Optimal Krylov Space Approximations to

Rational Matrix Functions

Anne Greenbaum, joint with: Tyler Chen, Cameron Musco,
Christopher Musco, and Natalie Wellen

University of Washington, Department of Applied Mathematics

Mar. 10, 2023

1/14



Lanczos and Arnoldi Algorithms

The Lanczos algorithm (for Hermitian matrices A) and the Arnoldi
algorithm (for general square matrices A) construct an orthonormal
basis for the Krylov space: span{b, Ab, ... ,Ak_lb}. Let

Qk :=[q1, .- ., qk] denote the n by k matrix whose columns are
these basis vectors. Then

AQr = QuHi + hir1xqkr18) = Qur1Hir1 ks

where Hy is a k by k symmetric tridiagonal (for Lanczos) or upper
Hessenberg (for Arnoldi) matrix, e, denotes the kth unit vector,
and Hy1k is the k + 1 by k matrix obtained by appending the
row [0,...,0, hxt1 k] to Hy.

We wish to use these basis vectors to approximate

R(A)b := D(A)"1N(A)b.
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Minimize the D(A)*D(A)-Norm of the Error

Assume wlog that ||b|| = 1, g1 = b. Choose y to minimize
IR — QeI ppay = (DA N(A)b— Quy.
D(A)*D(A)(D(A)"*N(A)b — Qiy))
= (N(A)b— D(A)Qky, N(A)b — D(A)Qwy)
= |IN(A)Quer — D(A)Quy 3.
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Minimize the D(A)*D(A)-Norm of the Error

Assume wlog that ||b|| = 1, g1 = b. Choose y to minimize

IR(A)b — Quylpay-pay = (D(A)N(A)b — Quy,
D(A)*D(A)(D(A) ' N(A)b — Qiy))
= (N(A)b — D(A)Qky, N(A)b — D(A)Qwy)
= |[N(A)Qxer — D(A)Quyll3.

Note that if D(A) = A and N(A) =/, this is just GMRES (or
MINRES):

myi” A" b—Quylasa = myin | Qer—AQkyll2 = myin ller—Hrr1,kyll-
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Minimize the D(A)*D(A)-Norm of the Error, Cont.

AQr = Qrs1Hrt1k
2
AQr = AQrs1Hit1k = QueoHipo, k+1Hkv1.k6 = Qug2Hi2.k

AQ = QuijHirjkrj—1Hkvj—1.k4j—2 Hir1k = QurjHiyj k-

If D(z) := Zf:o d;iz and N(z) := Zé:o nez*, then
IN(A)Qxer — D(A)Quyll2 =

L

J
> meQuieHiroker — (O diQurjHirjk)y

/=0 Jj=0 2
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Minimize the D(A)*D(A)-Norm of the Error, Cont.

Equivalently, if m = max{J, L},

myin HN(Hk+m)el - D(Hk+m)(:7 1: k)yH2

Solve this least squares problem using standard QR factorization of
the k 4+ m by k coefficient matrix. It is not upper Hessenberg if
deg(D) > 1, but D(Hk+m)(:, 1 : k) differs from

D(Hk4+m-1)(:,1: k —1) only in last row and last column. Apply
previous Givens rotations to last column and determine new
rotations to eliminate entries k+1,...,k+ m in column k.
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Example: Solve A?x = b
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Let S := D(A)*D(A). Since Qxy = Px—_1(A)b where Py_; is the
(k — 1)t degree polynomial that minimizes the S-norm of the
error, we can write

R(A)b — '
H ( ) Qksz < K(S)l/z min ”R(A) - Pk—l(A)H2'
EE PuciSPics
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R(A)b — '
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If A is diagonalizable with eigendecomposition A = VAV ™!, then

|R(A)b — Qryll2
|b]|2

< Kk(S)Y2K(V)-

i R(A) — pk—1(N)].
Pk—rlnelgk—l )\21/\3();\)‘ ( ) Pk 1( )’
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Let S := D(A)*D(A). Since Qxy = Px_1(A)b where P _; is the
(k — 1)t degree polynomial that minimizes the S-norm of the
error, we can write
R(A)b— Q .
5 )||b|12 VI < (532 min  R(A) - pea(A)a

