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What can you expect?

A glimpse at how to solve  
optimal transport problems

(Potential) applications in 

particle physics

A (very) brief introduction 

to the world of optimal transport

From the perspective of a  
statistician (Tudor) and a physicist (Philipp)

We’ll be brief; let’s keep the details for the discussion afterwards

p(x)
q(y)

̂T
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Why should you care?
In particle physics, we manipulate (probability) distributions  
on a daily basis …

… optimal transport provides useful tools  
(and a unifying perspective) for many of these!

Extrapolation across phase space  
(e.g. control region → signal region)

Calibration of simulation 
(e.g. Monte Carlo prediction 

 against data side bands)

Template morphing

(e.g. 2-point systematics)

CR SR Sim. Data

Calibrated  
sim.

Generator A Generator B



The theory of  
optimal transport
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What is optimal transport?
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A

B

1

2
3

Production

Demand

p(A)

p(B)

q(1)

q(3)

q(2)

c(A,1)

c(B,1)

c(A,2)c(A,3)

c(B,2)

c(B,3)

Incredibly rich mathematical problem with more than 200 years of literature 
(Some of it very high-profile, Fields medal-winning work!)

The answer to a logistics problem!

“How to transport commodities from  factories to  stores …N M
… in the presence of a transportation cost  between factory  and store  …c(a, i) a i

… so that the total cost is minimized?
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What is optimal transport?
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Incredibly rich mathematical problem with more than 200 years of literature 
(Some of it very high-profile, Fields medal-winning work!)

The answer to a logistics problem!

“How to transport commodities from  factories to  stores …N M
… in the presence of a transportation cost  between factory  and store  …c(a, i) a i

… so that the total cost is minimized?

A

B

1

2
3

One possible 

“transport plan”
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Optimal transport, for a particle physicist
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x y

p(x) q(y)

Source distribution Target distribution

Samples from distribution (e.g. from event generator)
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Optimal transport, for a particle physicist
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x y

p(x) q(y)

Source distribution Target distribution

The optimal

“transport plan” ̂T

“Monge optimal transport problem”:
Construct a (continuous) function  that maps  into  

in an optimal way by “moving” the samples:

̂T p(x) q(y)

x0

y0 = ̂T(x0)

x ↦ y = ̂T(x)

Such that and

Transport cost  for moving

sample from  to 
c(x, y)

x y

   q(y) = p(x) (∇x ̂T )−1 = arg min
T ∫ dx p(x) c(x, )̂T T(x)
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in an optimal way by “moving” the samples:

̂T p(x) q(y)
Transport cost  for moving


sample from  to 
c(x, y)

x y

“Monge optimal transport problem”:

Optimal transport, for a particle physicist
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x y

p(x) q(y)

Source distribution Target distribution

The optimal

“transport plan” ̂T

x0

y0 = ̂T(x0)

x ↦ y = ̂T(x)

   q(y) = p(x) (∇x ̂T )−1Such that and

A

B

1

2

3

“Kantorovich problem”

In this formulation: no sample “splitting” 
(Entire probability mass at  gets moved to ) 
  → Sufficient for continuous densities

x0 y0

= arg min
T ∫ dx p(x) c(x, )̂T T(x)
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Construct a (continuous) function  that maps  into  

in an optimal way by “moving” the samples:

̂T p(x) q(y)
Transport cost  for moving


sample from  to 
c(x, y)

x y

“Monge optimal transport problem”:

Optimal transport, for a particle physicist
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x y

p(x) q(y)

Source distribution Target distribution

The optimal

“transport plan” ̂T

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

x0

y0 = ̂T(x0)

x ↦ y = ̂T(x)

   q(y) = p(x) (∇x ̂T )−1Such that and

= min
T ∫ dx p(x) c(x, )W T(x)

Smallest achievable transport cost: 

“Distance measure” between  and  
  → Wasserstein distance

p(x) q(y)
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Optimal transport, for a particle physicist
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y

p(x) q(y)

Source distribution Target distribution

Operatively, this procedure gives the same results as

x

→ Binning  and x y
→ Reweighting bin contents for  by the density ratio x q(y)/p(x)

… but is also well-behaved where the density ratio gets very large

(Empty bins when densities don’t have common support)

→ Important for applications (see later)
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How to do optimal transport?
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In general, the Monge problem is very difficult to solve!

