
Tutorial on Matrix Sketching

NYU Tandon School of Engineering, Christopher Musco

1

WHAT IS SKETCHING?

Sketching is a very general technique in randomized
algorithms. Two steps:

1. Use a very fast algorithm to compress an object or data
set down to a smaller size that still maintains interesting
information about the original object.

2. Compute using the smaller object.

Can be viewed as a kind of semantic compression. 2

EXAMPLE: JOHNSON-LINDENSTRAUSS DIMENSIONALITY REDUCTION

Suppose you have x1, . . . , xn ∈ Rd and you want to compute

∥xi − xj∥2 for all i, j.

Sketch:

• Pick m = O
(
log(n/δ)

ϵ2

)
. Choose random Gaussian G ∈ Rm×d.

• Set x̃i = 1√
mGxi.

Claim: With probability (1− δ), for all pairs xi, xj,

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2

3

EXAMPLE: JOHNSON-LINDENSTRAUSS DIMENSIONALITY REDUCTION

Prove via concentration of chi squared random variables.

Step 1: Show that, for any y ∈ Rn, with probability δ
n2 ,

(1− ϵ)∥y∥2 ≤ ∥ỹ∥2 ≤ (1+ ϵ)∥y∥2,

where ỹ = 1√
mGy is a sketched vector.

Step 2: Union bound to say the bound holds simultaneously
for all

(n
2
)
vectors of the form y = xi − xj.

4

EXAMPLE: JOHNSON-LINDENSTRAUSS DIMENSIONALITY REDUCTION

Time complexity: Improved from O(d) to O(log n) per vector
pair.

Space complexity: Improved from O(nd) to O(n log n)

Communication complexity: Improved from O(d) to O(log n)
per vector.

Can be used as pre-processing step, or in conjunction with
other algorithms (e.g. data structures for near neighbor

search). Very flexible technique.

5

SKETCHING TODAY

Sketching is an important part of the modern algorithmic
toolkit. Used in:

• Streaming algorithms for vector data, graphs, etc.
• Computational geometry
• Distributed algorithms (federated learning methods)
• Search algorithms
• Database algorithms
• Linear algebra

Other names: Dimensionality reduction, sparsification,
coresets.

6

SKETCHING FOR LINEAR ALGEBRA

We are obviously all interested in the setting where the object
being compressed is a matrix.

Today:

1. What information can we expect a matrix sketch to
preserve?

• Give two general purpose definitions that can be used in
many applications.

2. How do you compute sketches satisfying these definitions?
3. What are different ways to use sketches?

7

TWO CASES

8

SUBSPACE EMBEDDINGS

[Sarlós, 2006] [Woolfe, Liberty, Rokhlin, Tygert 2008]

Definition (Subspace Embedding)
A matrix Ã ∈ Rm×d is a subspace embedding for A ∈ Rn×d if,
for all x ∈ Rd,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22

For a single x, this is equivalent to the Johnson-Lindenstrauss
guarantee for y = Ax. The tricky part is we need it to hold for
all x. I.e. for all y in a d dimensional subspace.

9

SUBSPACE EMBEDDINGS

Claim (Sarlós, 2006)

Set m = O
(
d+log(1/δ)

ϵ2

)
. If Ã = 1√

mGA where G is an m× n
random Gaussian matrix then with probability (1− δ), Ã is a
subspace embedding for A.

Proof is similar to standard JL lemma:

1. Prove that ∥Ãx∥22 ≈ ∥Ax∥22 for
single x.

2. Union bound over a net in d
dimensions (which has 2d

vectors in it).
10

OTHER CONSTRUCTIONS FOR SUBSPACE EMBEDDINGS

Can use sparse random matrices [Clarkson, Woodruff 2013],
structured matrices [Ailon Chazelle 2006], sampling [Drineas,
Mahoney, Muthukrishnan 2006, Spielman Srivastava 2008], etc.

Important: Can compute subspace embedding in Õ(nd) time.
Dense JL takes O(nd2) time, which usually isn’t useful. 11

SPECTRAL SPARSIFICATION

If we are sketching the edge vertex incidence matrix of a graph,
A, and construct a subspace embedding Ã by selecting and
reweighting rows, Ã is the incidence matrix of a spectral
sparsifier for the graph.

