
.

A Tutorial on Numerical Stability

James Demmel
UC Berkeley

Math and EECS Depts.

Outline (1/2)

1. Basic Definitions: Forward, backward, mixed stability

2. Design space

• How to measure errors

– relative vs absolute, norm, componentwise, structured, deter-
ministic vs randomized

• How to model arithmetic

– (1 + δ), + underflow, + BlackBox, floating point, rounding,
precisions

Outline (2/2)

3. Examples

• Dot products, matmul

• GE + variations

• Algorithms using orthogonal tranformations

• Symmetric eigenproblem: Bisection, D&C, MRRR

• Fast (O(nω)) matmul

• Fast linear algebra, via logarithmic stability

• Exploiting problem structure (many kinds!)

Basic Definitions (for scalar functions)

• Want y = f (x), have an algorithm ŷ = f̂ (x)

• Forward stability: a bound on |y − ŷ| (see metrics below)

• Backward stability: a bound on |x− x̂| where ŷ = f (x̂)

• Mixed stability: a bound on |x− x̂| and |ŷ − ˆ̂y| where ˆ̂y = f (x̂)

– Good if both small: “Almost the right answer (ŷ instead of ˆ̂y)
to almost the right problem (x̂ instead of x)”

• Error metrics

– Absolute: |y − ŷ| ≤ η for some η ≥ 0

– Relative: |y − ŷ|/|y| ≤ ε for some ε ≥ 0

– Mixed: |y − ŷ| ≤ ε|y| + η (eg. used to handle underflow)

– Bounds on ε and η: multiply bound on |x − x̂| by condition
number to get a bound on |y − ŷ|

More Metrics (for vector and matrix functions) (1/2)

• Write x̂ = x + δx, Â = A + δA, etc

• Normwise vs componentwise: ‖δA‖/‖A‖ vs ‖|δA|./|A|‖max

– Both kinds of (small) backward error bounds for solvingAx = b
(xgesvx in LAPACK), and smaller componentwise condition
number: ‖|A−1| · |A|‖ vs. ‖A−1‖ · ‖A‖

– Thm (D., Higham; Rump) Componentwise distance to singu-
larity “close” to 1/‖|A−1| · |A|‖

– Extends to general E ≥ 0 instead of |A|; distance is NP-hard
(Rohn, Poljak)

More Metrics (for vector and matrix functions) (2/2)

• Structured: IfA Symmetric/Bidiagonal/Vandermonde/Totally Pos-
itive/... then so is Â

– Condition numbers can be arbitrarily smaller in some cases

– Ex: Bidiagonal SVD (xbdsqr in LAPACK) (D., Kahan)

• Randomized vs Deterministic

– Guarantees a la Johnson-Lindenstrauss: “With probability at
least 1− δ the error is at most ε”

– See arxiv.org/abs/2302.11474 for a 195 page design document
for RandLAPACK

How to Model Arithmetic (1/2)

• Traditional model: rnd(a op b) = (a op b)(1 + δ), |δ| ≤ ε� 1

– But new 8-bit IEEE floating point standard in progress, with
ε = 1/8 or 1/16

– Will (likely) support mixed precision dot products, so ε = 1/256
or 1/2048

– Nvidia has tried 0 mantissa bits (all numbers are ±(
√

2)e)

– Committee meeting biweekly, lots of companies want a standard

• Traditional model + underflow:

– rnd(a op b) = (a op b)(1 + δ) + η, |δ| ≤ ε, |η| ≤ UN

– See (D, 1984) for extensions of classical error analysis to include
underflow

• Traditional model extends to complex arithmetic, with larger ε

How to Model Arithmetic (2/2)

• Traditional model + “black boxes”

– Ex: Fused-multipy-add (FMA):
rnd((a · b) + c) = ((a · b) + c)(1 + δ), |δ| ≤ ε� 1

– Many others possible; many accelerators (eg for matmul) being
built

– Ex: What could we do with an accurate dot product?

