Optimal transport in high-energy physics

April 25, 2023

Tudor Manole
Carnegie Mellon University

Philipp Windischhofer
University of Chicago

What can you expect?

A (very) brief introduction to the world of optimal transport

A glimpse at how to solve optimal transport problems
(Potential) applications in particle physics
From the perspective of a
statistician (Tudor) and a physicist (Philipp)

We'll be brief; let's keep the details for the discussion afterwards

Why should you care?

In particle physics, we manipulate (probability) distributions

 on a daily basis ...

Extrapolation across phase space (e.g. control region \rightarrow signal region)

Calibration of simulation (e.g. Monte Carlo prediction against data side bands)

Template morphing
(e.g. 2-point systematics)
... optimal transport provides useful tools (and a unifying perspective) for many of these!

The theory of optimal transport

What is optimal transport?

The answer to a logistics problem!

"How to transport commodities from N factories to M stores ...
\ldots in the presence of a transportation cost $c(a, i)$ between factory a and store $i \ldots$
... so that the total cost is minimized?

Incredibly rich mathematical problem with more than 200 years of literature (Some of it very high-profile, Fields medal-winning work!)

What is optimal transport?

The answer to a logistics problem!

"How to transport commodities from N factories to M stores ...
\ldots in the presence of a transportation cost $c(a, i)$ between factory a and store $i \ldots$
... so that the total cost is minimized?

Incredibly rich mathematical problem with more than $\mathbf{2 0 0}$ years of literature (Some of it very high-profile, Fields medal-winning work!)

Optimal transport, for a particle physicist

Optimal transport, for a particle physicist

Source distribution

Target distribution

The optimal "transport plan" \hat{T}
"Monge optimal transport problem":
Construct a (continuous) function \hat{T} that maps $p(\mathbf{x})$ into $q(\mathbf{y})$ in an optimal way by "moving" the samples:

Transport cost $c(\mathbf{x}, \mathbf{y})$ for moving
$\mathbf{x} \mapsto \mathbf{y}=\hat{T}(\mathbf{x})$ sample from \mathbf{x} to \mathbf{y}
Such that $q(\mathbf{y})=p(\mathbf{x})\left(\nabla_{\mathbf{x}} \hat{T}\right)^{-1} \quad$ and $\quad \hat{T}=\arg \min _{T} \int d x p(x) \stackrel{\downarrow}{c}(x, T(x))$

Optimal transport, for a particle physicist

Source distribution

Target distribution

In this formulation: no sample "splitting"
(Entire probability mass at \mathbf{x}_{0} gets moved to \mathbf{y}_{0})
\rightarrow Sufficient for continuous densities
"Monge optimal transport pro
Construct a (continuous) functio in an optimal way by "moving"

Optimal transport, for a particle physicist

Source distribution

Target distribution

Smallest achievable transport cost:
"Distance measure" between $p(\mathbf{x})$ and $q(\mathbf{y})$
\rightarrow Wasserstein distance
"Monge optimal transport pro
Construct a (continuous) functio in an optimal way by "moving"

$$
W=\min _{T} \int d x p(x) c(x, T(x))
$$

$\mathbf{x} \mapsto \mathbf{y}=\hat{T}(\mathbf{x})$

Optimal transport, for a particle physicist

Source distribution

Target distribution

Operatively, this procedure gives the same results as
\rightarrow Binning \mathbf{x} and \mathbf{y}
\rightarrow Reweighting bin contents for \mathbf{x} by the density ratio $q(\mathbf{y}) / p(\mathbf{x})$
... but is also well-behaved where the density ratio gets very large (Empty bins when densities don't have common support)
\rightarrow Important for applications (see later)

How to do optimal transport?

In general, the Monge problem is very difficult to solve!

$$
\begin{array}{ll}
\qquad q(\mathbf{y})=p(\mathbf{x})\left(\nabla_{\mathbf{x}} \hat{T}\right)^{-1} & \hat{T}=\arg \min _{T} \int d x p(x) c(x, T(x)) \\
\text { (Highly nonlinear constraint!) }
\end{array}
$$

Two main classes of algorithms:

evaluation

> "Discrete" optimal transport

Transport empirical distributions by pairing up samples $\sim \mathcal{O}\left(N^{2}\right)$

> "Continuous" optimal transport

Use samples to construct continuous transport function

Need to interpolate transport map to unseen samples

Need to make assumptions on underlying densities

The role of the transport cost

The character of the solution \hat{T} to the Monge problem depends strongly on the cost function $c(x, y)$

Many useful cost functions are (strictly) convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

In this case: the optimal transport function is unique and the gradient of a potential!

$$
\hat{T}(x)=x+\nabla g(x)
$$

- "Transport potential"

Optimal transport \Leftrightarrow Electrostatics The transport vector field \hat{T}
has zero curl!

