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What can you expect?

A (very) brief introduction
to the world of optimal transport

A glimpse at how to solve (%) .\f‘
optimal transport problems 0 Se 4

: : : : E E’
(Potential) applications in
particle physics .
From the perspective of a
statistician (Tudor) and a physicist (Philipp)

We’ll be brief; let’s keep the details for the discussion afterwards
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Why should you care?

In particle physics, we manipulate (probability) distributions
on a daily basis ...

CR SR Sim. Data
- | ¢ TN
\‘*‘H-L ’"'txtt VALY

Extrapolation across phase space
(e.g. control region — signal region)

Calibrated
sim.

Generator A Generator B : : : .
Calibration of simulation

(e.g. Monte Carlo prediction
2 —> j\ against data side bands)

Template morphing _ |
(e.g. 2-point systematics) ... optimal transport provides useful tools

(@and a unifying perspective) for many of these!
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The theory of
optimal transport



What is optimal transport”?

The answer to a logistics problem!

“How to transport commodities from N factories to M stores ...
... in the presence of a transportation cost c(a, 1) between factory a and store i ...

... SO that the total cost is minimized?

” A c@”ﬂ
p(A) ‘7&‘\‘

Production -/

Incredibly rich mathematical problem with more than 200 years of literature
(Some of it very high-profile, Fields medal-winning work!)

Tudor Manole, Philipp Windischhofer
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Incredibly rich mathematical problem with more than 200 years of literature
(Some of it very high-profile, Fields medal-winning work!)
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Optimal transport, for a particle physicist

Source distribution Target distribution
p(x) q(y)
/\/
® O o o O

W e

Samples from distribution (e.g. from event generator)
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Optimal transport, for a particle physicist

Source distribution Target distribution
p(x) q(y)
Yo = 7/\1(3(())
X, — :
oo o o o O 00
X 4 4 T y
L 1
The optimal

“transport plan” T

“Monge optimal transport problem”:

Construct a (continuous) function T that maps p(X) into g(y)

In an optimal way by “moving” the samples:
P yby J P Transport cost ¢(X, y) for moving

XYy = ]A’(x) sample from X to y

Such that g(y) = p(x) (VXYA”)_1 and 7 = argmin de p(x) c(x, T(x))
T
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Optimal transport, for a particle physicist

Source distribution Target distribution
p(x) q(y)
Yo = 7/\1(3(())
X, — :
o o O 00

oo o
L . V2 A L W W | B
LL t In this formulation: no sample “splitting”

(Entire probability mass at X, gets moved to y,) I
— Sufficient for continuous densities

s —
“Kantorovich problem” —» g “\\:{‘

000

-

“Monge optimal transport pro

-

Construct a (continuous) functig
In an optimal way by “moving” t
ng

X YVy= T(X) 4—/ ) sample from xtoy

Such that g(y) = p(x) (VXYA”)_1 and 7 = argmin Ja’x p(x) c(x, T(x))
T
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Optimal transport, for a particle physicist

Source distribution Target distribution
p(x) q(y)
Yo = 7/\1(3(())
X, — :
o o O 00

oo o
L ome ‘ —
LL t Smallest achievable transport cost:

“Distance measure” between p(X) and q(y)
— Wasserstein distance

| A

“Monge optimal transport pro

— m] T
Construct a (continuous) functic W me [dx px) c(x, T(x)

In an optimal way by “moving” t

. — ng
XH—Yy= T(X) ) sample from xtoy

A

Such that g(y) = p(x) (VXYA”)_1 and 7 = argmin Ja’x p(x) c(x, T(x))
T
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Optimal transport, for a particle physicist

Source distribution Target distribution

p(x) q(y)

ﬁ

/ \\ - ———_ X

Operatively, this procedure gives the same results as

— Binning X and y
— Reweighting bin contents for x by the density ratio g(y)/p(x)

... but is also well-behaved where the density ratio gets very large
(Empty bins when densities don’t have common support)

— Important for applications (see later)

Tudor Manole, Philipp Windischhofer 11



How to do optimal transport?

In general, the Monge problem is very difficult to solve!

q(y) = p(x) (V, 1)

(Highly nonlinear constraint!)

