Quantifying systematic uncertainty in unfolding forward models using optimal transport

Richard Zhu ${ }^{1}$ Mikael Kuusela ${ }^{1}$ Larry Wasserman ${ }^{1}$ Andrea Marini ${ }^{2}$
${ }^{1}$ Department of Statistics and Data Science, Carnegie Mellon University
${ }^{2}$ CERN, the European Organization for Nuclear Research

27 April 2023

The unfolding problem: inferring the true particle spectrum from smeared observations

- In measurement analyses, one is interested in the distribution (spectrum) of some physical quantity, e.g., the energy, mass, momentum.
- Due to the finite resolution of the detectors, only a smeared version of the physical quantity is observed.

Forward model for unfolding

Let f be the true distribution. The observed smeared distribution g is given by

$$
g(s)=\int_{T} k(s, t) f(t) d t
$$

where the response kernel k represents the response of the detector and is given by

$$
k(s, t)=P(Y=s \mid X=t)
$$

$X=$ true collision event and $Y=$ smeared observation.

Uncertainty in the forward model

- The response kernel $k(s, t)$ is usually not available in closed form and needs to be estimated using detector simulation.
- The imperfect knowledge of the detector alignment and calibration as well as the distribution of auxiliary variables can affect the response kernel in different ways.
- This leads to systematic uncertainty in the response kernel and hence the unfolded solution as well.

Using optimal transport to quantify uncertainty

- Given two kernels k_{1}, k_{2}, the 2-Wasserstein distance between k_{1} and k_{2} is defined as

$$
W_{2}\left(k_{1}, k_{2}\right)=\left(\int_{0}^{1}\left(F_{1}^{-1}(q)-F_{2}^{-1}(q)\right)^{2} d q\right)^{1 / 2}
$$

- F_{1}^{-1} is the quantile function of k_{1} and F_{2}^{-1} is the quantile function of k_{2} conditioned on a fixed t.

Using optimal transport to quantify uncertainty

- The Wasserstein barycenter of k_{1} and k_{2} with weights $\mathbf{t}=\left(t_{1}, t_{2}\right)$ is given by

$$
k_{\mathbf{t}}=\arg \min _{k}\left\{t_{1} W_{2}\left(k_{1}, k\right)+t_{2} W_{2}\left(k_{2}, k\right)\right\}
$$

- More specifically, in 1 d , the quantile function of $k_{\mathbf{t}}$ satisfies

$$
F_{\mathbf{t}}^{-1}=t_{1} F_{1}^{-1}+t_{2} F_{2}^{-1}
$$

- Varying the weight \mathbf{t} defines the geodesic (path) morphing between k_{1} and $k_{2}:\left\{k_{\mathbf{t}}: t_{1}, t_{2} \geq 0, t_{1}+t_{2}=1\right\}$.

Discretization

- Let $\left\{T_{j}\right\}_{j=1}^{n}$ be the partition of the true space T and $\left\{S_{i}\right\}_{i=1}^{m}$ be the partition of the smeared space.
- Particle-level histogram: $\mathbf{x} \sim \operatorname{Poisson}(\boldsymbol{\lambda})$. Detector-level histogram $\mathbf{y} \sim \operatorname{Poisson}(\boldsymbol{\mu})$.
- True histogram mean: $\boldsymbol{\lambda}=\left[\int_{T_{1}} f(t) d t, \ldots, \int_{T_{n}} f(t) d t\right]$. Smeared histogram mean: $\boldsymbol{\mu}=\left[\int_{S_{1}} g(s) d s, \ldots, \int_{S_{m}} g(s) d s\right]$. f and g are the intensity functions of the Poisson processes.
- $\boldsymbol{\mu}=\mathbf{K} \boldsymbol{\lambda}$ where the elements of response matrix \mathbf{K} are given by

$$
\mathbf{K}_{i j}=\frac{\int_{s \in S_{i}} \int_{t \in T_{j}} k(s, t) f(t) d t d s}{\int_{t \in T_{j}} f(t) d t}
$$

$=P($ smeared observation in bin $\mathrm{i} \mid$ true event in bin j$)$

Goal

Inference on the true histogram mean $\boldsymbol{\lambda}$.

