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Outline (1/2)

1. Basic Definitions: Forward, backward, mixed stability
2. Design space

e How to measure errors

— relative vs absolute, norm, componentwise, structured, deter-
ministic vs randomized

e How to model arithmetic

— (14 9), + underflow, + BlackBox, floating point, rounding,
precisions



Outline (2/2)

3. Examples

e Dot products, matmul

e G + variations

e Algorithms using orthogonal tranformations

e Symmetric eigenproblem: Bisection, D&C, MRRR
e Fast (O(n*)) matmul

e [ast linear algebra, via logarithmic stability

e Fixploiting problem structure (many kinds!)



Basic Definitions (for scalar functions)

e Want y = f(z), have an algorithm § = f()

e Forward stability: a bound on |y — 9| (see metrics below)

aS

e Backward stability: a bound on |z — 2| where y = f(Z)

e Mixed stability: a bound on |z — 2| and |§ — g| where g = f(&)

— Good if both small: “Almost the right answer (y instead of gj)
to almost the right problem (z instead of z)”

e Krror metrics

— Absolute: |y — y| < n for some 1 > 0

— Relative: |y — y|/|y| < € for some € > 0
— Mixed: |y — 9| < €|y| +n (eg. used to handle underflow)

— Bounds on € and 7n: multiply bound on |z — 2| by condition
number to get a bound on |y — 9|



More Metrics (for vector and matrix functions) (1/2)

e Write # = x + 0z, A= A+ A, etc
e Normwise vs componentwise: [|0A|/|| Al vs |||[0A]./|A|||max

— Both kinds of (small) backward error bounds for solving Ax = b
(xgesvx in LAPACK), and smaller componentwise condition
number: [[JAT - [A[l] vs. AT - [JA]

—Thm (D., Higham; Rump) Componentwise distance to singu-
larity “close” to 1/]||A™Y - |A]]

— Extends to general F > 0 instead of |A|; distance is NP-hard
(Rohn, Poljak)



More Metrics (for vector and matrix functions) (2/2)

o Structured: If A Symmetric/Bidiagonal/Vandermonde/Totally Pos-
itive/... then so is A

— Condition numbers can be arbitrarily smaller in some cases

— Ex: Bidiagonal SVD (xbdsqr in LAPACK) (D., Kahan)

e Randomized vs Deterministic
— Guarantees a la Johnson-Lindenstrauss: “With probability at
least 1 — 0 the error is at most €”

— See arxiv.org/abs/2302.11474 for a 195 page design document
for RandLAPACK



How to Model Arithmetic (1/2)

e Traditional model: rnd(a op b) = (a op b)(1 + ), |§] < e K 1

— But new 8-bit IEEE floating point standard in progress, with
e=1/80or1/16

— Will (likely) support mixed precision dot products, so e = 1/256
or 1/2048

— Nvidia has tried 0 mantissa bits (all numbers are £(1/2)¢)

— Committee meeting biweekly, lots of companies want a standard
e Traditional model + underflow:
—rmnd(a op b) = (aop b)(14+9)+n, |d| <€ |n| <UN

— See (D, 1984) for extensions of classical error analysis to include
underflow

e Traditional model extends to complex arithmetic, with larger e



How to Model Arithmetic (2/2)

e Traditional model + “black boxes”
— Ex: Fused-multipy-add (FMA):
md((a-b)+c)=((a-b)+c)(1+9), |d fexk 1

— Many others possible; many accelerators (eg for matmul) being
built

— Ex: What could we do with an accurate dot product?
e Floating point: +m - 2, with a rounding rule to determine 9, n

— Traditional model applies (some exceptions pre-IEEE 754)

— If conventional rounding (eg to nearest) then many tricks to
extend precision (examples later)

— New 8-bit standard will also support stochastic rounding, to
reduce some error bounds from O(ne) to O(y/ne)

x See survey on stochastic rounding by Croci et al



Some floating point tricks for higher precision

e T'wo-Sum
— Assume |z| < |y|: head = x +y, tail = y — (head — x)
— Thm: head + tail = x + y exactly
— head = leading bits, tatl = trailing bits

e T'wo-Product
— head = a - b, tail = fma(a, b, —head) = a - b — head
—Thm: head + tail = x - y exactly

e Long history of extensions to compute in higher precision

— Higham, Priest, Dekker, Rump, Kahan, ...



