Background and Signal Shapes

Nicolas Morange, IJCLab

Workshop on Systematic Effects and Nuisance Parameters in Particle Physics Data Analyses, 25/04/2023

Laboratoire de Physique des 2 Infinis

Background and Signal shapes?

Every analysis is a (multidimensional) shape analysis

- Traditional split between "cut-and-count" and shape analyses
 - Cut-and-count: evaluate number of events in signal region after selections
 - Shape fits: fit full distribution to extract signal
 - Usually more sensitive

• Hidden shapes

- No analysis is just 1 signal region
- Multiple signal regions, control regions
- Extrapolating from one region to another is a shape effect
- We need accurate signal and background shapes in all cases !

High- $E_{\rm T}$ selection	Α	В	С	D
Observed data	22	7	233	131
a priori				
Estimated background	12.4 ± 4.7	7 ± 2.6	233 ± 15	131 ± 11
a posteriori (background-only fit)				
Fitted background	18.8 ± 3.5	10.2 ± 3.2	236 ± 15	128 ± 11
a posteriori (signal-plus-background fit)				
Fitted background	10.0 ± 6.0	5.7 ± 2.4	230 ± 15	131 ± 11
Fitted signal $((m_{\Phi},m_s)=(600,150)GeV))$	12.2 ± 8.7	1.4 ± 1.0	3.4 ± 2.5	< 1
Low- E_T selection	А	В	С	D
Observed data	23	3	220	61
a priori				
Estimated background	10.8 ± 6.6	3 ± 1.7	220 ± 15	61 ± 7.8
a posteriori (background-only fit)				
Fitted background	20.6 ± 4.0	5.4 ± 2.3	222 ± 15	59 ± 7.7
a posteriori (signal-plus-background fit)				
Fitted background	8.4 ± 7.7	2.4 ± 1.5	217 ± 15	61 ± 7.8
Fitted signal $((m_{\Phi}, m_s) = (125, 55)GeV))$	14.6 ± 9.9	< 1	3.2 ± 2.2	< 1

LLP "CalRatio" search

With shapes come modelling uncertainties

• Large datasets

- ~140 fb⁻¹ collected by ATLAS and CMS in Run 2
- Already 40 fb⁻¹ of Run 3 data
- Statistical uncertainties smaller and smaller

Large datasets: precision calibrations

- Electron and muon uncertainties at per-mille level
- Jet energy scales at sub-percent precision
- B-tagging efficiency uncertainty at <1%
- => Large reduction in experimental uncertainties
- Therefore signal and background shapes need to be known with adequate precision
 - Meaning small modelling uncertainties

Modelling: leading concern in many analyses

- Goal #1: good modelling out-of-the-box
 - NLO generators for ~ all processes: Huge success from past years Large effort on parameter tuning from the collaborations
 - MVA/ML techniques require excellent modelling of correlations

• Goal #2: small modelling uncertainties

- Easier to achieve when Goal #1 fulfilled
- Keeping them small at the heart of analysis design
- Lots of techniques involved
- Note: Differential measurements are not a miraculous solution
 - Fine enough differential measurements allow to get rid of signal modelling uncertainties
 - But uncertainties come back in interpretations !

The best Monte-Carlo is the data

Analyses make use of the data as much as possible

Theory / Monte-Carlo driven

Data driven

- Signal uncertainties
- Bkgs without good CRs
- \Rightarrow Uncertainties from MC variations or comparisons
- \Rightarrow Apply on full phase space
- \Rightarrow See presentations by **G**.
- Jones and F. Tackmann

- Bkgs with good CRs
- \Rightarrow Uncertainties from MC
- variations or comparisons
- \Rightarrow Constrained by profiling
- \Rightarrow Apply on extrapolation from CR to SR
- ⇒ See e.g presentations on Optimal Transport by **T. Manole** and **P. Windischhoffer**

- Embedding techniques
- Smooth background descriptions (e.g analytical)
- \Rightarrow Dedicated uncertainty evaluation

Slides heavily based on a presentation given at Higgs 2021 jointly with **Adinda De Wit** (LLR) Credits to her !!

