funNyström: Randomized low-rank approximation of monotone matrix functions

David Persson, Daniel Kressner

10 March 2023

EPFL

Problem statement

Given

1. LARGE $\boldsymbol{A} \succeq \mathbf{0} \quad$ (numerically low rank);
2. Operator monotone f s.t. $f(0)=0 \quad(\boldsymbol{A} \succeq \boldsymbol{B} \Rightarrow f(\boldsymbol{A}) \succeq f(\boldsymbol{B}))$.

Find LOW RANK $\widehat{\boldsymbol{B}}$ such that

$$
\widehat{\boldsymbol{B}} \approx f(\boldsymbol{A})
$$

Operator monotone functions:

$$
x, \quad \sqrt{x}, \quad x^{r} \text { for } r \in[0,1], \quad \log (1+x), \quad \frac{x}{x+\mu} \text { for } \mu>0, \ldots
$$

sums, compositions, positive scalings, ...

Problem statement

Why monotone and $f(0)=0$? (Comment on operator monotonicity later)
f is continuous (implied by operator monotonicity)
$\Rightarrow f(\boldsymbol{A})$ is (numerically) low rank if \boldsymbol{A} is
\Rightarrow Low rank approximation makes sense

Applications

1. Trace estimation:

$$
\operatorname{tr}(\widehat{\boldsymbol{B}}) \approx \operatorname{tr}(f(\boldsymbol{A}))
$$

- Nuclear norm estimation: \sqrt{x};
- Statistical learning: $\log (1+x)$;
- UQ: $\log (1+x), \frac{x}{x+\mu}$.

2. Fast matvecs with $f(\boldsymbol{A})$:

$$
\widehat{\boldsymbol{B}} \boldsymbol{x} \approx f(\boldsymbol{A}) \boldsymbol{x}
$$

- Sampling from elliptical distributions: \sqrt{x}.

3. Diagonal estimation:

$$
\operatorname{diag}(\widehat{\boldsymbol{B}}) \approx \operatorname{diag}(f(\boldsymbol{A}))
$$

- Ridge leverage scores: $\frac{x}{x+\mu}$.

Low rank approximation of matrix functions - First ideas

Method 1: Optimal approach via eig/svd $O\left(n^{3}\right)$
Method 2: Construct low rank approximation via matvecs.

- Randomized SVD [Halko/Martinsson/Tropp'11]
- Nyström approximation $(f(\boldsymbol{A}) \succeq \mathbf{0})$ [Gittens/Mahoney'13, Tropp/Yurtsever/Udell/Cevher'17]

1. Sample random $n \times(k+p)$ matrix $\boldsymbol{\Omega}$;
2. $\boldsymbol{Q}=\operatorname{orth}\left(f(\boldsymbol{A})^{q-1} \boldsymbol{\Omega}\right)$
3. Return $\widehat{\boldsymbol{B}}=f(\boldsymbol{A}) \boldsymbol{Q}\left(\boldsymbol{Q}^{T} f(\boldsymbol{A}) \boldsymbol{Q}\right)^{\dagger}(f(\boldsymbol{A}) \boldsymbol{Q})^{T}$.

Nyström costs $q(k+p)$ matvecs with $f(\boldsymbol{A})$!

Low rank approximation of matrix functions - First ideas

Nyström is very good!

But...

Low rank approximation of matrix functions - First ideas

Computing $f(\boldsymbol{A}) \boldsymbol{\Omega}$ is expensive (compared to $\boldsymbol{A} \boldsymbol{\Omega}$)!

(Rational Krylov, and other methods, are also 'expensive'.)

Low rank approximation of matrix functions - Better ideas?
We want: obtain low rank approximation using much fewer matvecs.
Back to the setting...

1. $\boldsymbol{A} \succeq \mathbf{0}$;
2. f is (operator) monotone and $f(0)=0$.

Lemma: Let \boldsymbol{A}_{k} be rank- k truncated SVD. Then...

$$
f\left(\boldsymbol{A}_{k}\right) \text { is a best rank- } k \text { approximation to } f(\boldsymbol{A}) \text { ! }
$$

Idea: Compute Nyström approximation $\widehat{\boldsymbol{A}}$ of \boldsymbol{A} and use approximation

$$
f(\widehat{\boldsymbol{A}}) \approx f(\boldsymbol{A})
$$

Bypasses the need for matrix-vector products with $f(\boldsymbol{A})$!