Computing Sums s = > ' ;z; (1/2)

e Conventional (sequential) summation

—s=uxy,fori=2:n, s=md(s§+x;) = (§+ x;)(1 + ;)
S T i (1 65 1651 < €
-1 -5 <= 1(1+5)i1<1+1 if ne <1

—§= ZZ 1:132(1 +6;), 16;] = O(ne) = backward stable
|

|
>
|

" |20 = O(ne) SO0 |z;| = forward stable
% Condltlon number for relative error = > 1" || /| D oiiq x4

e Conventional (sequential) summation with randomized rounding

— Round up or down with probability o< distance to other choice

— O(ne) = O(y/ne) w.h.p. (Central Limit Thm) (Croci et al)

e Parallel summation with a binary tree: O(n) = O(logn)
e Compensated summation (Kahan) : O(n) = 2 (4n flops)



Computing Sums s = > ' | z; (2/2)

e Guaranteeing a small relative error, despite cancellation

— Obvious approach: very large (“super”) accumulator

x Time, mem cost exponential in input size (#exponent bits)
— Faster approach:

x Sort x; in order of decreasing exponent (or magnitude)

x Sum from xry to x,, using k£ extra mantissa bits

«+ Thm (D, Hida; Priest): If n <1+ Zk, relative error N 1.5€¢

e Guaranteeing bitwise reproducibility for any summation order

— Modern systems nondeterministic = summation order can vary
— Of interest for scientific, legal, political reasons ...

— Thm (Ahrens, Nguyen, D.): Cost of reproducible summation
= 9n flops, 3n bit-wise ops, 6 word accumulator



Computing Dot Products s = )" ; x; - y;, Classical
Matmul, Some Other NLA Algorithms

e Prior approaches apply (some require x; - y; = head + tail)

e Conventional (sequential) summation for dot products
—5=>"1x;-yi(148;), |6;] = O(ne) = backward stable
—|s =8| = O(ne) > "1 |x; - y;| = forward stable

e Conventional (sequential) summation for C = A - B
—|C = C| = O(ne)|A| - |B| = forward stable
—||C = C|| = O(nFe)|| Al - |Bl|, k depends on norm
— Not back. stable in general (O(n?) constraints on O(n?) data)
—Unless A- AT = I C = C+6C = A(B+A16C) = A(B+6B),

[6Bll2 = [6C|l2 = O(n*e)|| B>
— All algorithms based on orthogonal tranformations (QR, eig,
SVD,...) are normwise backward stable



More on symmetric tridiagonal eigensolvers

o T =T% n xn and tridiagonal
e Bisection for eigenvalues of T' (D., Dhillon, Ren)
— Compute Inertia(T — o) = #pos,zero,neg D;; = #evals of T
that are > 0, = 0, < 0, where T" = LDLY
— Expect these counts to be monotonic in ¢ for correctness
— Thm: Counts are monotonic if floating point is:
a1 op by > as op by — rnd(aj; op by) > rnd(ag op b9).
e MRRR for eigenvalues and eigenvectors of T (Dhillon, Parlett)
— Goal: O(mn) flops to stably compute m pairs (\;, v;):
| Tv; = Xjwil| = O()||T|| and [v; vj] = O(e)
— Simple algorithm: Bisection + Inverse Iteration can fail

— MRRR = Multiple Relatively Robust Representations meant
to fix this, usually works, still some rare failures to be fixed