• Floating point: ±m · 2e, with a rounding rule to determine δ, η

– Traditional model applies (some exceptions pre-IEEE 754)

– If conventional rounding (eg to nearest) then many tricks to
extend precision (examples later)

– New 8-bit standard will also support stochastic rounding, to
reduce some error bounds from O(nε) to O(

√
nε)

∗ See survey on stochastic rounding by Croci et al

Some floating point tricks for higher precision

• Two-Sum

– Assume |x| ≤ |y|: head = x + y, tail = y − (head− x)

– Thm: head + tail = x + y exactly

– head = leading bits, tail = trailing bits

• Two-Product

– head = a · b, tail = fma(a, b,−head) = a · b− head
– Thm: head + tail = x · y exactly

• Long history of extensions to compute in higher precision

– Higham, Priest, Dekker, Rump, Kahan, ...

Computing Sums s =
∑n
i=1 xi (1/2)

• Conventional (sequential) summation

– ŝ = x1, for i = 2 : n, ŝ = rnd(ŝ + xi) = (ŝ + xi)(1 + δi)

– ŝ =
∑n
i=1[xi

∏n
j=max(i,2)(1 + δj)], |δj| ≤ ε

– 1− nε
1−nε ≤

∏n
j=1(1 + δj)

±1 ≤ 1 + nε
1−nε if nε < 1

– ŝ =
∑n
i=1 xi(1 + δ̄i), |δ̄i| = O(nε) ⇒ backward stable

– |s− ŝ| ≤
∑n
i=1 |xiδ̄i| = O(nε)

∑n
i=1 |xi| ⇒ forward stable

∗ Condition number for relative error =
∑n
i=1 |xi|/|

∑n
i=1 xi|

• Conventional (sequential) summation with randomized rounding

– Round up or down with probability ∝ distance to other choice

– O(nε)⇒ O(
√
nε) w.h.p. (Central Limit Thm) (Croci et al)

• Parallel summation with a binary tree: O(n)⇒ O(log n)

• Compensated summation (Kahan) : O(n)⇒ 2 (4n flops)

Computing Sums s =
∑n
i=1 xi (2/2)

• Guaranteeing a small relative error, despite cancellation

– Obvious approach: very large (“super”) accumulator

∗ Time, mem cost exponential in input size (#exponent bits)

– Faster approach:

∗ Sort xi in order of decreasing exponent (or magnitude)

∗ Sum from x1 to xn using k extra mantissa bits

∗ Thm (D, Hida; Priest): If n ≤ 1 + 2k, relative error
<
≈ 1.5ε

• Guaranteeing bitwise reproducibility for any summation order

– Modern systems nondeterministic⇒ summation order can vary

– Of interest for scientific, legal, political reasons ...

– Thm (Ahrens, Nguyen, D.): Cost of reproducible summation
= 9n flops, 3n bit-wise ops, 6 word accumulator

Computing Dot Products s =
∑n
i=1 xi · yi, Classical

Matmul, Some Other NLA Algorithms

• Prior approaches apply (some require xi · yi = head + tail)

• Conventional (sequential) summation for dot products

– ŝ =
∑n
i=1 xi · yi(1 + δ̄i), |δ̄i| = O(nε) ⇒ backward stable

– |s− ŝ| = O(nε)
∑n
i=1 |xi · yi| ⇒ forward stable

• Conventional (sequential) summation for C = A ·B
– |C − Ĉ| = O(nε)|A| · |B| ⇒ forward stable

– ‖C − Ĉ‖ = O(nkε)‖A‖ · ‖B‖, k depends on norm

– Not back. stable in general (O(n3) constraints on O(n2) data)

– UnlessA·AT = I : Ĉ = C+δC = A(B+AT δC) = A(B+δB),
‖δB‖2 = ‖δC‖2 = O(nkε)‖B‖2

– All algorithms based on orthogonal tranformations (QR, eig,
SVD,...) are normwise backward stable

More on symmetric tridiagonal eigensolvers

• T = TT , n× n and tridiagonal

• Bisection for eigenvalues of T (D., Dhillon, Ren)

– Compute Inertia(T − σI) = #pos,zero,neg Dii = #evals of T
that are > σ, = σ, < σ, where T = LDLT

– Expect these counts to be monotonic in σ for correctness

– Thm: Counts are monotonic if floating point is:
a1 op b1 ≥ a2 op b2→ rnd(a1 op b1) ≥ rnd(a2 op b2).