Two main classes of algorithms:

“Discrete”  
optimal transport

“Continuous”  
optimal transport

p(x)
q(y)

Transport empirical distributions  
by pairing up samples ~ 𝒪(N2)

Use samples to construct  
continuous transport function

p(x)
q(y)

̂T ̂T

= arg min
T ∫ dx p(x) c(x, )̂T T(x)   q(y) = p(x) (∇x ̂T )−1

(Highly nonlinear constraint!)

Need to interpolate transport map  
to unseen samples

Out-of-sample

evaluation

Need to make assumptions on  
underlying densities
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The role of the transport cost
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The character of the solution  to the Monge problem  
depends strongly on the cost function 

̂T
c(x, y)

Many useful cost functions are (strictly) convex!

E.g.  for c(x, y) = |x − y |p p > 1

̂T(x) = x + ∇g(x)

In this case: the optimal transport function is unique and  
the gradient of a potential!

“Transport potential”

Optimal transport ⇔ Electrostatics

The transport vector field  
has zero curl!

̂T
“Don’t ship your stuff in circles.”

→ More information on other cases in backup



(Potential) Applications in  
high-energy physics
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Template morphing
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̂Ts(x) = x + s∇g(x),

Optimal transport solution maps  into p(x) q(y)

s = 0

s = 1

p(x)

q(y)
x ↦ y = ̂T(x) = x + ∇g(x)

0 ≤ s ≤ 1

Can interpolate between  and : just 
move each sample by a fraction of the full gradient

p q
Geodesic


(w.r.t. Wasserstein  
distance)

Other ways of 

interpolating
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Template morphing
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̂Ts(x) = x + s∇g(x),

Optimal transport solution maps  into p(x) q(y)

s = 0

s = 1

p(x)

q(y)
x ↦ y = ̂T(x) = x + ∇g(x)

0 ≤ s ≤ 1

Can interpolate between  and : just 
move each sample by a fraction of the full gradient

p q
Geodesic


(w.r.t. Wasserstein  
distance)

Other ways of 

interpolating

p(x) q(x)

Wasserstein 
geodesic

Vertical  
interpolation

s = 0.2 s = 0.4 s = 0.6 s = 0.8
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Calibrating simulations
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Our field has spent several decades building extremely precise simulations …
… they encode a lot of domain knowledge, but they are not perfect!

θ

Often impossible / impractical to correct the simulation model

Instead: calibrate the simulator output

x
Theory 


parameters
Reconstructed 


event

Nonperturbative dynamics: 
Phenomenological models  

instead of rigorous calculations

Interaction with detector: 
“All cables correctly included”? 
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Calibrating simulations
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Our field has spent several decades building extremely precise simulations …
… they encode a lot of domain knowledge, but they are not perfect!

θ
x

Theory 

parameters

x′ 

{y} Calibration

Uncalibrated

event

Calibrated event: 
Useable in inference

Calibration data set: 
Well-understood data from real detector 

—“no unknown physics”
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Calibrating simulations
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Our field has spent several decades building extremely precise simulations …
… they encode a lot of domain knowledge, but they are not perfect!

θ
x

Theory 

parameters

x′ 

{y} Calibration

Uncalibrated

event

Calibrated event: 
Useable in inference

Calibration data set: 
Well-understood data from real detector 

—“no unknown physics”

p(x)

q(y)

Optimal transport for calibration

Currently under investigation in ATLAS to  
calibrate flavor taggers (including systematics)

Minimally adjust simulation to match calibration data

in an unbinned way

Transport cost: encodes confidence in simulation

p(x) q(y)
̂T
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η

ϕ

size = pT

Comparing collider events (Komiske et al. 2019)
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Comparing collider events (Komiske et al. 2019)
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Generated with the Energyflow package based on CMS open data.
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Comparing collider events (Komiske et al. 2019)
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Generated with the Energyflow package based on CMS open data.
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EMD: 268.5 GeV

Comparing collider events (Komiske et al. 2019)
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EMD(ℰ, ℰ′ ) = ∑
i,j

fij∥(ηi, ϕi) − (η′ j, ϕ′ j)∥ + |sT − s′ T |

fij

(η′ j, ϕ′ j)

(ηi, ϕi)

Comparing collider events (Komiske et al. 2019)
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Data-driven background estimation

X1, …, Xn ∼ f(x) = ϵ ⋅ s(x) + (1 − ϵ) ⋅ b(x)

: Known signal density

: Unknown background density

: Proportion of signal

s
b
ϵ

x (Inv Mass)

Problem:  is unknown.b
• Example: HH 4b search→

H0 : ϵ = 0, H1 : ϵ > 0.