LU, triangular factorizations (1/4)

o Factor P,AP. = A’ = LU, solve Ax = b using substitution

o A"+ 0A"= LU, |6A"| = O(ne)|L| - |U|

o (A +06A"z =0, 10A"] = O(ne)|L| - |U|

e Normwise backward stability depends on |||L| - |U]|||/||A||

o Instead use Growth _factor= | largest intermediate result | /|| A||max

o General A, Partial Pivoting (PP)

— Py chooses |AY| = max; |A};|, ditto for later columns, P, = I
—Lj; =1, |Lj;j| <1, #fcomparisons = n(n — 1) /2
— Growth factor < 2"~1 unstable but rare

— Statistical models and experiments support growth factor =
O(n?/3) or O(n1/2) (Trefethen, Schreiber)(Huang, Tikhomirov)



LU, triangular factorizations (2/4)

e General A, Rook Pivoting (RP)

— Py, Pe choose |AY| = max; |A};| = max; |A},|, ditto for later
steps

—A'=LDU, Lij=U;; = 1, |Lij| <1, U] <1
— #comparisons usually like PP, can be ©(n?), unlikely
— E(#comparisons) < en(n — 1)/2
— Growth factor < 1.571% nn o on-—1
e General A, Complete Pivoting (CP)

— Py, P choose | A | = max;; \A |, ditto for later steps

— #comparisons = n°/3 + O(n?)

Inn
— Growth_factor = O(n2+4 )

— Was long conjectured to be n, a few counterexamples found




LU, triangular factorizations (3/4)

e General A, Randomized with No Pivoting (NP)
— Perform LU with NP on B, - A - B, (Baboulin et al)

x B, and B, are random butterfly matrices

« One level = B = 2—1/2 [

Dy Dy
Dy —D

- Dy.(1,4) random in [.95, 1.05], well-conditioned

*x Two level =

_Bn/Q
0

0
Bn/Q

. B etc.

)

+ Only use a few levels, cheap to apply or invert

x Backward stable (and faster) in practice
— Perform LU with NP on V.- A - V. (D., Grigori, Rusciano)

x V. and V. are Haar matrices

x+ Thm: E(log(Growth_factor)) = O(logn)



LU, triangular factorizations (4/4)

e General A, Tournament Pivoting (TP) (Grigori et al)

— Choose b rows from group of b columns, access data once
— Choose subset of b rows from 2b rows at a time, do reduction
— Allows LU to attain communication lower bound

— Schur complement at each step same as PP applied to different
matrix built from A, so as “stable” as PP

— Thm: If the tournament reduction tree height < H, Growth factor
< 2n(H+1)—1



Fast (O(n*¥)) Matmul is Stable (D., Dumitriu, Holtz)

e Stationary Partition Algorithms for C'=A - B
— Recursively apply formula for £ X k& matmul:
2 2
— ey = Yy wrsPs where Ps = (3077 wism;) (35— vjsy;)
—x; (resp y;) are entries of A (resp B) ordered columnwise
— Includes Strassen, many others
— € = Cl < uln)el|Al|B]| + O(e?)
~ () = O(mlomkemac VIV IIW ) +0(1)) Z poryin)
— U, V, W are matrices of coefficients (generalizes Bini, Lotti)

— emaz depends on the sparsity structures of U, V., W
e [ixtends to Non-stationary partition algorithms
e Fixtends to pre-and post-processing of A and B

e Fixtends to group-theoretic recursive algorithms (Cohn, Umans)



Fast Linear Algebra is Stable (1/5) (D., Dumitriu, Holtz)

e Logarithmic Stability: Hf(ﬂ )( )‘(‘ aall < Ofe) ]}OZng(n)(x) + O(€?)

e Getting usual error bound increases precision and complexity by
polylog(n)
e [nverting triangular matrix recursively costs O(n®), log. stable
-1 [ -1 —1 —1]
Ty 1o _ Ty =1y -T2 1oy
0 Th 0 s

e Ditto for recursive matrix inversion for M~1 = (ML M)~ Mt

A B I 0 A B
Bl ¢ BlA-1 T 0 S

g1 [A Ly A-1BSs—1BT A~ 1—A—1BS_1]

H:

],S:C—BTAlB

_s—1plp-1 g1



Fast Linear Algebra is Stable (2/5)

e Recursive (left-right) QR costs O(n*), stable (not log.)