• MRRR for eigenvalues and eigenvectors of T (Dhillon, Parlett)

– Goal: O(mn) flops to stably compute m pairs (λi, vi):
‖Tvi − λivi‖ = O(ε)‖T‖ and |vTi vj| = O(ε)

– Simple algorithm: Bisection + Inverse Iteration can fail

– MRRR = Multiple Relatively Robust Representations meant
to fix this, usually works, still some rare failures to be fixed

LU, triangular factorizations (1/4)

• Factor PrAPc = A′ = LU , solve Ax = b using substitution

• A′ + δA′ = LU , |δA′| = O(nε)|L| · |U |
• (A′ + δA′′)x̂ = b, |δA′′| = O(nε)|L| · |U |
• Normwise backward stability depends on ‖|L| · |U |‖/‖A‖
• Instead use Growth factor = | largest intermediate result |/‖A‖max
• General A, Partial Pivoting (PP)

– Pr chooses |A′11| = maxi |A′i1|, ditto for later columns, Pc = I

– Lii = 1, |Lij| ≤ 1, #comparisons = n(n− 1)/2

– Growth factor ≤ 2n−1, unstable but rare

– Statistical models and experiments support growth factor =
O(n2/3) orO(n1/2) (Trefethen, Schreiber)(Huang, Tikhomirov)

LU, triangular factorizations (2/4)

• General A, Rook Pivoting (RP)

– Pr, Pc choose |A′11| = maxi |A′i1| = maxi |A′1i|, ditto for later
steps

– A′ = LDU , Lii = Uii = 1, |Lij| ≤ 1, |Uij| ≤ 1

– #comparisons usually like PP, can be Θ(n3), unlikely

– E(#comparisons) ≤ en(n− 1)/2

– Growth factor ≤ 1.5n
3
4 lnn� 2n−1

• General A, Complete Pivoting (CP)

– Pr, Pc choose |A′11| = maxij |A′ij|, ditto for later steps

– #comparisons = n3/3 + O(n2)

– Growth factor = O(n
2+lnn

4)

– Was long conjectured to be n, a few counterexamples found

LU, triangular factorizations (3/4)

• General A, Randomized with No Pivoting (NP)

– Perform LU with NP on Br · A ·Bc (Baboulin et al)

∗ Br and Bc are random butterfly matrices

∗ One level = Bn = 2−1/2

[
D0 D1
D0 −D1

]
· Dk(i, i) random in [.95, 1.05], well-conditioned

∗ Two level =

[
Bn/2 0

0 Bn/2

]
·Bn, etc.

∗ Only use a few levels, cheap to apply or invert

∗ Backward stable (and faster) in practice

– Perform LU with NP on Vr · A · Vc (D., Grigori, Rusciano)

∗ Vr and Vc are Haar matrices

∗ Thm: E(log(Growth factor)) = O(log n)

LU, triangular factorizations (4/4)

• General A, Tournament Pivoting (TP) (Grigori et al)

– Choose b rows from group of b columns, access data once

– Choose subset of b rows from 2b rows at a time, do reduction

– Allows LU to attain communication lower bound

– Schur complement at each step same as PP applied to different
matrix built from A, so as “stable” as PP

– Thm: If the tournament reduction tree height≤ H , Growth factor
≤ 2n(H+1)−1

Fast (O(nω)) Matmul is Stable (D., Dumitriu, Holtz)

• Stationary Partition Algorithms for C = A ·B
– Recursively apply formula for k × k matmul:

– chl =
∑t
s=1wrsPs where Ps = (

∑k2

i=1 uisxi)(
∑k2

j=1 vjsyj)

– xi (resp yi) are entries of A (resp B) ordered columnwise

– Includes Strassen, many others

– ‖Ĉ − C‖ ≤ µ(n)ε‖A‖‖B‖ + O(ε2)

– µ(n) = O(nlogk(emax‖U‖‖V ‖‖W‖)+o(1)) = poly(n)

– U , V , W are matrices of coefficients (generalizes Bini, Lotti)

– emax depends on the sparsity structures of U , V , W

• Extends to Non-stationary partition algorithms

• Extends to pre-and post-processing of A and B

• Extends to group-theoretic recursive algorithms (Cohn, Umans)