If the graph has d nodes, Ã won’t have much more than O(d)
edges. 12

OBLIVIOUS VS. NON-OBLIVIOUS

Most sketches are linear, meaning that the operation can be
written as GA for some matrix G.

• Oblivious Sketch: G does not depend on A.
• Non-oblivious Sketching: G could depend on A.

13

OBLIVIOUS SKETCHING

Nice property of oblivious sketching: Easily applied to data in
a stream, to data separated on different machines, or to data
that will be later updated.

14

WHAT CAN YOU DO WITH THIS SKETCH?

Reminder of the guarantee we have:

Definition (Subspace Embedding)
A matrix Ã ∈ Rm×d is a subspace embedding for A ∈ Rn×d if,
for all x ∈ Rd,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22

15

WHAT CAN YOU DO WITH THIS SKETCH?

Application 1: Solve regression problems approximately.
Consider the matrix [A,b] with n rows and d+ 1 columns.

Construct a subspace embedding sketch [Ã, b̃] with O(d/ϵ2)
rows. Let x̃ = argminx ∥Ãx− b̃∥2. Then:

∥Ax̃− b∥2 ≤ (1+ ϵ)min
x

∥Ax− b∥2

Why?

16

SKETCHED REGRESSION

For n× d matrices, there are methods for computing a
subspace embedding in O(nd) time.

After sketching, reduce the cost of solving an n× d regression
problem from O(nd2) to O(d3/ϵ2).

You can improve the ϵ dependence to O(d/ϵ), but still this is
not a very well used technique.**

** Some interesting uses in approximate reorthogonalization
(Joel Tropp, Davide Palitta). Here you are essentially solving a
regression problem, but don’t need a very good solution.

17

PRECONDITIONING

Application 2: Preconditioning. [Rokhlin, Tygert 2008]

The subspace embedding guarantee for ϵ = 1/2.
1
2∥Ãx∥

2
2 ≤ ∥Ax∥22 ≤ 2∥Ãx∥22

Equivalently, for all x,
1
2x

TÃTÃx ≤ xTATAx ≤ 2 · xTÃTÃx.

Multiplying on left and right by (ÃTÃ)−1/2, we have that:
1
2x

Tx ≤ xT(ÃTÃ)−1/2ATA(ÃTÃ)−1/2x ≤ 2 · xTx.

In other words, A(ÃTÃ)−1/2 has singular values between 1/2 and
2. It’s a super well conditioned matrix!

18

PRECONDITIONING

Punchline: P = (ÃTÃ)1/2 is a very good preconditioner for A.
Solve the problem miny ∥AP−1 − b∥2. Set x = P−1y.

Using preconditioned CG or whatever algorithm you want, once
you compute the sketch Ã, can solve minx ∥Ax− b∥2 in
O((nd+ d3) log(1/ϵ)) time.

Started with a very poor dependence on 1/ϵ. Got to something
much more reasonable by combining with more classical
methods. This is also how subspace embeddings/graph
sparsifiers have been used in fast Laplacian system solvers
since [Spielman, Teng 2004].

19

SUBSAMPLING FOR SUBSPACE EMBEDDING

If you sample rows of A via their statistical leverage scores, you
can obtain a subspace embedding Ã with O(d log d/ϵ2) rows
[Spielman, Srivastava 2008]. Lots of work by Petros, Michael,
others. And other sampling methods (DPPs, adaptive sampling,
etc.)

These scores are relatively easy to compute. For row i,
sampling probability is proportional to aTi (ATA)−1ai. 20

ACTIVE REGRESSION

Application 3: Active learning.

Given data points g1, . . . , gn and ability to query the values of a
function bi for any i you want. Want to fit a simple function
f ∈ F to the data using as few value queries as possible.

E.g. in applications to parametric PDEs, you want to fit a
quantity of interest surface for use in uncertainty
quantification. Each point sampled requires solving the PDE. 21

ACTIVE REGRESSION

When your function class f is linear (e.g. polynomials) you can
solve this problem with subspace embeddings. Set
ai = [ϕ1(gi), . . . , ϕd(gi)]. Minimize ∥Ax− b∥2.

Only need to observe data label for entries of b where the
corresponding row of A was sampled!