— Do QR on left half of A (recursively)

— Update right half of A
— Do QR on lower right of A (recursively)

e Recursive (left-right) GEPP costs O(n¥), stable if || L~1|| bounded
— Ditto



Fast Linear Algebra is Stable (3/5) (Ballard et al)

e Background on eigensolvers: matrix-sign function

e Use Newton to solve 22 = 1 Tpt] = (:En%—x,,;l)/Z — sign(R(xgp))

o (I £ (A,+ A 1)/2)/2 — Py = spectral projector for R(\) 20

e Do RRQR (Rank-Revealing QR):
—V R = G = Gaussian, so V' Haar
— P, VI =UR, so P, =URV

Ap Ay
O(e) A_

e Apply to A4+ + BI to divide-and-conquer spectrum

e Update A + UTAU = [ ] , stable if really O(€)

e Newton = repeated squaring of Cayley Transform (A—1I)(A+I)~!



Fast Linear Algebra is Stable (4/5)

o Inverse-free repeated squaring of A™'B (Ag= A, By =1 )
[ B, ] _ [Qn Q12] . [Rj] A= Qi
—4; Q21 (22 0 1" Bjy1 = Q22
—1 _ —1 1 2
e Need RRQR of Po & (I +(A7'By)) ™! = (Aj + Bj) ™4,
— A; = URV (V Haar), RQ = U (4, + B))
—= (A;+ B) 1A, = QT (RIR)V
o Apply to (aA + bI)~YcA + dI) to split spectrum on circles
e Applies to pencils A — \B
e All Matmul, QR finite precision analysis w.i.p.



Fast Linear Algebra is Stable (5/5) (Banks et al)

e Shattering Approach: Add noise A +~G, G Gaussian

— W.h.p. separates close eigenvalues of A = VDV~ 50V well-
conditioned

e Can accurately compute matrix-sign function using Newton
— Do binary search on 2D grid to find good split

e Cost increases/backward error decreases as 7y decreases

— Attaining ||[A — VDV || < 6 and &(V) < 32n°°/6 costs
O(n“polylog(is)) arithmetic or bit operations



Exploiting Structure for Higher Accuracy (1/6)

o [f my problem is structured (symmetric/sparse/diagonally domi-
nant/Vandermonde/...) can I get a more accurate answer? Or a
structured backward error?

e Many possibilities, will show a few
e Solving Ax = b using Cholesky

— Thm (van der Sluis): If A spd, choosing diagonal D so
A=DAD has A;; =1 = k(A) <n-minp k(DAD)

A

— k(A) can be < k(A)

— Let 2 be computed solution: |[D~(z—2)||/|[D71z|| = O(e)x(A)

-1/ /ﬁ:(fl) ~ smallest componentwise relative perturbation that
makes A + 0 A singular




Exploiting Structure for Higher Accuracy (2/6)

e [terative Refinement

— Solve Ax = b, repeat until “convergence”:
r=bb— Ax, solve Ad=r, x =x+d
— (Approximate) Newton on a linear system

e Version 1: Use GEPP, compute r in double precision

L , <
— x converges to true solution in norm if kK(A)e = 1

e Version 2: Use GEPP, compute r in single precision (Skeel)

—x converges to small componentwise relative backward error
max; |13 /(|A| - || + |b]);, if condition number not too large

— Condition number = ||[A™Y] - [A] - [z[[|/[l«] < [|A7Y] - A

e Version 3++: Different solvers, convergence criteria, multiple pre-
cisions (3 or even 5)



Exploiting Structure for Higher Accuracy (3/6)

e When is high relative accuracy possible in the traditional model?
rnd(a op b) = (a op b)(1+9), |0 < ek 1

o 2° — 1y’ = (x —y)(x +y): possible
e xr + vy + z: impossible
e Motzkin polynomial: 2% + a:2y2(x2 +y — 322)?