7 = arg min de p(x) c(x, T(x))

T

Two main classes of algorithms:

A

po)  o~L
o 0 9(y)
X ® —> @
Out-of- I
" evalaation —
“Discrete”

optimal transport

Transport empirical distributions
by pairing up samples ~ O(N?)

Need to interpolate transport map
to unseen samples

Tudor Manole, Philipp Windischhofer

A

— ——o—9(»)
—— 11
“Continuous”

optimal transport

Use samples to construct
continuous transport function

Need to make assumptions on
underlying densities
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The role of the transport cost

The character of the solution 7 to the Monge problem
depends strongly on the cost function c(x, y)

Many useful cost functions are (strictly) convex!

Eg.c(x,y)=|x—yl|’ forp >1

In this case: the optimal transport function is unique and
the gradient of a potential!

T(x) = x + Vg(x)
— “Transport potential”

Optimal transport < Electrostatics ) X . KJ

<

The transport vector field T
has zero curl! “Don’t ship your stuff in circles.”

— More information on other cases in backup

Tudor Manole, Philipp Windischhofer 13



/q

(Potential) Applications in
high-energy physics



Template morphing

Optimal transport solution maps p(X) into g(y)
X y= T(x) =x+ Vgx)

Can interpolate between p and ¢: just
move each sample by a fraction of the full gradient

Ts(x) =x+s5sVgkx), 0<s<1

Tudor Manole, Philipp Windischhofer

Other ways of
iInterpolating

---------
e=""
-

<\
K s =1
Y .
p(xX) "\ Geodesic
§ = O (w.r.t. Wasserstein
Bl distance)

15



Template morphing

Optimal transport solution maps p(x) into g(y) Other ways of
iInterpolating

---------
e=""
-

X|—>y=7A"(x)=x+Vg(x) o

s=1
Can interpolate between p and g: just ‘:i' """"
move each sample by a fraction of the full gradient ~ p(X) "\ Geodesic
§ = O (w.r.t. Wasserstein
distance)

Ts(x) =x+s5sVgkx), 0<s<1

px) 5s=02 s=04 s=06 s5=08 ¢gx)

VANIVAN
ANV

Wasserstein
geodesic

Vertical
interpolation /\

Tudor Manole, Philipp Windischhofer
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Calibrating simulations

Our field has spent several decades building extremely precise simulations ...
... they encode a lot of domain knowledge, but they are not perfect!

Theory . Reconstructed
parameters ; 5 event
K‘ i + i X +—
H — - a
Nonperturbative dynamics: Interaction with detector:
Phenomenological models “All cables correctly included”?

instead of rigorous calculations

Often impossible / impractical to correct the simulation model

Instead: calibrate the simulator output

Tudor Manole, Philipp Windischhofer 17



Calibrating simulations

Our field has spent several decades building extremely precise simulations ...

... they encode a lot of domain knowledge, but they are not perfect!

h Uncalibrated
sory 5 event
parameters ; L
H — N | e
- - m wmwm e v
Calibration data set: " -,
Well-understood data from real detector { y } » Calibration

—“no unknown physics” = ™.

Calibrated event: X,

Useable in inference

______

Tudor Manole, Philipp Windischhofer
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Calibrating simulations

Our field has spent several decades building extremely precise simulations ...

... they encode a lot of domain knowledge, but they are not perfect!

Uncalibrated

Theory E--------------------------------------------------------------------------: even‘t

parameters

Optimal transport for calibration

Minimally adjust simulation to match calibration data (X)
in an unbinned way P

p(X) q(y) Calibration

Transport cost: encodes confidence in simulation

Currently under investigation in ATLAS to | _ L
calibrate flavor taggers ' X |

_____

Tudor Manole, Philipp Windischhofer
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Comparing collider events (Komiske et al. 2019)

size = pr

Tudor Manole, Philipp Windischhofer 20



Comparing collider events (Komiske et al. 2019)
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Generated with the Energyflow package based on CMS open data.
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Comparing collider events (Komiske et al. 2019)
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Comparing collider events (Komiske et al. 2019)
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Comparing collider events (Komiske et al. 2019)
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Data-driven background estimation

Xi..,. X, ~fx)=€-s(x)+ (1 —¢€) - b(x)

s: Known signal density
b: Unknown background density
€. Proportion of signal

Goal: Test the hypotheses

Hy:¢e=0, H; :e>0.

Problem: b is unknown.