22

ACTIVE REGRESSION

Punchline: For a function class F which is linear with d
features, learn f̃ such that:

n∑
i=1

(̃f(gi)− bi)
2 ≤ (1+ ϵ)min

f∈F

n∑
i=1

(f(gi)− bi)
2

Use just O(d log d/ϵ) function queries. Computing the optimal f
would have required n.

Matrix sketching was “rediscovered” by the parametric PDE/UQ
community [Hampton, Doostan 2014], [Cohen, Migliorati 2016]
for use in fitting polynomials, sparse polynomials, sparse
Fourier functions, etc.

23

SECOND CASE

24

SECOND CASE

Cannot hope for a guarantee as strong as subspace
embedding.

Usually hope to preserve information about the top singular
vector subspaces of A.

25

PROJECTION-COST PRESERVING SKETCHES

[Feldman, Schmidt, Sohler 2013] [Cohen, Elder, Musco, Musco,
Persu 2015]

Definition (Projection-Cost Preserving Sketching)
A matrix Ã ∈ Rn×m is a projection-cost preserving sketch for
A ∈ Rn×d if for all rank k projection matrices P ∈ Rn×n,

(1− ϵ)∥A− PA∥2F ≤ ∥Ã− PÃ∥2F ≤ (1+ ϵ)∥A− PA∥2F.

Just one of many possible ways of dealing with low-rank
problems. I think this definition is conceptually easy to wrap
your head around, but doesn’t lead to the tightest results.

26

PROJECTION-COST PRESERVING SKETCHES

How do you compute a projection-cost preserving sketch?

Multiply by a random matrix with O(k/ϵ2) columns. Or a sparse
random matrix, subsampling matrix, etc. Everything that
worked for subspace embeddings works here.

27

LOW-RANK APPROXIMATION

Application 1: Low-rank approximation / Randomized SVD.

Let Q̃ = argminQ∈Rn×k ∥Ã− QQTÃ∥F. Then:

∥A− Q̃Q̃TÃ∥F ≤ (1+ ϵ) min
Q∈Rn×k

∥A− QQTÃ∥F

In other words, Q̃ gives a near-optimal low-rank
approximation. Can be computed in O(ndk/ϵ2) time, even if
you are using a dense sketching matrix.

This result can be improved. See work by [Sarlos 2006], [Halko,
Martinsson, Tropp 2011] [Clarkson, Woodruff 2013], many more.
Notably, the ϵ dependence can be improved to 1/ϵ.

28

CONSTRAINED LOW-RANK APPROXIMATION

Application 1a: Constrained low-rank approximation.

For any constraint set S , Q̃ = argminQ∈Rn×k,Q∈S ∥Ã− QQTÃ∥F.
Then:

∥A− Q̃Q̃TÃ∥F ≤ (1+ ϵ) min
Q∈Rn×k,Q∈S

∥A− QQTÃ∥F

Cool observation: k-means clustering is a constrained low
rank approximation problem! [Drineas, Frieze, Kannan,
Vempala, Vinay 2004].

29

K-MEANS CLUSTERING

Application 1a: Constrained low-rank approximation.

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22 = ∥A− C(A)∥2F

µ1

µ1

µk

µk
µ2

…µ1

µ2

µk

A

a1
a2
a3

an-1
an

C(A)

30

K-MEANS CLUSTERING

Punchline: Can solves k-means approximately by first
projecting data pojnts to O(k) dimensional space. Usually
choosing ϵ to be constant is just fine since it is such a noisy
problem to begin with.

There have been improvements getting this result to O(log k)
that don’t take the linear algebraic approach. See e.g.
[Makarychev, Makarychev, Razenshteyn 2019].

31

LOW-RANK APPROXIMATION

For unconstrained low-rank approximation, how do sketching
methods compare to iterative methods with random starts?

Sketching

• O(k/ϵ) matrix-vector multiplies. 1/ϵ is “real”.
• (1+ ϵ) accurate low-rank approx. in Frobenius norm.
• Can do all multiplication at once.

Block (or single vector!) Krylov

• O(k/
√
ϵ) matrix-vector multiplies. Often much better

when you have singular value gaps.
• (1+ ϵ) accurate low-rank approx. in Frobenius and
spectral norms.

• Adaptive/multipass.
32

LOW-RANK APPROXIMATION

Sketching methods have a place in lots of applications where
accuracy is not critical (e.g. ϵ = 1/2).