Fast Linear Algebra is Stable (1/5) (D., Dumitriu, Holtz)

• Logarithmic Stability:
‖f̂ (x)−f (x)‖
‖f (x)‖ ≤ O(ε)κ

polylog(n)
f (x) + O(ε2)

• Getting usual error bound increases precision and complexity by
polylog(n)

• Inverting triangular matrix recursively costs O(nω), log. stable[
T11 T12
0 T22

]−1

=

[
T−1

11 −T
−1
11 · T12 · T−1

22
0 T−1

22

]
• Ditto for recursive matrix inversion for M−1 = (MTM)−1 ·MT

H =

[
A B

BT C

]
=

[
I 0

BTA−1 I

]
·
[
A B
0 S

]
, S = C −BTA−1B

H−1 =

[
A−1 + A−1BS−1BTA−1 −A−1BS−1

−S−1BTA−1 S−1

]

Fast Linear Algebra is Stable (2/5)

• Recursive (left-right) QR costs O(nω), stable (not log.)

– Do QR on left half of A (recursively)

– Update right half of A

– Do QR on lower right of A (recursively)

• Recursive (left-right) GEPP costsO(nω), stable if ‖L−1‖ bounded

– Ditto

Fast Linear Algebra is Stable (3/5) (Ballard et al)

• Background on eigensolvers: matrix-sign function

• Use Newton to solve x2 = 1: xn+1 = (xn+x−1
n)/2→ sign(<(x0))

• (I ± (An + A−1
n)/2)/2→ P± = spectral projector for <(λ)

>
< 0

• Do RRQR (Rank-Revealing QR):

– V R = G = Gaussian, so V Haar

– P+V
T = UR, so P+ = URV

• Update A← UTAU =

[
A+ A12
O(ε) A−

]
, stable if really O(ε)

• Apply to αA± + βI to divide-and-conquer spectrum

• Newton = repeated squaring of Cayley Transform (A−I)(A+I)−1

Fast Linear Algebra is Stable (4/5)

• Inverse-free repeated squaring of A−1B (A0 = A, B0 = I)[
Bj
−Aj

]
=

[
Q11 Q12
Q21 Q22

]
·
[
Rj
0

]
,
Aj+1 = QT12 · Aj
Bj+1 = QT22 ·Bj

• A−1
j+1Bj+1 = (A−1

j Bj)
2

• Need RRQR of P◦ ≈ (I + (A−1
j Bj))

−1 = (Aj + Bj)
−1Aj

– Aj = URV (V Haar), R̂Q = UT (Aj + Bj)

–⇒ (Aj + Bj)
−1Aj = QT (R̂−1R)V

• Apply to (aA + bI)−1(cA + dI) to split spectrum on circles

• Applies to pencils A− λB
• All Matmul, QR; finite precision analysis w.i.p.

Fast Linear Algebra is Stable (5/5) (Banks et al)

• Shattering Approach: Add noise A + γG, G Gaussian

– W.h.p. separates close eigenvalues of A = V DV −1 so V well-
conditioned

• Can accurately compute matrix-sign function using Newton

– Do binary search on 2D grid to find good split

• Cost increases/backward error decreases as γ decreases

– Attaining ‖A − V DV −1‖ ≤ δ and κ(V) ≤ 32n2.5/δ costs
O(nωpolylog(nδ)) arithmetic or bit operations

Exploiting Structure for Higher Accuracy (1/6)

• If my problem is structured (symmetric/sparse/diagonally domi-
nant/Vandermonde/...) can I get a more accurate answer? Or a
structured backward error?