"Don't ship your stuff in circles."

(Potential) Applications in high-energy physics

Template morphing

Optimal transport solution maps $p(\mathbf{x})$ into $q(\mathbf{y})$

$$
\mathbf{x} \mapsto \mathbf{y}=\hat{T}(x)=x+\nabla g(x)
$$

Can interpolate between p and q : just move each sample by a fraction of the full gradient

$$
\hat{T}_{s}(x)=x+s \nabla g(x), \quad 0 \leq s \leq 1
$$

Other ways of

Template morphing

Optimal transport solution maps $p(\mathbf{x})$ into $q(\mathbf{y})$

$$
\mathbf{x} \mapsto \mathbf{y}=\hat{T}(x)=x+\nabla g(x)
$$

Can interpolate between p and q : just move each sample by a fraction of the full gradient

$$
\hat{T}_{s}(x)=x+s \nabla g(x), \quad 0 \leq s \leq 1
$$

Other ways of

$$
p(\mathbf{x})
$$

$$
s=0.2
$$

$$
s=0.4
$$

$$
s=0.6
$$

$$
s=0.8
$$

$$
q(\mathbf{x})
$$

Wasserstein

 geodesic

Calibrating simulations

Our field has spent several decades building extremely precise simulations
... they encode a lot of domain knowledge, but they are not perfect!

Often impossible / impractical to correct the simulation model Instead: calibrate the simulator output

Calibrating simulations

Our field has spent several decades building extremely precise simulations
... they encode a lot of domain knowledge, but they are not perfect!

Calibrating simulations

Our field has spent several decades building extremely precise simulations
... they encode a lot of domain knowledge, but they are not perfect!

Comparing collider events (Komiske et al. 2019)

Comparing collider events (Komiske et al. 2019)

Generated with the Energyflow package based on CMS open data.

Comparing collider events (Komiske et al. 2019)

Generated with the Energyflow package based on CMS open data.

Comparing collider events (Komiske et al. 2019)

Generated with the Energyflow package based on CMS open data.

Comparing collider events (Komiske et al. 2019)

$\operatorname{EMD}\left(\mathscr{E}, \mathscr{E}^{\prime}\right)=\sum_{i, j} f_{i j}\left\|\left(\eta_{i}, \phi_{i}\right)-\left(\eta_{j}^{\prime}, \phi_{j}^{\prime}\right)\right\|+\left|s_{T}-s_{T}^{\prime}\right|$

Data-driven background estimation

$$
X_{1}, \ldots, X_{n} \sim f(x)=\epsilon \cdot s(x)+(1-\epsilon) \cdot b(x)
$$

s : Known signal density
b : Unknown background density
ϵ : Proportion of signal
Goal: Test the hypotheses

$$
H_{0}: \epsilon=0, \quad H_{1}: \epsilon>0 .
$$

Problem: b is unknown.

- Example: $\mathrm{HH} \rightarrow 4 \mathrm{~b}$ search

x (Inv Mass)

Data-driven background estimation

$$
X_{1}, \ldots, X_{n} \sim f(x)=\epsilon \cdot s(x)+(1-\epsilon) \cdot b(x)
$$

Assume we also have: $Y_{1}, \ldots, Y_{m} \sim \tilde{b}(x) \approx b(x)$

Data-driven background estimation

$$
X_{1}, \ldots, X_{n} \sim f(x)=\epsilon \cdot s(x)+(1-\epsilon) \cdot b(x)
$$

Assume we also have: $Y_{1}, \ldots, Y_{m} \sim \tilde{b}(x) \approx b(x)$

Data-driven background estimation

Step 1: Fit multivariate OT map
\hat{T} from CR to SR of \tilde{b}

Step 2: Evaluate on CR of b (distinct modeling assumptions from density ratio extrapolation)

Data-driven background estimation

Hierarchical Optimal Transport:

The ground cost is itself the EMD between collider events!