Full spectrum of techniques to get shapes and uncertainties

Background shapes

MC-based textbook example: ttbb, for ttHbb

Pre-fit impact on u:

Post-fit impact on µ:

 $\Theta = \hat{\Theta} + \Delta \Theta \qquad \Theta = \hat{\Theta} - \Delta \Theta$

- ttbb dominant bkg and low S/B
 - Complex process to model by MC
 - Control Regions not enough
- Very large theory uncertainty
 - Cross-section well constrained by profiling, measured ~1.3x expectation
 - Modelling systematics == collection of 2-point systematics
 - ME matching and PS uncertainties esp. give large shape/extrapolation effect
- Different setup by ATLAS/CMS but similar modelling impact:
 - ATLAS: $\Delta \mu = 0.25$
 - CMS: $\Delta \mu = 0.15$

-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4

Good modelling everywhere is hard: tt

• The LHC is a top factory

- tt is a bkg to almost any final state
- Limited experimental efficiencies (b-veto)
- Weird corners of the phase space (acceptance)

• tt modelling

- Good modelling of bulk of phase space by the NLO generators after tuning
 - Though sizable discrepancies remain in some cases
- Difficulty: uncertainties in tails / corners of phase space
 - Not easy to get enough MC statistics:
 - filtering / slicing strategies
 - Future common ATLAS/CMS MC samples may help: <u>ATL-PHYS-PUB-2021-016</u>
 - Extrapolation from 'bulk' (CR) to 'corner' (SR) of phase space
 - Ambiguity between tt and Wt processes
- Result in sizable tt modelling uncertainties in those analyses

VHbb: W/Z+hf backgrounds

Good MC modelling: costly but worth it

- W/Z+bb largest bkgs in VHbb search
- Difficulty: generate enough MC events in relevant phase space (high pT(V)), filtered for W/Z+hf
- CMS analysis (2018) uses MadGraph LO samples
 - Reweighting in pT(V) used
 - Large uncertainty associated
- ATLAS uses Sherpa NLO samples
 - Countless CPU hours required for MC generation
 - Filters (in)efficiency, spread of MC weights

Uncertainty source	$\Delta \mu$	
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

VHbb: W/Z+hf backgrounds estimation

Controlled use of systematics profiling

• Taking advantage of good control regions

- Control regions "pretty close" to signal regions
 - Use of ΔRbb / mbb sidebands + multiclass BDT
- Purity to specific backgrounds from "good" to "excellent"

• Profiling at work

- CRs allow to constrain background cross-sections
- And some background shapes
- What remain are smaller extrapolation uncertainties

Caveats

- Choice of the 2-point systematics, e.g Sherpa/MadGraph difference much larger than Sherpa scale / matching variations
- MC stat noise in uncertainty evaluation smoothed by use of ML techniques for n-dim reweighting

Modelling smooth backgrounds

See Model selection talk by C. Schafer

- Textbook $H \rightarrow \gamma \gamma$ example
 - Narrow resonance on top of smoothly falling bkg
 - Use of semiparametric models
 - Fit of analytical functions more accurate than $\gamma\gamma$ / γ -jet MC samples
 - Also applies to $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$...

Procedures well established since Run-1

- ATLAS-CMS disagreement also when established
- **CMS**: Discrete profiling. Choice of function embedded in a nuisance parameter
 - Residual uncertainty very small
- **ATLAS**: Select function, and estimate maximum bias 'spurious signal'
 - Requires vast amounts of MC events
 - Limitation for high luminosity

Smooth backgrounds: new techniques

New techniques to overcome limitations of spurious signal evaluation

- Use of very fast sim ($H \rightarrow \mu \mu$):
 - LO DY samples at parton-level, with parameterised detector effects
 - Spurious signal evaluated on these samples
- Functional Decomposition
 - Use series expansion to parameterize bkg shape
 - Either replacement of functional form, or use for spurious signal evaluation
- Gaussian Processes
 - Kernel encodes width of features
 - Either replacement of functional form, or use for spurious signal evaluation

Resonant backgrounds - embedding

- E.g. Z boson decays in fermionic channels
- Same signature as the signal, except for mass
 ⇒ hard to model using data control regions
 - "Good" control for the background likely not signal-depleted
- MC simulation does not always adequately describe data
- Even if it does would need very large samples to avoid large MC statistical uncertainties
- Hybrid solution: Embedding

Eur. Phys. J. C.81(2021) 537

Embedding - principle

- Principle in a nutshell:
 - Select a well-understood process in data, in our case $Z \rightarrow \mu \mu$
 - Replace the muons by simulated particles of interest: τ's (ATLAS,CMS), b's (ATLAS)
- A simple idea?
 - Simulated/Real geometry don't match $100\% \rightarrow$ cannot merge at level of hits/deposits
 - Cannot obtain perfect closure \rightarrow residual corrections
 - Spin correlations for simulated taus ignored
- Less complex procedure (re-scaling, not replacing) also in use in ATLAS (ττ)
 - Trade complexity for accuracy

Calorimeter deposits before and after removing muon deposits

<u>IST 14 (2019) P0603</u>

Embedding - achievements

- Better modelling of kinematic distributions with embedded samples than simulation
- Helps reduce some uncertainties
- Simplified procedure provides a control region in data
- Even better modelling (smaller uncertainties?)
 → more work needed!