Application 2: Variance Reduction for Trace Estimation

33

HUTCHINSON’S STOCHASTIC TRACE ESTIMATOR

Goal: Approximate the trace of a PSD matrix A given ability to
multiply A by vectors.

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

34

IMPLICIT TRACE ESTIMATION PROBLEM

Claim (Avron, Toledo 2011, Cortinovis, Kressner 2020)
Let T̃ be the trace estimate returned by Hutchinson’s method.
If m = O

(
log(1/δ)

ϵ2

)
, then with probability (1− δ),∣∣∣T̃− tr(A)

∣∣∣ ≤ ϵ∥A∥F.

If A is symmetric positive semidefinite (PSD) with eigenvalues
λ1, . . . , λn, then

∥A∥F =

√√√√ n∑
i=1

λ2
i ≤

n∑
i=1

λi = tr(A).

Corollary: For PSD A, (1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).
35

VARIANCE REDUCTION FOR TRACE ESTIMATION

Observation: ∥A∥F is only close to tr(A) if A has large
eignenvalues.

36

VARIANCE REDUCTION FOR TRACE ESTIMATION

Idea: Project off large eigenvalues directly. [Saibaba,
Alexanderian, Ipsen 2017]. I.e. compute approximation to top k
singular vector subspace Q ∈ Rn×k and write:

tr(A) = tr(A(I− QQT)) + tr(AQQT)

Hutch++ Algorithm: Estimate tr(A(I− QQT)) using Hutchinson’s
estimator. Compute tr(AQQT) using k matrix vector products.

Main Observation: Variance of Hutchinson’s estimator in
computing tr(A(I− QQT)) depends on ∥A− AQQT∥F.

Not critical to get this close to (1+ ϵ). Even if variance is
suboptimal by a 2x factor, make up for this with more
iterations of Hutchinsons!

37

VARIANCE REDUCTION FOR TRACE ESTIMATION

Claim (Meyer, Musco, Musco, Woodruff, 2021)
Given a sketching method for computing an O(1)
approximate k-rank approximation using O(k) matrix-vector
multiplications with a given PSD matrix A, The Hutch++
algorithm returns an estimate T̃ satisfying:

|T̃− tr(A)| ≤ ϵ tr(A)

using just O(1/ϵ) matrix-vector multiplications in total.

Takeaway: Quadratic improvement on the O(1/ϵ2) required by
Hutchinson’s method. Doesn’t pay the high ϵ dependencies we
typically associate with sketching.

38

COMMON THEME?

Poor accuracy is an issue with matrix sketching methods. A lot
of the most compelling applications combine sketching with
other refinement techniques. Two examples so far:

1. Using constant-factor subspace embedding as a
preconditioner for linear systems.

2. Using constant-factor low-rank approximation sketch as a
variance reduction tool for trace estimation.

39

ANALYZING ITERATIVE METHODS

Application 3: Analyzing iterative SVD methods.

Question: How many iterations does it take for a block Krylov
method to converge to a near optimal low-rank
approximation? I.e. to find Q ∈ Rn×k such that:

∥A− QQTA∥ ≤ (1+ ϵ)∥A− Ak∥

This problem is distinct from asking how long is takes for Q to
converge the top singular vectors of A [Drineas, Ipsen, 2019].

Typical analysis approach: View Krylov subspace method as
returning a sketch of p(A) for some polynomial p:

p(A)G.

40

ANALYZING ITERATIVE METHODS

Typical analysis approach: View Krylov subspace method as
returning a sketch of p(A) for some polynomial p:

B = p(A)G.

Choose sketch size G as small as possible: n× k for rank k
approximation.

Sketching Guarantee: From sketch BG ∈ Rn×k can compute
Q ∈ Rn×k such that:

∥B− QQTB∥F ≤ cnk∥B− QQTB∥F.

This is on the surface a really weak guarantee! But leads to
strong analysis of block Krylov methods. The cnk term ends up
inside a log.

41

OPEN DIRECTIONS

• Other ways to combine sketches with iterative or high
accuracy methods?

• Better abstractions for sketching guarantees?
• Sketches for active learning for more function classes.
• Applying sketches to infinitely tall matrices / linear
operators.

• What are the right practical methods and why do they
work? Adaptive sampling, rank revealing QR,
determinantal point process sampling, etc.

• Sketches for structured matrices that don’t destroy
structure.

42

QUESTIONS?

42