Goal: Test the hypotheses

f(x)

s(x)

b(x)

x (Inv Mass)
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Data-driven background estimation

x (Inv Mass)

b̃(x)

x (Inv Mass)

b(x)

f(x)

x (Inv Mass)

X1, …, Xn ∼ f(x) = ϵ ⋅ s(x) + (1 − ϵ) ⋅ b(x)

Y1, …, Ym ∼ b̃(x) ≈ b(x)Assume we also have:
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Data-driven background estimation

x (Inv Mass)

b̃(x)

b(x)

f(x)

Signal  
Region

Control 
Region

Control 
Region

Signal  
Region

Control  
Region

Control  
Region

X1, …, Xn ∼ f(x) = ϵ ⋅ s(x) + (1 − ϵ) ⋅ b(x)

Y1, …, Ym ∼ b̃(x) ≈ b(x)Assume we also have:
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Data-driven background estimation

x (Inv Mass)

b̃(x)

b(x)

f(x)

Signal  
Region

Control 
Region

Control 
Region

Signal  
Region

Control 
Region

Control 
Region

Step 1: Fit multivariate OT map

  from CR to SR of ̂T b̃

Step 2: Evaluate on CR of  
(distinct modeling assumptions 

from density ratio extrapolation)

b
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Data-driven background estimation

x (Inv Mass)

b̃(x)

b(x)

f(x)

Signal  
Region

Control 
Region

Control 
Region

Signal  
Region

Control 
Region

Control 
Region

Hierarchical Optimal Transport:  

The ground cost is itself the EMD between collider events!
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Optimal transport for domain adaptation

x (Inv Mass)

Image Credit: Courty et al (2016)
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Multivariate C.D.F.s and quantiles
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0 1

x

p = Unif(0,1)q
T(x)

(  is the C.D.F. of )!T pT(x) = ∫ x
∞

p(y)dy

Suggests a way to define multivariate C.D.F.s and quantiles 

Given a reference density  and a multivariate density : 

- The OT map from  to  is called the multivariate C.D.F. of  
- The OT map from  to  is called the multivariate quantile of .

f p
f p p
p f p

(Consider )c = ∥ ⋅ ∥2
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Multivariate C.D.F.s and quantiles
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Suggests a way to define multivariate C.D.F.s and quantiles 

Given a reference density  and a multivariate density : 

- The OT map from  to  is called the multivariate C.D.F. of  
- The OT map from  to  is called the multivariate quantile of .

f p
f p p
p f p

Multivariate Ranks
… lead to multivariate generalizations of classical  
rank-based tests (Mann-Whitney test, Hoeffding’s  
independence test, Wilcoxon’s rank-sign test, etc.)Image Credit: Hallin (2022).

pf
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Outlook and Open Problems
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Optimal transport has become popular in statistics/HEP-ex because it: 

• Provides a canonical way to transport probability distributions

• Stays faithful to the underlying geometry of the space (via the choice of ).

• Yields a metric between distributions for which smoothing is not needed.

• Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).

• … 

Many open problems remain! 

• Computationally and statistically efficient estimators of OT maps? 
- “Map-then-smooth estimators”

- “Smooth-then-map estimators”

- Other heuristics: input convex neural networks, etc.


c

p(x)
q(y)

̂T

Out-of-sample

evaluation

“Map-then-smooth” 

̂p(x) ̂T
̂q(y)

“Smooth-then-map”
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Outlook and Open Problems
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Optimal transport has become popular in statistics/HEP-ex because it: 

• Provides a canonical way to transport probability distributions

• Stays faithful to the underlying geometry of the space (via the choice of ).

• Yields a metric between distributions for which smoothing is not needed.

• Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).

• … 

Many open problems remain! 

• Computationally and statistically efficient estimators of OT maps? 
- “Map-then-smooth estimators”

- “Smooth-then-map estimators”

- Other heuristics: input convex neural networks, etc.


• Quantifying statistical uncertainty for OT maps? 
- For smooth-then map estimators, we recently showed that, for some , 


-  




- Does this hold for more practical estimators?