Optimal transport for domain adaptation

Optimal transport

Classification on transported samples

[^0]
Multivariate C.D.F.s and quantiles

(Consider $c=\|\cdot\|^{2}$)

Suggests a way to define multivariate C.D.F.s and quantiles
Given a reference density f and a multivariate density p :

- The OT map from f to p is called the multivariate C.D.F. of p
- The OT map from p to f is called the multivariate quantile of p.

Multivariate C.D.F.s and quantiles

Multivariate Ranks

... lead to multivariate generalizations of classical rank-based tests (Mann-Whitney test, Hoeffding's Image Credit: Hallin (2022). independence test, Wilcoxon's rank-sign test, etc.)

Suggests a way to define multivariate C.D.F.s and quantiles

Given a reference density f and a multivariate density p :

- The OT map from f to p is called the multivariate C.D.F. of p
- The OT map from p to f is called the multivariate quantile of p.

Outlook and Open Problems

Optimal transport has become popular in statistics/HEP-ex because it:

- Provides a canonical way to transport probability distributions
- Stays faithful to the underlying geometry of the space (via the choice of c).
- Yields a metric between distributions for which smoothing is not needed.
- Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).
- ...

Many open problems remain!

- Computationally and statistically efficient estimators of OT maps?
- "Map-then-smooth estimators"
- "Smooth-then-map estimators"
- Other heuristics: input convex neural networks, etc.

"Smooth-then-map"

Outlook and Open Problems

Optimal transport has become popular in statistics/HEP-ex because it:

- Provides a canonical way to transport probability distributions
- Stays faithful to the underlying geometry of the space (via the choice of c).
- Yields a metric between distributions for which smoothing is not needed.
- Generalizes traditional statistical notions related to monotonicity (quantiles, CDFs, etc.).
- ...

Many open problems remain!

- Computationally and statistically efficient estimators of OT maps?
- "Map-then-smooth estimators"
- "Smooth-then-map estimators"
- Other heuristics: input convex neural networks, etc.
- Quantifying statistical uncertainty for OT maps?
- For smooth-then map estimators, we recently showed that, for some $\Sigma_{n}(x)$,

$$
\Sigma_{n}(x)\left(\hat{T}_{n}(x)-T(x)\right) \leadsto N\left(0, I_{d}\right) .
$$

- Does this hold for more practical estimators?
- Is the bootstrap valid?

References

1. Bernton, E., Jacob, P. E., Gerber, M., \& Robert, C. P. (2019). Approximate Bayesian computation with the Wasserstein distance. Journal of the Royal Statistical Society. Series B, 81.
2. Bernton, E., Jacob, P. E., Gerber, M., \& Robert, C. P. (2019). On parameter estimation with the Wasserstein distance. Information and Inference: A Journal of the IMA, 8.
3. Chernozhukov, V., Galichon, A., Hallin, M., \& Henry, M. (2017). Monge-Kantorovich depth, quantiles, ranks and signs. Annals of Statistics, 45(1), 223-256.
4. Flamary, R., Courty, N., Tuia, D., \& Rakotomamonjy, A. (2016). Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 1.
5. Hallin, M., Gilles M., and Johan S. Multivariate goodness-of-fit tests based on Wasserstein distance. (2021) Electronic Journal of Statistics 15.
6. Hallin, M., Del Barrio, E., Cuesta-Albertos, J., \& Matrán, C. (2021). Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach. The Annals of Statistics, 49.
7. Komiske, P. T., Metodiev, E. M., \& Thaler, J. (2019). Metric space of collider events. Physical Review Letters, 123.
8. Makkuva, A., Taghvaei, A., Oh, S., \& Lee, J. (2020). Optimal transport mapping via input convex neural networks. International Conference on Machine Learning 37.
9. Manole, T., Bryant, P., Alison, J., Kuusela, M., \& Wasserman, L. (2022). Background Modeling for Double Higgs Boson Production: Density Ratios and Optimal Transport. arXiv preprint arXiv:2208.02807.
10. Peyré, G., \& Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11.
11. Pollard, C., \& Windischhofer, P. (2022). Transport away your problems: Calibrating stochastic simulations with optimal transport. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1027.
12. Read, A. L. (1999). Linear interpolation of histograms. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 425(1-2), 357-360.
13. Sommerfeld, M., \& Munk, A. (2018). Inference for empirical Wasserstein distances on finite spaces. Journal of the Royal Statistical Society. Series B, 80 .

