## PHYSTAT-Systematics 2021 Statistician's (re)view

#### Sara Algeri

School of Statistics, University of Minnesota

## BIRS workshop on Systematics in Particle Physics Data Analyses

Banff, Alberta, Canada April 24, 2023.

## PhyStat - Syst. '21 vs BIRS - Syst. '23

#### PhyStat - Systematics, 2021

"A <u>remote</u> workshop devoted to the way systematic uncertainties are incorporated in data analyses in Particle Physics."

|               | Physicists | Statisticians |
|---------------|------------|---------------|
| Contributions | 12+        | 12+           |

#### **BIRS** - Systematics, 2023

Similar purpose but <u>hybrid</u> format  $\Rightarrow$  we expect interesting discussions to arise online and offline.

|               | Physicists  | Statisticians |
|---------------|-------------|---------------|
| Contributions | At least 16 | At least 11   |

## Sources of errors

Let  $\theta$  be a quantity (parameter) of interest, what is its true value? Sources of uncertainties affecting our answers...



•  $\sigma$ : We know what we don't know and we know how to deal with it.

 $\Rightarrow$  2+ centuries of statistical theory can typically help with that.

- *T*: We know what we don't know but we don't always know how to deal with it.
   ⇒ That is why we are here.
- $\epsilon$ : We don't know what we don't know.

E.g., variables not included in our model, "hidden" systematics which we simply do not know are there.

< □ > < □ > < □ > < □ > < □ > < □ >

## A (maybe too) simplified statistical formulation



- *σ* is often thought of by statisticians as error that dissipate as n → ∞.
   ⇒ Essentially sources of variance.
- au is often thought of by statisticians as error that dissipate as  $n \to \infty$ .  $\Rightarrow$  Essentially sources of bias.

### But is it really that simple?

- In practice, statistical and systematic errors may be correlated.
- Systematics may (even if not always) decrease with  $n \to \infty$ .
- Often systematics are the uncertainties associated with our corrections for the bias.

Some more warnings from Tom Junk (cf. https://indi.to/bk2G8)

Does this separation of statistical and systematic uncertainty meet the needs of the community?

- Can we tell from it if a result is "systematics limited"? There could be a component with large stat. uncertainty
  and small systematics that will start contributing but only with a much larger dataset.
- O Does this distinction make sense for combinations, as some systematics have a statistical component

## Main sources of systematic uncertainties

A non-exhaustive list

- Monte Carlo uncertainties

- Instrument calibration
- Uncertainties associated with machine learning solutions

4 1 1 1 4 1 1 1

## Mismodeling

Uncertainties arise from:

- Approximations
- Choice of the functional forms for the signal model
- Background mismodeling *\equiv* Received lot of attention at PhyStat

## From a statistical perspective...

We have bias in our model that <u>cannot</u> be reduced by simply changing the value of the parameters (the functional form is incorrect).

★ ∃ ► < ∃ ►</p>

## Solutions proposed...

#### ...by physicists

Mainly parametric solutions

- Discrete profiling method Dauncey et al. 2015 arXiv:1408.6865
- Spurious signal/safeguard method Priel et al. 2016 arXiv:1610.02643
- Yellin's maximum gap method Yellin 2002 arXiv:physics/0203002

#### ...by statisticians

Essentially non-parametric/semi-parametric methods e.g.,

- Smooth models e.g., Algeri 2020 arXiv:1906.06615
- Optimal transport Manole et al. 2022 arXiv:2208.02807

### Question 1

• Paraphrasing Larry Wasserman (cf. https://indi.to/6rSZd) "Should we compare several methods? Does using the difference between methods as a measure of systematic bias make sense?"

• If we were to do so, how would we account for the uncertainty on the difference itself?

## Systematics as nuisance parameters

Physicists often deal with systematics by introducing additional nuisance parameters in the model to the extent that the two terms are often used interchangeably.