- Example: HH—4b search

Tudor Manole, Philipp Windischhofer
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Data-driven background estimation

Xi..,. X, ~fx)=€-s(x)+ (1 —¢€) - b(x)

Assume we also have: Y|,...,Y ~ b(x) ~ b(x)

b(x)

x (Inv Mass) x (Inv Mass)

Tudor Manole, Philipp Windischhofer



Data-driven background estimation

Xi..,. X, ~fx)=€-s(x)+ (1 —¢€) - b(x)

Assume we also have: Y|,...,Y ~ b(x) ~ b(x)

L |
L
-----

Sideband i Signal o band
. Region -

Signal :

: Sideband Sideband :
Region - :

Tudor Manole, Philipp Windischhofer



Data-driven background estimation

Step 1: Fit OT map 7T from . Step 2: Evaluate on Sideband of b
Sideband to Signal Region of b (distinct extrapolation from ABCD method!)

Sideband i Signal o band
. Region -

Signal :

: Sideband Sideband :
Region - .

Tudor Manole, Philipp Windischhofer



Data-driven background estimation

Hierarchical Optimal Transport:

The ground cost is itself the EMD between collider events!

Sidebandé : Slgr_1al :

Signal : Sideband
Region -

: Sideband Sideband :
Region - :

Tudor Manole, Philipp Windischhofer



Optimal transport for domain adaptation

Dataset
_____ _*_ ""“""'"------..______.
t+, e oo
00O
+1 4
o+
-l_'“--::_: ____________________________________
o

. ++ Class 1
0O O O Class 2
‘ -I——O Samples x?

7
.- S t
------- 7

— Classifier onxj

Image Credit: Courty et al (2016)

Tudor Manole, Philipp Windischhofer

Optimal transport

) \\T’Yo ()

+ O Samples T, (x7)

Classification on transported samples

------- "
...... )

— Classifier on T, (x7)




Multivariate C.D.F.s and quantiles

(Consider ¢ = || - ||2)

q = Unif(0,1)

T(Ix)

0 J 1

T(x) = j:“o p(»)dy (Tis the C.D.F. of p)!

Suggests a way to define multivariate C.D.F.s and quantiles

Given a reference density f and a multivariate density p:

- The OT map from f to p is called the multivariate C.D.F. of p
- The OT map from p to fis called the multivariate quantile of p.

Tudor Manole, Philipp Windischhofer 31



Multivariate C.D.F.s and quantiles

1-

Multivariate Ranks

... lead to multivariate generalizations of classical
rank-based tests (Mann-Whitney test, Hoeffding’s
Image Credit: Hallin (2022). independence test, Wilcoxon’s rank-sign test, etc.)

Suggests a way to define multivariate C.D.F.s and quantiles

Given a reference density f and a multivariate density p:

- The OT map from f to p is called the multivariate C.D.F. of p
- The OT map from p to fis called the multivariate quantile of p.

Tudor Manole, Philipp Windischhofer 32



Outlook and Open Problems

Optimal transport has become popular in statistics/HEP-ex because it:

* Provides a canonical way to transport probability distributions

e Stays faithful to the underlying geometry of the space (via the choice of ¢).
* Yields a metric between distributions for which smoothing is not needed.
* Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).

Many open problems remain!

e Computationally and statistically efficient estimators of OT maps?
- “Map-then-smooth estimators”
- “Smooth-then-map estimators”
- Other heuristics: input convex neural networks, etc.

pv) o~T_ OIS
» Se 40 - —a(y)
" e —>@ . —

“Map-then-smooth” “Smooth-then-map”

Tudor Manole, Philipp Windischhofer 33



Outlook and Open Problems

Optimal transport has become popular in statistics/HEP-ex because it:

* Provides a canonical way to transport probability distributions

e Stays faithful to the underlying geometry of the space (via the choice of ¢).
* Yields a metric between distributions for which smoothing is not needed.
* Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).

Many open problems remain!

® Computationally and statistically efficient estimators of OT maps?
- “Map-then-smooth estimators”
- “Smooth-then-map estimators”
- Other heuristics: input convex neural networks, etc.

® Quantifying statistical uncertainty for OT maps?
- For smooth-then map estimators, we recently showed that, for some Zn(x),

%, (T,(x) = T(x)) ~ N(O,L) .