• Many possibilities, will show a few

• Solving Ax = b using Cholesky

– Thm (van der Sluis): If A spd, choosing diagonal D so
Â = DAD has Âii = 1⇒ κ(Â) ≤ n ·minD κ(DAD)

– κ(Â) can be � κ(A)

– Let x̂ be computed solution: ‖D−1(x−x̂)‖/‖D−1x̂‖ = O(ε)κ(Â)

– 1/κ(Â) ≈ smallest componentwise relative perturbation that
makes A + δA singular

Exploiting Structure for Higher Accuracy (2/6)

• Iterative Refinement

– Solve Ax = b, repeat until “convergence”:
r = b− Ax, solve Ad = r, x = x + d

– (Approximate) Newton on a linear system

• Version 1: Use GEPP, compute r in double precision

– x converges to true solution in norm if κ(A)ε
<
≈ 1

• Version 2: Use GEPP, compute r in single precision (Skeel)

– x converges to small componentwise relative backward error
maxi |ri|/(|A| · |x| + |b|)i, if condition number not too large

– Condition number ⇒ ‖|A−1| · |A| · |x|‖/‖x‖ ≤ ‖|A−1| · |A|‖
• Version 3++: Different solvers, convergence criteria, multiple pre-

cisions (3 or even 5)

Exploiting Structure for Higher Accuracy (3/6)

• When is high relative accuracy possible in the traditional model?
rnd(a op b) = (a op b)(1 + δ), |δ| ≤ ε� 1

• x2 − y2 = (x− y)(x + y): possible

• x + y + z: impossible

• Motzkin polynomial: z6 + x2y2(x2 + y2 − 3z2)?

Exploiting Structure for Higher Accuracy (3/6)

• When is high relative accuracy possible in the traditional model?
rnd(a op b) = (a op b)(1 + δ), |δ| ≤ ε� 1

• x2 − y2 = (x− y)(x + y): possible

• x + y + z: impossible

• Motzkin polynomial: z6 + x2y2(x2 + y2 − 3z2): possible!

if |x− z| ≤ |x + z| ∧ |y − z| ≤ |y + z|
p = z4 · [4((x− z)2 + (y − z)2 + (x− z)(y − z))] +

+z3 · [2(2(x− z)3 + 5(y − z)(x− z)2 + 5(y − z)2(x− z) +

2(y − z)3)] +

+z2 · [(x− z)4 + 8(y − z)(x− z)3 + 9(y − z)2(x− z)2 +

8(y − z)3(x− z) + (y − z)4] +

+z · [2(y − z)(x− z)((x− z)3 + 2(y − z)(x− z)2 +

2(y − z)2(x− z) + (y − z)3] +

+(y − z)2(x− z)2((x− z)2 + (y − z)2)

else ... 7 more analogous cases

Exploiting Structure for Higher Accuracy (4/6)

• Evaluating p(x) accurately depends on its variety V (p)

• Def: V (p) is allowable if it is a finite union of intersections of
basic allowable sets:

– Zi = x : xi = 0, Sij = x : xi + xj = 0, Dij = x : xi − xj = 0

• Thm: V (p) unallowable ⇒ p cannot be evaluated accurately on
Rn or Cn (can be extended to smaller domains)

• Ex: V (Motzkin) = {|x| = |y| = |z|}
• Thm: On Cn, V (p) allowable is also sufficient for accurate evalu-

ation (p(x) factors into xi, xi ± xj)
• Real case: some progress toward decision procedure

(D., Dumitriu, Holtz, Koev)

• Ideas extend to adding “black boxes” etc, FMA, dot-products, ...

Exploiting Structure for Higher Accuracy (5/6)

Type of Any Gauss. elim.

matrix detAA−1minor NP PP CP RRD QR NE Az=bSVDEVD

Acyclic n n2 n n2 n2 n2 n2 n3

DSTU n3 n5 n3 n3 n3 n3 n3 n3

TSC n n3 n n4 n4 n4 n4 n4

Diagonally

dominant n3 No n3 n3 n3 n3

M-matrices n3 n3 No n3 n3 n3 n3

Cauchy

(non-TN) n2 n2 n2 n2 n3 n3 n3 n2 n3

Vandermonde

(non-TN) n2 No n3 n2 n3

Displacement

rank one n2 n3 n3

Totally

nonnegative n n3 n3 n3 n4 n4 n3 n3 0 n2 n3 n3

TNJ n n3 n3 n3 n4 n4 n3 n3 0 n2 n3 n3

Toeplitz No No No No No No No No No No

Exploiting Structure for Higher Accuracy (6/6)

• Eigenvalues of the 20th Schur Complement of the 40-by-40 Van-
dermonde matrix Vij = ij−1, computed both using a Conven-
tional algorithm (x) and and Accurate algorithm (+)