Similar idea in trace estimation for $f(x)=x, \log (1+x), \frac{x}{x+1}$ [Saibaba/Alexanderian/Ipsen'17, Herman/Alexanderian/Saibaba'20].

funNyström

1. Obtain eigenvalue decomposition of Nyström approximation

$$
\widehat{\boldsymbol{A}}=\boldsymbol{A}^{q} \boldsymbol{\Omega}\left(\boldsymbol{\Omega}^{T} \boldsymbol{A}^{2 q-1} \boldsymbol{\Omega}\right) \boldsymbol{\Omega}^{T} \boldsymbol{A}^{q}=\widehat{\boldsymbol{U}} \widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{U}}^{T}
$$

2. Return low-rank approximation of $f(\boldsymbol{A})$

$$
f(\widehat{\boldsymbol{A}})=\widehat{\boldsymbol{U}} f(\widehat{\boldsymbol{\Lambda}}) \widehat{\boldsymbol{U}}^{T}
$$

Potential benefits:

- No approximations of $f(\boldsymbol{A}) \boldsymbol{x}$
\Rightarrow funNyström is much cheaper than Nyström on $f(\boldsymbol{A})$.
- It can even be more accurate!

Numerical results

How many matvecs do we save?

(a) $f(x)=x^{1 / 2}$ and $\lambda_{i}=i^{-3}$.
(b) $f(x)=\frac{x}{x+1}$ and $\lambda_{i}=10 e^{-i / 10}$.

Numerical results

What if $f(\boldsymbol{A}) \boldsymbol{x}$ is very cheap?

(a) $f(x)=x^{1 / 2}$ and $\lambda_{i}=i^{-3}$.

(b) $f(x)=\frac{x}{x+1}$ and $\lambda_{i}=e^{-i / 10}$.

Theoretical results

Let $\gamma=\lambda_{k+1} / \lambda_{k}$ and $q \geq 2$

$$
\mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{F}^{2} \leq\left(1+\gamma^{2(q-3 / 2)} \frac{5 k}{p-1}\right)\left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{F}^{2}
$$

Assumption $q \geq 2$ can be removed at the cost of a weaker bound.

Theoretical results

Let $\gamma=\lambda_{k+1} / \lambda_{k}$ and $q \geq 2$

$$
\mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{F}^{2} \leq\left(1+\gamma^{2(q-3 / 2)} \frac{5 k}{p-1}\right)\left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{F}^{2}
$$

Assumption $q \geq 2$ can be removed at the cost of a weaker bound.

If $q \geq 1$

$$
\mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{*} \leq\left(1+\gamma^{2(q-1)} \frac{k}{p-1}\right)\left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{*}
$$

Theoretical results

Let $\gamma=\lambda_{k+1} / \lambda_{k}$ and $q \geq 2$

$$
\mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{F}^{2} \leq\left(1+\gamma^{2(q-3 / 2)} \frac{5 k}{p-1}\right)\left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{F}^{2}
$$

Assumption $q \geq 2$ can be removed at the cost of a weaker bound.

If $q \geq 1$

$$
\mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{*} \leq\left(1+\gamma^{2(q-1)} \frac{k}{p-1}\right)\left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{*}
$$

If $q \geq 1$

$$
\begin{aligned}
& \mathbb{E}\|f(\boldsymbol{A})-f(\widehat{\boldsymbol{A}})\|_{2} \leq \mathbb{E} f\left(\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|_{2}\right) \leq f\left(\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|_{2}\right) \leq \\
& \left\|f\left(\boldsymbol{\Lambda}_{2}\right)\right\|_{2}+\left\|f\left(\gamma^{2(q-1)} \frac{2 k}{p-1} \boldsymbol{\Lambda}_{2}\right)\right\|_{2}+\left\|f\left(\gamma^{2(q-1)} \frac{2 e^{2}(k+p)}{p^{2}-1} \boldsymbol{\Lambda}_{2}\right)\right\|_{*}
\end{aligned}
$$

Other remarks

Application to trace estimation

funNyström + Hutch $++\Rightarrow$ low rank approx. phase cheaper

Other remarks

Application to trace estimation

funNyström + Hutch $++\Rightarrow$ low rank approx. phase cheaper

Operator monotonicity?

- Empirically, the bounds do not hold for any arbitrary monotone functions.
- $f(x)=x^{3}$ is an example...
- ... but funNyström still good provided you set $q=3$!