#### Great, but how do we deal with them?

- Hybrid Bayesian/Frequentist (e.g., Cousins and Highland, 1992 doi:10.1016/0168-9002(92)90794-5)
  - Frequentist for main measurement, Bayes for nuisance parameters.
- Marginalizing vs Profiling
  - Different experiments use different approaches
  - E.g., **Christopher Bronner**'s PHYSTAT talk (cf. https://indi.to/8JvPB) for marginalizing vs profiling in neutrino experiments.
- Pragmatic vs fully Bayesian (e.g., Xu et al., 2014 doi:10.1088/0004-637X/794/2/97)
  - Should we use the data in our current experiments to update the systematics? When possible, yes. If model is too complex "pragmatic Bayesian" can help substantially.

### **Question 2**

Is it at all possible to reach a consensus on what to do when? And if not, is there any hope in comparing/combining results of studies adopting different approaches?

S. Algeri (UMN)

## Combining the results of different studies

## A substantial challenge

One needs to account for the correlation between systematic uncertainties across different analyses (Sasha Glazov https://indi.to/QvS27)

### A big help in combining results from different experiments

Publishing likelihoods (Kyle Cranmer https://indi.to/fXDSp)

## Question 3

Can a statistician effectively access them?

## What is the ultimate goal here?

## It is NOT "just an estimation problem"...

Let's keep in mind that more that estimating accurately our nuisance parameters, we want to make sure we incorporate their effect when

- discriminating signals from background
- testing of hypotheses/goodness of fit.

Therefore it is particularly important to assess how (and which) nuisance parameters/systematic effects impact on the result of our analysis.

4 1 1 1 4 1 1 1

## The need of "regularity" to trust our asymptotics

As emphasized by Alessandra Brazzale (cf. https://indi.to/M2gwT)

# Searching for new phenomena with profile likelihood ratio tests

Sara Algerio<sup>1</sup>, Jelle Aalbers<sup>2,3</sup>, Knut Dundas Morå<sup>2,3,4</sup> and Jan Conrad<sup>1</sup>

#### Box 2 | Necessary conditions for Wilks' theorem

Asymptotic

Sufficient data are collected.

Interior

Only values of the parameters of interest  $\mu$  and nuisance parameters  $\theta$  that are not on the boundaries of their parameter space are admitted.

#### Identifiable

Different values of the parameters specify distinct models.

#### Nested

The null hypothesis  $H_0$  is a limiting case of the general case hypothesis  $H_1$ , for example, with some parameter constrained to a subrange of the entire parameter space.

Correct

The true model is specified either under H<sub>0</sub> or under H<sub>1</sub>.

Unfortunately, failure of these conditions is extremely common even in simple setups E.g.,  $% \left( {{E_{\rm{s}}} \right)_{\rm{s}}} \right)$ 



### Question 4

Are these regularity conditions effectively checked in practice? How can this be done when dealing with complicated likelihoods?

## How to keep the conversation up? (...and ideally involve more statisticians along the way)

#### Paraphrasing Richard Lockhart (cf. https://indi.to/WgH2F)

"Statisticians need to see abstraction at the level of mathematics to be confident that they are given a valuable contribution."

Some considerations (based on personal experience):

- Often, the statistical issues arising in particle physics translates into fundamental problems in statistics. Which means that the statistical theory to be developed/studied is already pretty complicated on its own.
- When feasible, formulating the problem using simple toy models (and which can be generalized to more realistic scenarios), can be of great help.
- When feasible, providing "realistic" synthetic data (e.g., data challenges) can also be of great help.

#### Question 5

Realistically, is this enough to "bridge" the two communities? What else can be done? (While keeping in mind that our students/postdocs will still need to satisfy certain criteria to be competitive on the job market)

## To summarize...

Some possible points of discussion simulated by Phystat-Systematics...

- **Q1** In the context of background mismodelling, can the difference between methods be used to acquire some notion/measure systematic bias?
- Q2- When dealing with nuisance parameters is it at all possible to reach a consensus on what to do when? (e.g., marginalizing or profiling)
- Q3- Can a statistician effectively access published likelihoods?
- **Q4** How to check the validity of regularity conditions needed by classical statistics when dealing with complex models?
- Q5- What do we need to robustly bridge the statistics and physics communities?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Thank you all for your time and for accepting our invitation!

Image: A matrix