0 2 4 6 8 10 12 14 16 18 20
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

Eigenvalues of 20th Schur Complement of 40−by−40 Vandermonde v
ij
=i

j−1

Accurate
Conventional

References (1/5)

• N. Higham, “Accuracy and Stability of Numerical Algorithms”,
2nd ed., 2002

• D., “The componentwise distance to the nearest singular matrix,”
SIMAX, 1992

• S. Rump, “Ill-conditioned matrices are componentwise near to
singularity,” SIAM Review 1999

• S. Poljak, J. Rohn, “Checking robust singularity is NP Hard,”
Math. Controls Signals Systems, 1993

• D., W. Kahan, “Accurate Singular Values of Bidiagonal Matrices,”
SISC, 1990

• R. Murray et al, “Randomized Numerical Linear Algebra: A Per-
spective on the Field With an Eye to Software,” arxiv:2302.11474

References (2/5)

• D., “Underflow and the Reliability of Numerical Software,” SISC,
1984

• M. Croci et al, “Stochastic Rounding: implementation, error anal-
ysis and applications,” Royal Society Open Science, 2022

• D. Priest, “Algorithms for Arbitrary Precision Floating Point Arith-
metic,” 10th IEEE Symp. Comp. Arith., 1991

• D. Priest, UC Berkeley PhD Thesis, 1992

• T. Dekker, “A floating-point technique for extending the available
precision,” Num. Math., 1971

• S. Rump, “Ultimately Fast Accurate Summation,” SISC, 2009

• W. Kahan, “Further Remarks on Reducing Truncation Errors,”
CACM, 1965

References (3/5)

• D., Y. Hida, “Accurate and Efficient Floating Point Summation,”
SISC, 2003

• P. Ahrens et al, “Efficient Reproducible Floating Point Summa-
tion,” ACM TOMS, 2020

• D., I. Dhillon, H. Ren, “On the correctness of some bisection-
like parallel eigenvalue algorithms in floating-point arithmetic,”
ETNA 1995

• I. Dhillon, B. Parlett, “Orthogonal eigenvectors and Relative Gaps,”
SIMAX 2004

• L. Trefethen, R. Schreiber, “Average-case stability of Gaussian
Elimination,” SIMAX 1990

• H. Huang, K. Tikhomirov, “Average-case analysis of the Gaussian
Elimination with Partial Pivoting,” arXiv:2206.01726

References (4/5)

• M. Baboulin et al, “Accelerating linear system solutions using
randomization techniques,” ACM TOMS, 2013

• D., L. Grigori, A. Rusciano, “An improved analysis and unified
perspective on deterministic and randomized low rank matrix ap-
proximation,” arXiv:1910.00223 (to appear in SIMAX)

• L. Grigori, D., H. Xiang, “CALU: A communication optimal LU
factorization algorithm, ” SIMAX 2011

• D., I. Dumitriu, O. Holtz, R. Kleinberg, “Fast Matrix Multiplica-
tion is Stable,” Num. Math., 2007

• D., I. Dumitriu, O. Holtz, “Fast Linear Algebra is Stable,” Num.
Math., 2007

• G. Ballard, D., I. Dumitriu, “Minimizing communication for eigen-
problems and the SVD,” arXiv:1011.3077, 2010

References (5/5)

• J. Banks, J. Garza-Vargas, A. Kulkarni, N. Srivastava, “Pseu-
dospectral shattering, the sign function, and diagonalization in
nearly matrix multiplication time,” FOCM, 2022

• D., “On floating point errors in Cholesky,” LAPACK Working
Note #14, 1989

• E. Carson, N. Higham, S. Pranesh, “Three-precision GMRES-
based Iterative Refinement for Least Squares,” SISC 2020

• N. Higham, T. Mary, “Mixed precision algorithms in numerical
linear algebra,” Acta Numerica 2022

• R. Skeel, “Scaling for numerical stability in Gaussian Elimina-
tion,” JACM, 1979

• D., I. Dumitriu, O. Holtz, P. Koev, “Accurate and Efficient Ex-
pression Evaluation and Linear Algebra,”, Acta Numerica, 2008