Backup

What is optimal transportation?

The answer to a logistics problem!

Assume total production $p(A)+p(B)$ equals total demand $q(1)+q(2)+q(3)$

What is optimal transportation?

The answer to a logistics problem!

Assume total production $p(A)+p(B)$ equals total demand $q(1)+q(2)+q(3)$

Optimal transport, now continuous

How about a continuous distribution of production $p(x)$ and a continuous distribution of demand $q(y)$?

Cost to transport one unit of mass from x to y : $c(x, y)$
$\int d y \pi(x, y)=p(x)$
"Entire mass picked up"

$$
\begin{aligned}
& \int d x \pi(x, y)=q(y) \\
& \text { "Entire mass delivered" }
\end{aligned}
$$

Transport plan:
move an amount $\pi(x, y)$ from x to y

Transport plan with minimal cost:

$$
\hat{\pi}=\arg \min _{\pi} \int d x d y \pi(x, y) c(x, y)
$$

"Kantorovich optimal transport problem"

Optimal transport, now continuous

How about a continuous distribution of production $p(x)$ and a continuous distribution of demand $q(y)$?

It is not difficult to satisfy these constraints!

$$
\pi(x, y)=p(x) q(y)
$$

(Is admissible, but rarely minimal)

This transport plan distributes
Mass from x_{0} across all y

Monge vs. Kantorovich

Transport between two smooth distributions:

Deterministic transport ("reordering of samples") sufficient \rightarrow Monge problem

Transport between non-smooth and smooth distribution:

Need stochastic transport ("random smearing of samples")
\rightarrow Kantorovich problem

The choice of cost function

Many useful cost functions are convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

... let's look at a few examples!

$$
p=2 \text {, i.e. } c(x, y)=|x-y|^{2}
$$

Example:

Source distribution $p(x)$ populates inside of axis-aligned square

Target distribution $q(y)$ populates "rotated" square

But: rotation is not a gradient vector field!

The choice of cost function

Many useful cost functions are convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

... let's look at a few examples!

$$
p=2 \text {, i.e. } c(x, y)=|x-y|^{2}
$$

Example:

Source distribution $p(x)$ populates inside of axis-aligned square

Target distribution $q(y)$ populates "rotated" square

But: rotation is not a gradient vector field!

The optimal transport solution looks like this

Calibrating simulations: the right cost function

Example from before: simulation of a square, but rotation angle incorrectly modeled Uncalibrated simulation Calibration data

Optimal in Euclidean plane

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

Optimal on a cone manifold $d s^{2}=\alpha^{2} d r^{2}+r^{2} d \phi^{2}, \alpha>1$

Use this if rotational degree of freedom is known to be poorly modeled

The choice of cost function

Many useful cost functions are convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

... let's look at a few examples!

$$
p=2 \text {, i.e. } c(x, y)=|x-y|^{2}
$$

For 1-dimensional distributions:
The optimal transport solution performs quantile-matching (works for all convex cost functions!)

$$
\hat{T}(x)=Q^{-1}(P(x))
$$

Generically: $F(x)=\int_{0}^{x} d x^{\prime} f\left(x^{\prime}\right)$

The choice of cost function

Many useful cost functions are convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

... let's look at a few examples!

$$
p=1 \text {, i.e. } c(x, y)=|x-y| \quad \text { (Monge's original problem) }
$$

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

Example:

Uniform source and target distributions (e.g. rows of N books, shifted by one)

The choice of cost function

Many useful cost functions are convex!

$$
\text { E.g. } c(x, y)=|x-y|^{p} \text { for } p>1
$$

... let's look at a few examples!

$$
p=1 \text {, i.e. } c(x, y)=|x-y| \quad \text { (Monge's original problem) }
$$

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

A solution sketch

Convex constraints
\rightarrow manageable!

$$
\begin{aligned}
& \hat{T}=\arg \min _{T} \int d x p(x) c(x, T(x)) \\
& \pi(x, y)=p(x) \delta[y-T(x)] \quad q(y)=p(x)\left(\frac{d T}{d x}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\pi}=\underset{\pi}{\arg \min _{\pi} \int d x d y \pi(x, y) c(x, y)} \\
& \int d y \pi(x, y)=p(x) \quad \int d x \pi(x, y)=q(y)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{f}, \hat{g}=\arg \max _{f, g} \int d y q(y) f(y)+ \\
& g(x)+f(y) \leq c(x, y) \quad+\int d x p(x) g(x)
\end{aligned}
$$