Exploiting Structure for Higher Accuracy (3/6)

e When is high relative accuracy possible in the traditional model?
rnd(a op b) = (a op b)(1+9), |0 < ek 1

o 2° — 1y’ = (x —y)(x +y): possible
e xr + vy + z: impossible
e Motzkin polynomial: z° + x2y2($2 +y? — 3z2): possible!

if iz —z| <|x+z|Aly—z| < |y+ 2]
p= 2[4z =22+ (y— 2+ (@ —2)(y—2)]+

+25 - [22(x — 2)° + 5(y — 2)(x — 2)* +5(y — 2)*(x — 2) +
20y — 2)°)] +

+22 [(x— 2" +8(y — 2)(x — 2)° + Iy — 2)*(x — 2)
8(y — 2z —2) +(y — 2)"] +

+z-2(y — 2)(x — 2)((x — 2)° +2(y — 2)(z — 2)* +
2y — 2)*(x —2) + (y — 2)°] +

+Hy — 2%z = 2)*((x — 2)* + (y — 2)°)

else ... 7 more analogous cases

=



Exploiting Structure for Higher Accuracy (4/6)

e Evaluating p(x) accurately depends on its variety V (p)

o Def: V(p) is allowable if it is a finite union of intersections of
basic allowable sets:

—Zi:x:xi:O,Sij::z::a:ﬁr:l:j:(),Dij:x:azi—xj:()

e Thm: V(p) unallowable = p cannot be evaluated accurately on
R™ or C™ (can be extended to smaller domains)

o Eix: V(Motzkin) = {|x| = |y| = |2|}

e Thm: On C", V(p) allowable is also sufficient for accurate evalu-
ation (p(z) factors into x;, x; £ x)

e Real case: some progress toward decision procedure
(D., Dumitriu, Holtz, Koev)

e [deas extend to adding “black boxes” etc, FMA, dot-products, ...



Exploiting Structure for Higher Accuracy (5/6)

Type of Any | Gauss. elim.

matrix det AA™ Y minorf NP | PP | CP |RRD|QR|NE |A2 =bSVDEVD
Acyclic n n?| n | n®|n®| n®|n? n’
DSTU nd n’| nd | ndnd R nd n?

TSC n ndl n | ntntnt n? n?
Diagonally

dominant n’ No | n? n® | n’ n?
M-matrices n® |n®| No | n’ nd | n? n’
Cauchy

(non-TN) n? |\n?| n? | n? |0t nd|n? n? n’
Vandermonde

(non-TN) n? No n’ n? n’
Displacement

rank one n? n’ n?
Totally

nonnegative | n |[nd | nd [ nd | nt it | nd 0t 0] n?® | nd| nd
TN n|ndnd ndntnt R ndl 0 R ndnd
Toeplitz No No | No | No | No | No | No| No No | No




Exploiting Structure for Higher Accuracy (6/6)

e Eigenvalues of the 20th Schur Complement of the 40-by-40 Van-
dermonde matrix V;; = 4/ —1 computed both using a Conven-

)

tional algorithm (x) and and Accurate algorithm (+)

Eigenvalues of 20th Schur Complement of 40-by-40 Vandermonde vij=ij‘1
20

10 T T T T T T T | |
+ Accurate
% Conventional
10° F + -
X
+ X
X
10 +
10 -
+ X
+ X
+
X
10° + -
+ X
+ X
+ X
+ X
0 L + X _
10 +
L X
+ X
+ X
+
5 X
107 + 7
. X
+
10
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