- Does this hold for more practical estimators?
- Is the bootstrap valid?

Tudor Manole, Philipp Windischhofer 34
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What is optimal transportation?

The answer to a logistics problem! |
Transportation cost

(per unit mass)

Qphmal —» 7 = argmin 2 2 r(a,1) c(a,i)
transportation plan - . \
/ © Mass transported from factory a
Optimization over all possible to store 1
transportation plans (“transportation plan”)
1

q(3)
\ Demand

Assume total production p(A) + p(B) equals total demand g(1) + qg(2) + q(3)
Philipp Windischhofer
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What is optimal transportation?

The answer to a logistics problem!

Optimal A - :
. —» 7 = are min n(a,i)

transportation plan

Optimization over all possible /
transportation plans

\ Mass transported from factory a

to store 1
(“transportation plan”)

h/w
p(A) \N

{3
Production -/
A—
[==g="=]

q(3)

<4

“All possible” transportation plans?

Must satisfy two conditions:

Z w(a,i) = pla) Va

“Entire production is shipped”

Z m(a, i) = q(i) Vi

“Entire demand is satisfied”

\ Demand

Assume total production p(A) + p(B) equals total demand g(1) + qg(2) + q(3)

Philipp Windischhofer
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Optimal transport, now continuous

How about a continuous distribution of production p(x) and a
continuous distribution of demand g(y)?

Remember: the marginals of any admissible
p(x) .

transport plan must give the source and

target distributions:

[dy (x,y) = p(x) de n(x,y) = q(y)

“Entire mass picked up” “Entire mass delivered” y
Cost to transport one Transport plan:
unit of mass from x to y: c(x, y) move an amount 7(x,y) from xto y

fransport plan with 2 _ 310 min de dy n(x,y)
minimal cost: T

“Kantorovich optimal transport problem”

Philipp Windischhofer 39



Optimal transport, now continuous

How about a continuous distribution of production p(x) and a
continuous distribution of demand g(y)?

p(x)

(X, y)

q(y)

Philipp Windischhofer

It is not difficult to satisfy these
constraints!

n(x,y) = p(x) q(y)

(Is admissible, but rarely minimal)

This transport plan distributes
Mass from X, across all y

Constraints:

dy n(x,y)= p(x)
7(xp, y) ~ q(y) “

dx n(x,y)=q(y)

40



Monge vs. Kantorovich

Transport between two smooth distributions:

A A
p(x) () Deterministic transport
. q(y) (“reordering of samples”) sufficient
/\ — Monge problem

> X >y

\ Samples drawn from distribution j

Transport between non-smooth and smooth distribution:

A A
p(x) = o(x — xp) 7(x,y) Need stochastic transport
—_— q(y) (“random smearing of samples”)
/\ — Kantorovich problem
> X [ oo O > y
X0

Philipp Windischhofer 41



The choice of cost function

Many useful cost functions are convex!

E.g.cCx,y) =|x—y| ' forp > 1

... let’s look at a few examples!

p=2iecly =|x—y|

Example:

Source distribution p(x) populates
iInside of axis-aligned square

Target distribution g(y) populates

“rotated” square

But: rotation is not a gradient
vector field!

Philipp Windischhofer
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The choice of cost function

Many useful cost functions are convex!

E.g.cCx,y) =|x—y| ' forp > 1

... let’s look at a few examples!

p=2iecly =|x—y|

X,Y

p(x)

Example:

Source distribution p(x) populates
iInside of axis-aligned square

Target distribution g(y) populates

“rotated” square

But: rotation is not a gradient
vector field!

The optimal transport solution
looks like this

Philipp Windischhofer

43



Calibrating simulations: the right cost function

Example from before: simulation of a square, but rotation angle incorrectly modeled

Uncalibrated simulation Calibration data

XL,Y

px)

q(y)

Optimal in Euclidean plane Optimal on a cone manifold
ds’ = dr* + r*d¢? ds®> = a’dr* + r’d¢?*, a > 1

Use this if rotational degree of freedom
Is known to be poorly modeled

Philipp Windischhofer 44



The choice of cost function

Many useful cost functions are convex!

E.g.cCx,y) =|x—y| ' forp > 1

... let’s look at a few examples!

p=2iecly =|x—y|

For 1-dimensional distributions:

The optimal transport solution performs
quantile-matching (works for all convex
cost functionsl!)