Computing confidence interval for the true histogram mean

 while accounting for the systematic uncertainty in the response kernels(1) Given two base kernels k_{1}, k_{2}, compute the geodesic $\left\{k_{\mathbf{t}}=\arg \min _{k}\left\{t_{1} W\left(k_{1}, k\right)+t_{2} W\left(k_{2}, k\right)\right\}: t_{1}, t_{2} \geq 0, t_{1}+t_{2}=1\right\}$.
(2) Compute the corresponding response matrices $\mathbf{K}_{1}, \mathbf{K}_{2},\left\{\mathbf{K}_{\mathbf{t}}\right\}$.
(3) Unfold with One-at-a-time Strict-Bounds (OSB) (Stanley et al. (2022)) using the detector-level histogram \mathbf{y} and response matrices $\mathbf{K}_{1}, \mathbf{K}_{2},\left\{\mathbf{K}_{\mathbf{t}}\right\}$.
(4) Obtain a collection of confidence intervals $C_{1}, C_{2},\left\{C_{\mathbf{t}}\right\}$ for $\boldsymbol{\lambda}$.

Simulation study - inclusive jet transverse momentum spectrum

- Simulate particle-level data using the intensity function

$$
f_{0}\left(p_{\perp}\right)=L N_{0}\left(\frac{p_{\perp}}{\mathrm{GeV}}\right)^{-\alpha}\left(1-\frac{2}{\sqrt{s}} p_{\perp}\right)^{\beta} e^{-\gamma / p_{\perp}}, \quad 0<p_{\perp} \leq \frac{\sqrt{s}}{2}
$$

- Number of bins in detector level $=40$
- Number of fine bins in particle level $=40$
- Number of wide bins in particle level $=10$

Simulation study - inclusive jet transverse momentum spectrum

Figure: LEFT: intensity function; RIGHT: True histogram mean $\boldsymbol{\lambda}$

Simulation study - inclusive jet transverse momentum spectrum

- The detector smearing is modeled using crystal ball function

$$
C B(t-s \mid \mu, \sigma, \alpha, \gamma) \propto \begin{cases}e^{\frac{-(t-s-\mu)^{2}}{2 \sigma^{2}}} & \frac{t-s-\mu}{\sigma}>-\alpha \\ \left(\frac{\gamma}{\alpha}\right)^{\gamma} e^{-\frac{\alpha^{2}}{2}}\left(\frac{\gamma}{\alpha}-\alpha-\frac{t-s-\mu}{\sigma}\right)^{-\gamma} & \frac{t-s-\mu}{\sigma} \leq-\alpha\end{cases}
$$

- Two base kernels

$$
\begin{aligned}
& k_{1}: \mu=0, \sigma=10, \alpha=1, \gamma=2 \\
& k_{2}: \mu=7, \sigma=12, \alpha=1, \gamma=2
\end{aligned}
$$

Simulation study - inclusive jet transverse momentum spectrum

Figure: k 1 and k 2 are the base kernels that we might obtain from detector simulation

Simulation study - inclusive jet transverse momentum spectrum

Geodesic (convex hull) of the base kernels

Figure: Wasserstein geodesic of k1 and k2

Simulation study - inclusive jet transverse momentum spectrum

Geodesic (convex hull) of the base kernels

Figure: correct kernel represents the actual unknown detector response that generates the smeared observation

Unfold with the geodesic of the kernels

- We unfold with the geodesic of the kernels using the OSB intervals on one of the bins.

Figure: OSB confidence intervals for $\boldsymbol{\lambda}$ for bin $4 ; \mathrm{x}$-axis represents the weight that determines the kernel on the geodesic.

Unfold with the geodesic of the kernels

Figure: OSB confidence intervals for $\boldsymbol{\lambda}$ for 10 bins; each plot corresponds to 1 bin; x-axis represents the weight on the geodesic.

Unfold with the geodesic of the kernels

- We define confidence slabs to be the collection of 2-dimensional confidence sets for the true histogram mean $\boldsymbol{\lambda}$ of 2 bins unfolded by the geodesic of kernels defined by k_{1} and k_{2}.
- Confidence slabs cover the true histogram mean.

Figure: LEFT: Confidence slabs unfolded by the geodesic of K 1 and K 2 ; RIGHT: Interpolation of unfolded boxes by K1 and K2

Confidence slabs - more bins

Figure: Confidence slabs for all bins. Presence of nonlinear patterns.