Uncertainty	$\sigma(\mu_H)$	$\sigma(\mu_{ m VBF})$
Total statistical uncertainty	+1.3 - 1.3	+1.6 - 1.5
Data statistical uncertainty	+0.6 - 0.6	+0.9 - 0.9
Nonresonant background	+1.0 - 1.0	+1.2 - 1.2
Z + jets normalization	+0.5 - 0.5	+0.5 - 0.5
Total systematic uncertainty	+0.6 - 0.4	+0.6 - 0.5
Higgs boson modeling	+0.3 - 0.1	+0.2 - 0.1
JES/JER	+0.3 - 0.2	+0.4 - 0.2
<i>b</i> -tagging (including trigger)	+0.2 - 0.1	+0.2 - 0.1
Other experimental uncertainty	+0.4 - 0.3	+0.4 - 0.4
Total	+1.4 - 1.3	+1.7 - 1.6

VBF H→bb analysis with 2016 data - Z+jets normalization uncertainty significant. Removed thanks to embedding (trade: 20% closure uncertainty)

Workshop Banff, 25/04/2023

Dealing with hybrid cases: CalRatio analysis

- Search for LLP using strange "CalRatio" jets
- Build multiclass NN to separate signal CalRatio jets (MC), QCD (MC), Beam-Induced-Background (from data CR defined at trigger level)
 - But BIB-data sample is known to have significant fraction of QCD-data contamination
 - And certain input variables, such as jet timing, are important discriminators, but are not perfectly modelled
- > NN learns to separate data/MC because of QCD events in BIB sample...

Adversarial NN to the rescue

- Adversary trained to distinguish data from MC in dijet control region
- Feeds into main NN as penalty in loss function

Signal+Multijet+BIB

Simulation+Data

N. Morange (*IJCLab*)

Adversarial NN results

- Huge improvement
- Residual discrepancies covered by systematic uncertainty

No adversary

Adversary

Signal shapes

Signal shapes are the convolution of theory predictions in the form of MC samples, and of experimental (detector) effects

- Uncertainties affect all terms in the convolution
- For background shapes, control regions and data-driven techniques allow to short-circuit some of the uncertainties
- For signal shapes we need to have them all

Examples in Higgs: Underlying event & parton shower

ATLAS-CONF-2020-026

- Significant component of the theoretical uncertainty in several measurements, e.g. $H \rightarrow \gamma \gamma$
 - Particularly in VBF phase space
- Several ways in use to estimate these:
 - Difference between two showering/hadronization programs
 - Difference between a main tune and alternative tune, using the same showering/hadronization program
 - In this case: ATLAS: PY8 vs Herwig7, CMS: PY8 tune variation

	ggF+bbH	VBF	WH	ZH	$t\bar{t}H + tH$
Uncertainty source	$\Delta\sigma$ [%]	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$
Underlying Event and Parton Shower (UEPS)	± 2.3	± 10	$<\pm1$	± 9.6	± 3.5
Modeling of Heavy Flavor Jets in non-ttH Processes	$< \pm 1$	$< \pm 1$	$< \pm 1$	$< \pm 1$	± 1.3
Higher-Order QCD Terms (QCD)	± 1.6	$<\pm1$	$<\pm1$	± 1.9	$<\pm1$
Parton Distribution Function and α_S Scale (PDF+ α_S)	$<\pm1$	± 1.1	$<\pm1$	± 1.9	$<\pm1$
Photon Energy Resolution (PER)	± 2.9	± 2.4	± 2.0	± 1.3	± 4.9
Photon Energy Scale (PES)	$<\pm1$	$<\pm1$	$<\pm1$	± 3.4	± 2.2
$ m Jet/E_T^{miss}$	± 1.6	± 5.5	± 1.2	± 4.0	± 3.0
Photon Efficiency	± 2.5	± 2.3	± 2.4	± 1.4	± 2.4
Background Modeling	± 4.1	± 4.7	± 2.8	± 18	± 2.4
Flavor Tagging	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$
Leptons	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$
Pileup	± 1.8	± 2.7	± 2.1	± 3.8	± 1.1
Luminosity and Trigger	± 2.1	± 2.1	± 2.3	± 1.1	± 2.3
Higgs Boson Mass	$<\pm1$	$<\pm1$	$<\pm1$	± 3.7	± 1.9

Going for differential measurements: Higgs STXS

Differential measurements: instead of measuring 1 signal cross-section, measure simultaneously Higgs cross-section in well-defined parts of phase space based on production kinematics

Higgs Simplified Template Cross-sections

- Agreement between ATLAS CMS and theorists on "good" partition of phase space
- Selected so that relevant theory uncertainties can be provided
- Good sensitivity to new physics at high momentum
- Requires a much more refined set of theory uncertainties
 - Between STXS bins
 - Not a measurement uncertainty when measuring cross sections
 - Enters when merging bins
 - Enters for interpretations (μ,κ, EFT)
 - Within STXS bins
 - Accounts for differences in acceptance
- Overall net reduction of signal uncertainties