T(x) = 0~ (P(x))

& Cumulative distributions

of p(x), g(y):

Generically: F(x) = [ dx' f(x')
0

px)

Yo = T(xo)

O(yp) = P(x))}

q(y)

Philipp Windischhofer
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The choice of cost function

Many useful cost functions are convex!

Eg.c(x,y) = |x—yl|’ forp>1

... let’s look at a few examples!

p = 1,i.e. c(x, y) — |x —y | (Monge’s original problem)

This is a much more complicated case!

Solutions exist for smooth distributions, but no longer unique!

4 px) . Example:
Uniform source and target distributions
0 N > X (e.g. rows of N books, shifted by one)
4 q(y)
>
01 N+1 g

Philipp Windischhofer



The choice of cost function

Many useful cost functions are convex!

E.g.cCx,y) =|x—y| ' forp > 1

... let’s look at a few examples!

p=1,ie.c(x,y)=|x—y|

This is a much more complicated case!

4 p(x).

» X
0 N
+ q(y)

>
01 N+1 g

(Monge’s original problem)

Solutions exist for smooth distributions, but no longer unique!

A
/X “Move 1 book by N”
5 >
01 N N+1
P 2T
| i “Move N books by 1”
5 >
01 N N+1

Philipp Windischhofer
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A solution sketch

Monge problem
Nonlinear constraint
T=V3 4

Equivalence for
smooth distributions

v

Kantorovich problem
Linear constraints!

A

Kantorovich-Rubinstein
duality

\4

Dual Kantorovich problem

Convex constraints
— manageable!

Philipp Windischhofer

A

T = arg min de p(x) T(x)
T

m(y) = p@oly = TW] i ( ar ) B
dx

A

7 = argmin de dy n(x,y)

T

[dy n(x,y) = px) de n(x,y) = q(y)

f,8 = arg H}ax [dy qg(y) f(y)+
'8

gx) +f(y) < T [dx p(x)g(x)
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The Kantorovich-Rubinstein duality

Primal problem:

A

7 = argmin de dy n(x,y)

T

[dy n(x,y) = p(x) de n(x,y) = q(y)

“Black-box perspective”:

Optimize prices g(x) and f(y):
maximize revenue while underbidding
point-to-point transport

p(x) q(y)
5() N
Price to -/ T ) Price to
depopulate at x Transport details \populate aty

(“pick up’) hidden! (“deliver”)

Philipp Windischhofer

“Operative perspective”:

Optimise transportation plan based
on point-to-point cost

@ q(y)
p(x)

Dual problem:

f,8 = arg H}ax [dy qg(y) f(y)+
'8

gx) +f(y) <

+ [dx p(x)g(x)

49



The dual problem

The dual problem is (much) easier to solve numerically:

Legendre transform in classical

f ,& = argmax "dy qg(y) f(y) +[dxp(x)g(x) mechanics:
| H(p) + L(g) = pq

/.8
g(x) +f(y) < ) K
Hamiltonian Lagrangian

For

f and ¢ are
Legendre-conjugates!

g = arg max de q(y) g*(y) +[dxz9(X)g(x)

gECVX

Legendre transform: g*(y) = max [x Yy — g(x)]
X

Maximise this “loss function” over all convex functions g(x)

Recover optimal transport function T=V g

Philipp Windischhofer 50



Some statistical applications of Wasserstein distances

e Goodness-of-fit Testing: Given X, ..., X, ~ p and known ¢, one can test

Hy:p=gq, H :p#Fgq
using the test statistic W (P, g), where P, is the empirical distribution.

- Similar ideas apply to two-sample testing.

e Minimum-distance Estimation: Given a parametric model (py)4g and
Xi, ..., X, ~ Pg,, construct the following estimator for 6:

0 = argmin W,(P,, py) -
0O

Broad message: Unlike many classical metrics, the Wasserstein distance is
well-defined for empirical measures, and provides a useful data analytic tool.

Tudor Manole, Philipp Windischhofer o1



The Earth Mover’s Distance a.k.a. Partial OT)

Zfij <E, Zfij <E, Zfij = Ein;
J I 1

See Komiske et al., 2019.

Tudor Manole, Philipp Windischhofer 52