Confidence slabs have proper coverage

Figure: Coverage for confidence slabs

Extrapolation

- We can allow the weight $t_{1}, t_{2}<0$ to define extrapolation of the base kernels:

$$
\left\{k_{\mathbf{t}}=\arg \min _{k}\left\{t_{1} W\left(k_{1}, k\right)+t_{2} W\left(k_{2}, k\right)\right\}: t_{1}+t_{2}=1\right\}
$$

Figure: Extrapolation of base kernels

More base kernels

- The Wasserstein barycenter of $k_{1}, k_{2}, \ldots, k_{m}$ with weights $\mathbf{t}=\left(t_{1}, t_{2}, \ldots t_{m}\right)$ is given by

$$
k_{\mathbf{t}}=\arg \min _{k}\left\{\sum_{i=1}^{m} t_{i} W_{2}\left(k_{i}, k\right)\right\}
$$

with quantile function

$$
F_{\mathbf{t}}^{-1}=\sum_{i=1}^{m} t_{i} F_{i}^{-1}
$$

- Varying the weight \mathbf{t} defines the Wasserstein hull of kernels defined by $k_{1}, k_{2}, \ldots, k_{m}:\left\{k_{\mathbf{t}}: \sum_{i=1}^{m} t_{i}=1\right\}$.

More base kernels

- Varying the weight \mathbf{t} defines the Wasserstein hull of kernels defined by $k_{1}, k_{2}, \ldots, k_{m}:\left\{k_{\mathbf{t}}: \sum_{i=1}^{m} t_{i}=1\right\}$.

Summary and Open Problems

- The unfolding problem: Systematic uncertainty in the forward model.
- Method: Use optimal transport to quantify the uncertainty in the response kernel.
- Results: Confidence slabs with proper coverage when the correct kernel is on (or close to) the geodesic of the base kernels.
- Open problems: For a given kernel k_{t} on the geodesic, we can view the weight \mathbf{t} as a nuisance parameter. How can we summarize the collection of confidence intervals (dependent on \mathbf{t}) into a single confidence interval? Can we do profile likelihood? Can we learn t from the data? How well does it work on real HEP analysis?

Thank you!

Travel support from the NSF AI Planning Institute for Data-Driven Discovery in Physics is gratefully acknowledged.

APPENDIX: Simulation study - inclusive jet transverse momentum spectrum

- The detector smearing is modeled using crystal ball function

$$
C B(t-s \mid \mu, \sigma, \alpha, \gamma) \propto \begin{cases}e^{\frac{(t-s-\mu)^{2}}{2 \sigma^{2}}} & \frac{t-s-\mu}{\sigma}>-\alpha \\ \left(\frac{\gamma}{\alpha}\right)^{\gamma} e^{-\frac{\alpha^{2}}{2}}\left(\frac{\gamma}{\alpha}-\alpha-\frac{t-s-\mu}{\sigma}\right)^{-\gamma} & \frac{t-s-\mu}{\sigma} \leq-\alpha\end{cases}
$$

- One correct kernel and two alternative kernels

$$
\begin{gathered}
k_{\text {correct }}: \mu=3, \sigma=11, \alpha=1, \gamma=2 \\
k_{1}: \mu=0, \sigma=10, \alpha=1, \gamma=2 \\
k_{2}: \mu=10, \sigma=12, \alpha=1, \gamma=2
\end{gathered}
$$

Simulation study - inclusive jet transverse momentum spectrum

Figure: k 1 and k 2 are the base kernels that we might obtain from detector simulation; correct kernel represents the actual unknown detector response that generates the smeared observation.

Simulation study - inclusive jet transverse momentum spectrum

Geodesic (convex hull) of the base kernels

Figure: Wasserstein geodesic of k1 and k2

Unfold with the geodesic of the kernels

- We use the midpoints of the OSB intervals as the point estimates for λ.

Figure: OSB midpoint solutions for geodesic of two kernels

Unfold with the geodesic of the kernels

- We define confidence slabs to be the collection of 2-dimensional confidence sets for the true histogram mean $\boldsymbol{\lambda}$ of 2 bins unfolded by the geodesic of kernels defined by k_{1} and k_{2}.
- Confidence slabs cover the true histogram mean.
- The interpolation between the two corner confidence boxes (unfolded by k_{1} and k_{2}) fails to cover the true mean.

Figure: LEFT: Confidence slabs unfolded by the geodesic of K 1 and K 2 ; RIGHT: Interpolation of unfolded boxes by K1 and K2

Confidence slabs - more bins

Figure: Confidence slabs for all bins. Presence of nonlinear patterns.