- Is the bootstrap valid?


c

Σn(x)

Σn(x)( ̂Tn(x) − T(x)) ↝ N(0,Id) .
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What is optimal transportation?
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The answer to a logistics problem!

A

B

1

2
3

p(A)

p(B)

q(1)

q(3)

q(2)

c(A,1)

c(B,1)

c(A,2)c(A,3)

c(B,2)

c(B,3)

Production

Demand

π(A,1) π(B,1)

π(A,2)

π(A,3)

π(B,2)
π(B,3)

= arg min
π ∑

a
∑

i

π(a, i) c(a, i)

Transportation cost  
(per unit mass)

Mass transported from factory   
to store  
(“transportation plan”)

a
iOptimization over all possible  

transportation plans

Optimal 
transportation plan ̂π

Assume total production  equals total demand p(A) + p(B) q(1) + q(2) + q(3)
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q(1)

q(3)

c(A,1)
c(A,2)c(A,3)

π(A,1)

π(A,2)

π(A,3)

What is optimal transportation?
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The answer to a logistics problem!

A

B

1

2
3

p(B)

q(1)

q(2) c(B,1)c(B,2)

c(B,3)

Production

Demand

π(B,1)

π(B,2)
π(B,3)

= arg min
π ∑

a
∑

i

π(a, i) c(a, i)

Transportation cost  
(per unit mass)

Optimization over all possible  
transportation plans

Optimal 
transportation plan ̂π

“All possible” transportation plans?

∑
i

π(a, i) = p(a)

∑
a

π(a, i) = q(i)

Must satisfy two conditions:

“Entire production is shipped”

∀a

∀i

“Entire demand is satisfied”

p(A)

Mass transported from factory   
to store  
(“transportation plan”)

a
i

Assume total production  equals total demand p(A) + p(B) q(1) + q(2) + q(3)
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Optimal transport, now continuous
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

x y

p(x) q(y)

Cost to transport one 

unit of mass from  to : x y c(x, y)

Transport plan:  
move an amount  from  to π(x, y) x y

“Kantorovich optimal transport problem”

Transport plan with  
minimal cost:

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Remember: the marginals of any admissible 
transport plan must give the source and  
target distributions:

“Entire mass picked up” “Entire mass delivered”

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Optimal transport, now continuous
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p(x)

q(y)

∫ dx π(x, y) = q(y)

∫ dy π(x, y) = p(x)

π(x, y) Constraints:

It is not difficult to satisfy these 
constraints!

π(x, y) = p(x) q(y)
(Is admissible, but rarely minimal)

π(x0, y) ∼ q(y)x0

This transport plan distributes

Mass from  across all x0 y

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Monge vs. Kantorovich
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Transport between two smooth distributions:

Transport between non-smooth and smooth distribution:

Deterministic transport  
(“reordering of samples”) sufficient  

→ Monge problem

Need stochastic transport  
(“random smearing of samples”) 

→ Kantorovich problem

x y

p(x)
q(y)

x y

q(y)
p(x) = δ(x − x0)

x0

̂T(x)

̂π(x, y)

Samples drawn from distribution
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

x1, y1

x2, y2

p(x)

q(y)

Example:

Source distribution  populates 
inside of axis-aligned square

p(x)

Target distribution  populates 
“rotated” square

q(y)

, i.e. p = 2 c(x, y) = |x − y |2

But: rotation is not a gradient  
vector field!
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

x1, y1

x2, y2

p(x)

q(y)

Example:

Source distribution  populates 
inside of axis-aligned square

p(x)

Target distribution  populates 
“rotated” square

q(y)

, i.e. p = 2 c(x, y) = |x − y |2

But: rotation is not a gradient  
vector field!

The optimal transport solution 
looks like this
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Calibrating simulations: the right cost function
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x1, y1

x2, y2

p(x)

q(y)
x1, y1

x2, y2

p(x)

q(y)

Example from before: simulation of a square, but rotation angle incorrectly modeled

Uncalibrated simulation Calibration data

Optimal in Euclidean plane Optimal on a cone manifold

Use this if rotational degree of freedom 
is known to be poorly modeled

, ds2 = α2dr2 + r2dϕ2 α > 1ds2 = dr2 + r2dϕ2
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The choice of cost function

45

Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 2 c(x, y) = |x − y |2

The optimal transport solution performs 
quantile-matching (works for all convex  
cost functions!)