The Kantorovich-Rubinstein duality

Primal problem:

$$
\begin{gathered}
\hat{\pi}=\arg \min _{\pi} \int d x d y \pi(x, y) c(x, y) \\
\int d y \pi(x, y)=p(x) \quad \int d x \pi(x, y)=q(y)
\end{gathered}
$$

"Black-box perspective":

Optimize prices $g(x)$ and $f(y)$:
maximize revenue while underbidding point-to-point transport

"Operative perspective":

Optimise transportation plan based on point-to-point cost $c(x, y)$

Dual problem:

$$
\begin{aligned}
& \hat{f}, \hat{g}=\arg \max _{f, g} \int d y q(y) f(y)+ \\
& g(x)+f(y) \leq c(x, y) \quad+\int d x p(x) g(x)
\end{aligned}
$$

The dual problem

The dual problem is (much) easier to solve numerically:

$$
\begin{aligned}
& \begin{array}{l}
\hat{f}, \hat{g}=\underset{f, g}{\arg \max } \int d y q(y) f(y)+\int d x p(x) g(x) \\
\text { For } c(x, y)=|x-y|^{2}, \\
\hat{f} \text { and } \hat{g} \text { are } \\
\text { Legendre-conjugates! }
\end{array}
\end{aligned}
$$

Legendre transform in classical mechanics:

$$
\begin{aligned}
\hat{g}= & \arg \max _{g \in \operatorname{cvx}} \int d y q(y) g^{*}(y)+\int d x p(x) g(x) \\
& \text { Legendre transform: } g^{*}(y)=\max _{x}[x \cdot y-g(x)]
\end{aligned}
$$

Maximise this "loss function" over all convex functions $g(x)$
Recover optimal transport function $\hat{T}=\nabla \hat{g}$

Optimal transport at colliders

Common situation: measurement of meta-stable particle as "resonance bump" on top of smooth background

Chris Pollard, PW, Nucl. Instrum. Meth. A, 1027 (2022) 166119 [link]

Systematic uncertainties

Simulations typically have adjustable "nuisance parameters"

Family of simulations (parametrised by θ)

Calibration data

$$
\hat{T}(x ; \theta)
$$

\uparrow
Transport function "conditioned on" θ

Integrates naturally into input-convex neural networks
(Nuisance parameters as additional inputs without convexity requirements)

Some statistical applications of Wasserstein distances

- Goodness-of-fit Testing: Given $X_{1}, \ldots, X_{n} \sim p$ and known q, one can test

$$
H_{0}: p=q, \quad H_{1}: p \neq q
$$

using the test statistic $W_{p}\left(P_{n}, q\right)$, where P_{n} is the empirical distribution.

- Similar ideas apply to two-sample testing.
dMinimum-distance Estimation: Given a parametric model $\left(p_{\theta}\right)_{\theta \in \Theta}$ and $X_{1}, \ldots, X_{n} \sim p_{\theta_{0}}$, construct the following estimator for θ_{0} :

$$
\hat{\theta}=\underset{\theta \in \Theta}{\operatorname{argmin}} W_{p}\left(P_{n}, p_{\theta}\right)
$$

Broad message: Unlike many classical metrics, the Wasserstein distance is well-defined for empirical measures, and provides a useful data analytic tool.

The Earth Mover's Distance a.k.a. Partial OT)

$$
\begin{aligned}
& \operatorname{EMD}\left(\mathcal{E}, \mathcal{E}^{\prime}\right)=\min _{\left\{f_{i j} \geq\right\}} \sum_{i j} f_{i j} \theta_{i j}+\left|\sum_{i} E_{i}-\sum_{j} E_{j}^{\prime}\right|, \\
& \sum_{j} f_{i j} \leq E_{i}, \quad \sum_{i} f_{i j} \leq E_{j}^{\prime}, \quad \sum_{i j} f_{i j}=E_{\min },
\end{aligned}
$$

See Komiske et al., 2019.

[^0]: Image Credit: Courty et al (2016)