Confidence slabs have proper coverage

Figure: LEFT: Coverage for confidence slabs; RIGHT: Coverage for interpolation

Simulation study - inclusive jet transverse momentum spectrum

- The detector smearing is modeled using Gaussian kernel

$$
k_{1}(s, t)=N(s \mid \mu=t, \sigma=10) \quad(\text { correct })
$$

- Two alternative kernels

$$
k_{2}(s, t)=N(s \mid \mu=0.98 t, \sigma=7), k_{3}(s, t)=N(s \mid \mu=1.01 t, \sigma=15)
$$

Unfold with the geodesic of the kernels

- We use the midpoints of the OSB intervals as the point estimates for λ.

Figure: OSB midpoint solutions for geodesic of two kernels

Unfold with the geodesic of the kernels

- We define confidence slabs to be the collection of 2-dimensional confidence sets for the true histogram mean $\boldsymbol{\lambda}$ of 2 bins unfolded by the geodesic of kernels defined by k_{2} and k_{3}.
- Confidence slabs cover the true histogram mean.
- The range of the confidence slabs is much smaller compared to the span of the confidence sets unfolded by the two corner kernels k_{2}, k_{3} (" two-point" confidence sets).

Figure: Confidence slab for bin 1 and bin 2

Confidence slabs - more bins

Figure: Confidence slabs for the first 5 bins

Confidence slabs have proper coverage

Figure: Coverage for confidence slabs and two-point confidence sets

Confidence slabs have proper coverage

Figure: Coverage for confidence slabs and two-point confidence sets

Applications to simulated LHC data

- Unfold the jet transverse momentum spectrum in Drell-Yan events.
- Generate Monte Carlo events $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{2}(n=68180)$ corresponding to particle and detector level jet p_{\perp} respectively.
- To produce alternative kernels, we simulate the effect of a jet energy uncertainty by location shifting and smearing of Y_{i}.

$$
\begin{aligned}
& Y_{i}^{(1)}=1.02 Y_{i}+N(\mu=0, s d=10) \\
& Y_{i}^{(2)}=1.1 Y_{i}+N(\mu=0, s d=20) \\
& Y_{i}^{(3)}=0.9 Y_{i}+N(\mu=0, s d=5)
\end{aligned}
$$

- Obtain kernel estimates $\widehat{k}_{1}, \widehat{k}_{2}, \widehat{k}_{3}$ corresponding to $\left\{X_{i}, Y_{i}^{(1)}\right\},\left\{X_{i}, Y_{i}^{(2)}\right\},\left\{X_{i}, Y_{i}^{(3)}\right\}$.

Kernel estimation

- Kernel is the conditional density of smeared Y given true X : $k(y, x)=p(y \mid x)$.
- We assume

$$
Y=m(x)+\sigma(x) \epsilon, \quad \sigma(x)>0, \epsilon \sim D(\mu=0)
$$

- Regress Y on X to obtain estimates $\widehat{m}(x)$ and residuals $\widehat{r}_{i}=y_{i}-\widehat{m}\left(x_{i}\right)$.
- Regress \widehat{r}_{i}^{2} on x_{i} to obtain estimates $\widehat{\sigma}^{2}(x)$.
- Estimate the density of ϵ using $\frac{\widehat{r}_{i}}{\widehat{\sigma}\left(x_{i}\right)}$ and obtain \widehat{p}_{ϵ}.
- Estimate the conditional density of Y given X by

$$
\widehat{p}(y \mid x)=\frac{1}{\widehat{\sigma}(x)} \widehat{p}_{\epsilon}\left(\frac{y-\widehat{m}(x)}{\widehat{\sigma}(x)}\right)
$$

Unfolding applied to simulated LHC data

- Perform the same unfolding procedure as in the simulation study, except we have estimated response kernels \widehat{k}, particle-level intensity function \widehat{f}.

Figure: Confidence slabs for the first 5 bins

Unfolding applied to simulated LHC data

- In some cases, the confidence slabs (and the correct solution) can go outside the two-point confidence sets.

Figure: Confidence slabs for bin 1 and bin2

Unfolding with more kernels

Figure: LEFT: Confidence slabs for bin 0 and bin 1; RIGHT: Confidence slabs for 5 bins