Workshop Banff, 25/04/2023

https://twiki.cern.ch/twiki/bin/view/LHCPhvsics/LHCHWGFiducialAndSTXS

Uncertainties in interpretations of measurements

Differential measurements allow to factorize, but do not make uncertainties magically disappear

- Measurement of transverse momentum and rapidity of *Z* boson using Run 1 data
 - Joint measurement of **1584** parameters (cross-sections + polarization coefficients)!
 - Extremely precise data
 - Negligible modelling uncertainties
- Interpretation of these measurements: determination of α_s
 - Relate all these measurements to common underlying theory parameters
 - Modelling uncertainties dominate
 - Missing higher order corrections
 - Parton density functions

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

ATLAS-CONF-2023-015

- Getting the right signal and background shapes (i.e with small associated uncertainties) is a major topic when going for precision measurements or measurements of low processes with low S/B
- Large field of analysis techniques to use data more and rely less on MC predictions
 - Very active field esp. using techniques from the ML world
- Progress requires close collaboration experimentalists / theorists / statisticians
 - Simulations of complex final states (ttbb, W/Z+hf...)
 - Simulations of difficult phase space (Higgs VBF, high pT)
 - Agreement on "adequate" uncertainties in the shapes

Additional Material

Smooth backgrounds: sculpting

- Analysis selection should avoid sculpting background
 - Loss of sensitivity, difficulty modelling data-driven background
- Mitigation strategies in $H \rightarrow bb$ analyses
 - "Basic" selection: mass-decorrelated double-b taggers for boosted $H \rightarrow bb$
 - Event classification: mass-decorrelated ANN for VBF H→bb

N. Mo

26

ttH in multilepton final states: ttW/ttZ

ATLAS-CONF-2019-045

<u> ATL-PHYS-PUB-2020-024</u>

- ttH ML: complex final states with many bkgs
- ttW/ttZ leading ones
 - Description by MC complex
 - Significant differences between generators
- Extensive use of multiclass ML techniques to separate signal / bkgs and fit ttW/ttZ
 - Impact of bkg modelling contained
 - Large μ(ttW)~1.5 in ATLAS and CMS

- Modelling of Higgs boson pT spectrum particularly important for analyses looking at the boosted regime
 - Example of where recent progress has been incorporated in the analyses!
- However, large theory/modelling systematics in the ggH high pT spectrum remain → dwarfed by the statistical uncertainty in highly boosted analyses...

Uncertainty Contribution	$p_{\rm T}^H > 450 { m ~GeV}$	$p_{\mathrm{T}}^{H} > 1 \mathrm{~TeV}$
Total	3.3	31
Statistical	2.8	30
Jet Systematics	1.2	7
Modeling and Theory Systs.	1.0	1
Flavor Tagging Systs.	-0.5	
Total Systematics	1.7	8

ATLAS-CONF-2021-010 N. Morange (IJCLab)

Workshop Banff, 25/04

28

Phase space modelling - Higgs pT

- ... but not necessarily in less boosted phase spaces - e.g. signal strength measurement ggH+2jet / high pT in $H \rightarrow \tau \tau$
- In $H \rightarrow WW$ STXS cross section measurements also a more important component at high pT than in other bins

Δσ_{obs}/σ_{SM} (%)

70 E

50 F

ATLAS Preliminary

EW 994-2/, Iow 7/, -low p.4 iow 7/, -low p.4 EW 994-2/, -low 7/, -low

 $\sqrt{s} = 13 \text{ TeV}. 139 \text{ fb}^{-1}$

 $H \rightarrow WW^* \rightarrow ev\mu v$

ATLAS-CONF-2021-014

STXS uncertainties between bins

ATLAS-PHYS-PUB-2018-035

- Generally based on scale/pdf variations with uncertainties acting across bin boundary
 - E.g. change in cross section above the boundary when applying variations → uncertainty
 - Uncertainty acts across boundary (relative)
 - Difficulty in certain cases
- Important to agree on values of these → e.g. re-interpreting measurements/comparing interpretations
- Common scheme being completed in LHC Higgs WG

E.g. cross section 0-75 GeV < 75-150 GeV; migration across 75 GeV bin boundary can lead to a very large uncertainty in the first bin:

25% uncertainty above the 75 GeV boundary \rightarrow 100% uncertainty below.

STXS uncertainties within bins

- Multiple possible approaches:
- Additional bin boundaries
 - Same approach as for between-bin uncertainties
 - Centralised calculation possible
 - Only captures acceptance effect across (conveniently placed) boundaries

• Within-STXS bin scale variations

- Analysts ensure inclusive STXS bin cross section remains invariant
- Does not necessarily encapsulate all relevant effects
- These uncertainties should be **small**
 - Does not mean "negligible"!

