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Overview

“Statistician’s view on model selection”

Very large topic

Touch on a few, relevant (I hope), concepts and ideas

● parametric versus nonparametric models
● AIC
● discrete profiling
● semiparametric models
● method of sieves
● model averaging

Focus on the specific problem of background model selection and the 
implications for post-model selection inference



Overview

Simulated data, courtesy of Nick Wardle



Models

General form:

Consider polynomial background models, estimate via maximum 
likelihood



Models

General form:

Consider polynomial background models, estimate via maximum 
likelihood

Background Signal



Models

Simulated data, courtesy of Nick Wardle



Models

Profile likelihood for the quartic case



Models

Model MLE of θ 95% CI for θ
Log 

likelihood 
at MLE

Number of 
Parameters AIC

Linear 0.13 (-0.75, 1.12) -174.79 3 355.58

Quadratic 0.84 (-0.14, 1.80) -155.85 4 319.70

Cubic 1.14 (0.2, 2.10) -154.81 5 319.62

Quartic 1.21 (0.23, 2.17) -154.02 6 320.05



Models

Model MLE of θ 95% CI for θ
Log 

likelihood 
at MLE

Number of 
Parameters AIC

Linear 0.13 (-0.75, 1.12) -174.79 3 355.58

Quadratic 0.84 (-0.14, 1.80) -155.85 4 319.70

Cubic 1.14 (0.2, 2.10) -154.81 5 319.62

Quartic 1.21 (0.23, 2.17) -154.02 6 320.05

Quintic 1.18 (0.29, 2.18) -153.84 7 321.67

Sextic 1.24 (0.33, 2.19) -153.83 8 323.65

Septic 1.25 (0.39, 2,30) -153.34 9 324.69



Parametric versus Nonparametric

Is this a parametric or a nonparametric approach?

The process described above for choosing the
background model is nonparametric.

The order of the model is serving as a smoothing parameter.

AIC is a widely used approach to choosing its value.

More data = less “smoothing”



Semiparametric Models

Defines a de facto semiparametric approach, where complexity of 
model is limited by ensuring consistency of estimation of θ

Semiparametric inference:

Parameter of interest: θ, lies in a Euclidean space

Nuisance parameter: η, lies in a more general space, denote it Ɲ



Semiparametric Models

Murphy and van der Vaart (2000), “On Profile Likelihood”:

“We show that semiparametric profile likelihoods, where the 
nuisance parameter has been profiled out, behave like ordinary 
likelihoods in that they have a quadratic expansion. In this 
expansion the score function and the Fisher information are 
replaced by the efficient score function and efficient Fisher 
information. The expansion may be used, among others, to 
prove the asymptotic normality of the maximum likelihood 
estimator, to derive the asymptotic chi-squared distribution of the 
log-likelihood ratio statistic, and to prove the consistency of the 
observed information as an estimator of the inverse of the 
asymptotic variance.”



Semiparametric Models

Murphy and van der Vaart (2000), “On Profile Likelihood”:

“We show that semiparametric profile likelihoods, where the 
nuisance parameter has been profiled out, behave like ordinary 
likelihoods in that they have a quadratic expansion. In this 
expansion the score function and the Fisher information are 
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Semiparametric Models

The score function for θ

The efficient score function for θ

where Π projects onto the space of score functions for η, finding the 
least favorable model in Ɲ



Semiparametric Models



Semiparametric Models

The efficient Fisher Information

The MLE for θ  is approximately normal with covariance matrix



Semiparametric Models

Simulated data, courtesy of Nick Wardle



Semiparametric Models

Important Question:

What controls the complexity of the background?
I.e., what limits Ɲ? 

Could utilize physical constraints



Semiparametric Models

Possibly use Method of Sieves 
(Grenander 1981, Geman and Hwang 1982)

Construct series of Ɲn which grow in complexity with n, but 
slowly enough to ensure consistency of estimating θ

Interesting parallel with Discrete Profiling
(Dauncey, et al. 2015)



Discrete Profiling



Discrete Profiling



Discrete Profiling



Model Averaging

Another class of ideas: Model Averaging

Overview in Chapter 7 of Claeskens and Hjort (2008)

Also, Burnham and Anderson (2002)

Instead of fixing on one model, 
average over multiple candidates



Model Averaging

Buckland, et al. (1997):

General form for Information criterion:

where qk is a penalty term.

Then, define model weights:



Model Averaging

General form for Information criterion:

where qk is a penalty term.

For example, if

then using BIC, and (see Schwarz 1978):



Model Averaging

General form for Information criterion:

where qk is a penalty term.

For example, if

then using AIC, and construct Akaike weights.



Model Averaging

Model MLE of θ Log likelihood 
at MLE AIC Akaike 

Weight

Linear 0.13 -174.79 355.58 ≈ 0

Quadratic 0.84 -155.85 319.70 0.29

Cubic 1.14 -154.81 319.62 0.30

Quartic 1.21 -154.02 320.05 0.24

Quintic 1.18 -153.84 321.67 0.11

Sextic 1.24 -153.83 323.65 0.040

Septic 1.25 -153.34 324.69 0.024



Model Averaging

The weighted estimator for the parameter:

with variance (Equation 4.9 in Burnham and Anderson):



Model Averaging

Model MLE of θ Log likelihood 
at MLE AIC Akaike 

Weight

Linear 0.13 -174.79 355.58 ≈ 0

Quadratic 0.84 -155.85 319.70 0.29

Cubic 1.14 -154.81 319.62 0.30

Quartic 1.21 -154.02 320.05 0.24

Quintic 1.18 -153.84 321.67 0.11

Sextic 1.24 -153.83 323.65 0.040

Septic 1.25 -153.34 324.69 0.024



Model Averaging

Improved versions of confidence intervals in

Section 4.3.3 in Burnham and Anderson

Chapter 7 of Claeskens and Hjort
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