)
(σ2

1 , σ2
2) = (1,1)

λtot = 104fMC(t) = λtot (π1𝒩(t; μ̃1, σ̃2
1) + π2𝒩(t; μ̃2, σ̃2

2))MC Intensity:



Addressing wide-bin bias using fine-bins
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High-level Idea: reduce the dependence of  on  by unfolding with a 
higher number of fine bins followed by aggregating bins to wide-bin granularity

KMC fMC

A view at misspecification via |Kij − KMC
ij |

General Recipe [Stanley, Kuusela, Patil, 
2022]:


1. Unfold with fine bins and no 
regularization


2. Aggregate into wide bins keeping 
track of correlation for error 
propagation



Using Least-squares intervals with wide-bins 
suffers from MC misspecification
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Create intervals with LS estimator, ̂λLS = argminλ ∥y − KMCλ∥2
Σ−1



Unfolding to fine-binning with LS intervals fixes 
coverage
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Narrower bins reduce the misspecification effect of , but at the cost of wide 
intervals. 

fMC



Our proposed recipe produces intervals with 
correct coverage
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Use the sampling distribution of  to create CIs for , i.e., 
aggregated fine bins

̂λLS θk ( ̂λLS) = hT
k

̂λLS



We can do even better by including physical 
constraints and allowing for rank-deficient K

18

1. Some limitations of LS intervals — long, violate non-negativity,  is invertible only if  is full-
column rank —> the misspecification from  can only be reduced by so much


2. We proposed two solutions allowing for rank-deficient  and incorporation of non-negativity 
constraints [Stanley, Kuusela, Patil, 2022]:


1. One-at-a-time strict bounds (OSB) intervals


1. Modified simultaneous strict bounds (SSB) intervals ([Stark, 1992], [Rust & O’Leary, 1994]) 
to have bin-wise coverage


2. Prior-Optimized (PO) Intervals


1. decision-theoretic intervals where a prior is used to optimize expected interval length 
subject to constraints guaranteeing coverage


2. Important: prior misspecification does not affect coverage, as we only use the prior to 
choose from a class of intervals with guaranteed coverage

KTK K
fMC

K



OSB and PO intervals show significant length 
improvements while maintaining coverage
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NOTE: this result is only 
showing the benefit of 
including a non-negativity 
constraint. We still used full-
rank . See [Stanley, 
Kuusela, and Patil, 2022] for 
the rank-deficient case.
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Conclusions and next steps

1. We have identified four sources of systematics in unfolding: regularization 
bias, wide-bin bias, missing auxiliary variables, and response kernel 
uncertainty


2. We can potentially address the first two by unfolding on fine bins, and then 
aggregating to wide bins. We provide two methods (OSB and PO intervals) 
allowing for both physical constraint inclusion and rank deficient 


3. Local next: Richard will discuss how to address response kernel uncertainty


4. Non-local next: generalizations of strict bounds intervals as LR test 
inversion…stay tuned!

K
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Thank you!
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And special thanks to the NSF AI Planning Institute for Data-Driven 
Discovery in Physics for travel support.
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LS Interval construction
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Data generation process: y = Kλ + ε, ε ∼ N(0, Im)

LS Estimator: ̂λLS = (KTK)−1 KTy

We can thus find the sampling distribution


,


and can construct the typical CIs.

θ ( ̂λLS) = hT ̂λLS ∼ N (λ, hT (KTK)−1 h)



OSB Interval Construction

24

Data generation process: y = Kλ + ε, ε ∼ N(0, Im), λ ≥ 0
Quantity of Interest: θ(λ) = hTλ
Intervals are constructed by solving the following endpoint optimizations

min/max θ(λ)
subject to ∥y − Kλ∥2

2 ≤ z2
1−α/2 + s2

λ ≥ 0



PO Interval Construction (1)
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We consider intervals of the form*


δPO(y) = [wT y − z1−α/2∥w∥2, w̄Ty + z1−α/2∥w̄∥2] = [θ(y; w), θ̄(y; w̄)]

We consider  to be a decision rule for intervals on the real line. As shown in 
[Stanley, Kuusela, Patil, 2022], any decision rule in





produces a  CI. Therefore, we seek a  that is optimal, i.e., the 
Bayes-rule with respect to a prior on the expectation of the bin counts, 

δPO

𝒟c := {δ : h − KTw ≤ 0, h − KTw̄ ≤ 0}
1 − α δ* ∈ 𝒟c

mλ
*: This interval parameterization can take on a more general form to 
accommodate more general parameter constraints . The above 
shows the case when  and .

Aλ ≤ b
A = − I b = 0



PO Interval Construction (2)

26

For each decision rule , we define a risk functional as the expected interval length
δ

R(δ) = 𝔼y[L(δ)] = (w̄ − w)T Kλ + z1−α/2 (∥w̄∥2 + ∥w∥2)
Hence, the Bayes risk is


r(mλ; δ) := (w̄ − w)T Kmλ + z1−α/2 (∥w̄∥2 + ∥w∥2)
So, to find the Bayes rule we find  such that
δ*

r(mλ; δ*) = min {r(mλ, δ) : δ ∈ 𝒟c}



PO intervals are competitive with OSB on our 
GMM simulation example
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