For 1-dimensional distributions:

x

y

p(x)

q(y)
  ̂T(x) = Q−1(P(x))

Cumulative distributions  
of , :p(x) q(y)

F(x) = ∫
x

0
dx′ f(x′ )Generically:

P(x0)

x0

y0 = ̂T(x0)

  Q(y0) = P(x0)
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 1 c(x, y) = |x − y | (Monge’s original problem)

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

0
x

y
0

N

1 N + 1

p(x)

q(y)

…

…

Example:

Uniform source and target distributions

(e.g. rows of N books, shifted by one)
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 1 c(x, y) = |x − y | (Monge’s original problem)

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

0
x

N

p(x)

…

0 N

…

N N + 1

0 N

…

N N + 1

1

1

“Move 1 book by N”

“Move N books by 1”

y
0 1 N + 1

q(y)

…
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Nonlinear constraint

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Monge problem

Linear constraints!
Kantorovich problem

Equivalence for  
smooth distributions

Dual Kantorovich problem

Kantorovich-Rubinstein 
duality

Convex constraints 
→ manageable!

̂T = ∇ ̂g

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

g(x) + f(y) ≤ c(x, y)

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y)+

+∫ dx p(x)g(x)

q(y) = p(x)( dT
dx )

−1
π(x, y) = p(x) δ[y − T(x)]
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∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

Primal problem:

Dual problem:

g(x) + f(y) ≤ c(x, y)

x
y

c(x, y)

f(y)

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y)+

+∫ dx p(x)g(x)

q(y)
p(x)

Optimise transportation plan based

on point-to-point cost c(x, y)

y

q(y)p(x)

“Operative perspective”:

“Black-box perspective”:

x

Optimize prices  and : 
maximize revenue while underbidding 
point-to-point transport

g(x) f(y)

g(x)
Price to  
depopulate at 

(“pick up”)

x
Price to  

populate at 

(“deliver”)

yTransport details  
hidden!
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g(x) + f(y) ≤ c(x, y)

The dual problem is (much) easier to solve numerically:

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y) +∫ dx p(x)g(x)

Legendre transform in classical  
mechanics:

 ̂g = arg max
g∈cvx ∫ dy q(y) g*(y) +∫ dx p(x)g(x)

For , 
 and  are  

Legendre-conjugates!

c(x, y) = |x − y |2

̂f ̂g

Maximise this “loss function” over all convex functions g(x)

Recover optimal transport function ̂T = ∇ ̂g

H(p) + L( ·q) = p ·q

Hamiltonian Lagrangian

Legendre transform: g*(y) = max
x

[x ⋅ y − g(x)]
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backgrounds

Chris Pollard, PW, Nucl. Instrum. Meth. A, 1027 (2022) 166119 [link]

Common situation: measurement of meta-stable particle 
as “resonance bump” on top of smooth background ?
Uncalibrated  

simulator
Calibrated  
simulator

Transport  
function ̂TSimple toy example with analytic  

solution, more complex applications 
in development at collider experiments

https://doi.org/10.1016/j.nima.2021.166119
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Simulations typically have adjustable “nuisance parameters”

Family of simulations

(parametrised by θ)

Calibration data

̂T(x; θ)

θ

Transport function 

“conditioned on” θ

backgrounds

?

Integrates naturally into  
input-convex neural networks 

(Nuisance parameters as additional inputs 
 without convexity requirements)

Chris Pollard, PW, Nucl. Instrum. Meth. A, 1027 (2022) 166119 [link]

https://doi.org/10.1016/j.nima.2021.166119
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• Goodness-of-fit Testing: Given  and known , one can test 

 

using the test statistic , where  is the empirical distribution. 


- Similar ideas apply to two-sample testing.

dMinimum-distance Estimation: Given a parametric model  and 

, construct the following estimator for :





X1, …, Xn ∼ p q

H0 : p = q, H1 : p ≠ q

Wp(Pn, q) Pn

(pθ)θ∈Θ
X1, …, Xn ∼ pθ0

θ0

̂θ = argmin
θ∈Θ

Wp(Pn, pθ) .

Broad message: Unlike many classical metrics, the Wasserstein distance is 
well-defined for empirical measures, and provides a useful data analytic tool.
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See Komiske et al., 2019.


