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Lanczos and Arnoldi Algorithms

The Lanczos algorithm (for Hermitian matrices A) and the Arnoldi
algorithm (for general square matrices A) construct an orthonormal
basis for the Krylov space: span{b,Ab, . . . ,Ak−1b}. Let
Qk := [q1, . . . , qk ] denote the n by k matrix whose columns are
these basis vectors. Then

AQk = QkHk + hk+1,kqk+1e
T
k = Qk+1Hk+1,k ,

where Hk is a k by k symmetric tridiagonal (for Lanczos) or upper
Hessenberg (for Arnoldi) matrix, ek denotes the kth unit vector,
and Hk+1,k is the k + 1 by k matrix obtained by appending the
row [0, . . . , 0, hk+1,k ] to Hk .

We wish to use these basis vectors to approximate

R(A)b := D(A)−1N(A)b.
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Minimize the D(A)∗D(A)-Norm of the Error

Assume wlog that ‖b‖ = 1, q1 = b. Choose y to minimize

‖R(A)b − Qky‖2
D(A)∗D(A) = 〈D(A)−1N(A)b − Qky ,

D(A)∗D(A)(D(A)−1N(A)b − Qky)〉
= 〈N(A)b − D(A)Qky ,N(A)b − D(A)Qky〉
= ‖N(A)Qke1 − D(A)Qky‖2

2.

Note that if D(A) = A and N(A) = I , this is just GMRES (or
MINRES):

min
y
‖A−1b−Qky‖A∗A = min

y
‖Qke1−AQky‖2 = min

y
‖e1−Hk+1,ky‖.
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Minimize the D(A)∗D(A)-Norm of the Error, Cont.

AQk = Qk+1Hk+1,k

A2Qk = AQk+1Hk+1,k = Qk+2Hk+2,k+1Hk+1,k := Qk+2Hk+2,k

...

AjQk = Qk+jHk+j ,k+j−1Hk+j−1,k+j−2 · · ·Hk+1,k := Qk+jHk+j ,k .

If D(z) :=
∑J

j=0 djz
j and N(z) :=

∑L
`=0 n`z

`, then

‖N(A)Qke1 − D(A)Qky‖2 =∥∥∥∥∥∥
L∑
`=0

n`Qk+`Hk+`,ke1 − (
J∑

j=0

djQk+jHk+j ,k)y

∥∥∥∥∥∥
2

.
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Minimize the D(A)∗D(A)-Norm of the Error, Cont.

Equivalently, if m = max{J, L},

min
y
‖N(Hk+m)e1 − D(Hk+m)(:, 1 : k)y‖2.

Solve this least squares problem using standard QR factorization of
the k + m by k coefficient matrix. It is not upper Hessenberg if
deg(D) > 1, but D(Hk+m)(:, 1 : k) differs from
D(Hk+m−1)(:, 1 : k − 1) only in last row and last column. Apply
previous Givens rotations to last column and determine new
rotations to eliminate entries k + 1, . . . , k + m in column k .
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Example: Solve A2x = b
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Error Bounds

Let S := D(A)∗D(A). Since Qky = Pk−1(A)b where Pk−1 is the
(k − 1)st degree polynomial that minimizes the S-norm of the
error, we can write

‖R(A)b − Qky‖2

‖b‖2
≤ κ(S)1/2 min

pk−1∈Pk−1

‖R(A)− pk−1(A)‖2.

If A is diagonalizable with eigendecomposition A = VΛV−1, then

‖R(A)b − Qky‖2

‖b‖2
≤ κ(S)1/2κ(V )·

min
pk−1∈Pk−1

max
λ∈Λ(A)

|R(λ)− pk−1(λ)|.

However, as for linear systems, any nonincreasing convergence
curve can be obtained with a matrix having any given eigenvalues.
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Error Bounds Using the Crouzeix-Palencia Result

If A is not diagonalizable or if κ(V ) is huge, the following error
bound based on [Crouzeix and Palencia, The Numerical Range is a
(1 +

√
2) Spectral Set] may prove more useful.

‖R(A)b − Qky‖2

‖b‖2
≤ κ(S)1/2(1+

√
2) min

pk−1∈Pk−1

max
z∈W (A)

|R(z)−pk−1(z)|,

where W (A) := {〈Aq, q〉 : 〈q, q〉 = 1} is the numerical range of A.

If one prefers to work directly with the S-norm, then

‖R(A)b − Qky‖S
‖b‖S

≤ (1+
√

2) min
pk−1∈Pk−1

max
z∈W (S1/2AS−1/2)

|R(z)−pk−1(z)|.
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Error Bounds Using Results from Crouzeix and G.

The previous bounds are not useful if R has a pole in W (A) (or in
W (S1/2AS−1/2)). Crouzeix and G. [Spectral Sets: Numerical
Range and Beyond] showed that one could remove a disk about
such a pole ξ ∈W (A) of radius 1/w((ξI − A)−1), where w is the
numerical radius, and still have a (3 + 2

√
3)-spectral set. Thus

‖R(A)b − Qky‖2

‖b‖2
≤ κ(S)1/2(3 + 2

√
3)·

min
pk−1∈Pk−1

max
z∈W (A)\D(ξ,1/w((ξI−A)−1))

|R(z)− pk−1(z)|.
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Example: Random A, Random Quadratic N , Random
Cubic D

A = randn(100) + 5I, κ(V ) = 98, κ(D(A)) = 228.
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Example: Random A, Random Quadratic N , Random
Cubic D

A = randn(100) + 15I
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Example: Random A, Random Quadratic N , Random
Cubic D

A = randn(100) + 25I
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Example: Grcar Matrix, N = I , D = A

A = gallery(’grcar’,100), κ(V ) = huge, κ(D(A)) = 3.6.
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Summary

I Using max{deg(D(A)), deg(N(A))} − 1 extra steps, one can
find the optimal (in D(A)∗D(A)-norm) approx. to
D(A)−1N(A)b from the Krylov space.

I Solve a k + deg(D(A)) by k least squares problem to
determine this optimal approx. Solve via QR factorization
with Givens rotations; apply previous rotations to last column
and choose new rotations to eliminate entries below diagonal
in column k . The residual norm in the least squares problem
is ‖R(A)b − Qky‖D(A)∗D(A), so need not form Qky until
tolerance is met.

I For highly nonnormal problems, a priori error bounds can be
based on how well one can approximate R(z) using a
polynomial of degree at most k − 1 on W (A) or other
K -spectral sets.
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