Pk—1€Pk—_1

If A is diagonalizable with eigendecomposition A = VAV ™!, then

|R(A)b — Qryll2
|b]|2

[ R(A) — pk—1(N)].
Pk—rlnelgk—l )\21/\3();\)‘ ( ) Pk 1( )’

< K(S)2R(V):

However, as for linear systems, any nonincreasing convergence

curve can be obtained with a matrix having any given eigenvalues.
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Error Bounds Using the Crouzeix-Palencia Result

If A'is not diagonalizable or if (V) is huge, the following error
bound based on [Crouzeix and Palencia, The Numerical Range is a
(14 v/2) Spectral Set] may prove more useful.

IRAb— Quylls _ cvijo |
<k 1+v2 R(z)—p.._
B SO min e IRG)-pea(2),

where W(A) := {(Aq,q) : (q,q) = 1} is the numerical range of A.
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If A'is not diagonalizable or if (V) is huge, the following error
bound based on [Crouzeix and Palencia, The Numerical Range is a
(14 v/2) Spectral Set] may prove more useful.

IRAb— Quylls _ cvijo |
<k 1+v2 R(z)—p.._
B SO min e IRG)-pea(2),

where W(A) := {(Aq,q) : (q,q) = 1} is the numerical range of A.

If one prefers to work directly with the S-norm, then

|R(A)b — Quylls .
< (142 min max R(z)—pr_1(2)].
bl s < )pHePHzeW(smAsfl/?)| (2)=Pia ()]
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Error Bounds Using Results from Crouzeix and G.

The previous bounds are not useful if R has a pole in W(A) (or in
W(S1/2AS~1/2)). Crouzeix and G. [Spectral Sets: Numerical
Range and Beyond| showed that one could remove a disk about
such a pole ¢ € W(A) of radius 1/w((¢] — A)~1), where w is the
numerical radius, and still have a (3 + 21/3)-spectral set. Thus

[R(A)b — Quyll2

e < K(S)V2(3 +2V3)-

i R(z) — p_1(2)|-
o B zewiao e ayy T Pl
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Example: Random A, Random Quadratic N, Random

Cubic D

= randn(100) + 5, k(V) =98, k(D(A)) = 228.
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Example: Random A, Random Quadratic N, Random

Cubic D

= randn(100) + 15|
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Example: Random A, Random Quadratic N, Random

Cubic D

= randn(100) + 25|
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Example: Grcar Matrix, N=1, D =A

A = gallery('grcar’,100), (V') = huge, x(D(A)) = 3.6.
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» Using max{deg(D(A)),deg(N(A))} — 1 extra steps, one can
find the optimal (in D(A)*D(A)-norm) approx. to
D(A)~1N(A)b from the Krylov space.
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» Using max{deg(D(A)),deg(N(A))} — 1 extra steps, one can
find the optimal (in D(A)*D(A)-norm) approx. to
D(A)~1N(A)b from the Krylov space.

» Solve a k + deg(D(A)) by k least squares problem to
determine this optimal approx. Solve via QR factorization
with Givens rotations; apply previous rotations to last column
and choose new rotations to eliminate entries below diagonal
in column k. The residual norm in the least squares problem
is HR(A)b — Qk}/HD(A)*D(A)r so need not form Qy until
tolerance is met.
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» Using max{deg(D(A)),deg(N(A))} — 1 extra steps, one can
find the optimal (in D(A)*D(A)-norm) approx. to
D(A)~1N(A)b from the Krylov space.

» Solve a k + deg(D(A)) by k least squares problem to
determine this optimal approx. Solve via QR factorization
with Givens rotations; apply previous rotations to last column
and choose new rotations to eliminate entries below diagonal
in column k. The residual norm in the least squares problem
is HR(A)b — Qk}/HD(A)*D(A)r so need not form Qy until
tolerance is met.

» For highly nonnormal problems, a priori error bounds can be
based on how well one can approximate R(z) using a
polynomial of degree at most k — 1 on W/(A) or other
K-spectral sets.

14/14



