Condition Numbers Tutorial Talk

Peter Bürgisser
Technical University of Berlin

Perspectives on Matrix Computations:
Theoretical Computer Science Meets Numerical Analysis

Banff, March 7, 2023

Outline

Turing's Condition Number
Distance to ill-posedness
Finite precision
Complexity
Probabilistic analysis
Variants of Condition Numbers: Structured Data
Triangular matrices
Componentwise relative errors
General geometric framework
Eigenpairs of matrices
Geometric framework
Condition number for eigenpairs
A stable and efficient homotopy algorithm for eigenpairs

Turing's condition number of a matrix

A. Turing, 1948
J. von Neumann and H. Goldstine, 1947

General definition of condition number

- Suppose we have a numerical computation problem

$$
f: \mathbb{R}^{p} \supseteq U \rightarrow \mathbb{R}^{q}, x \mapsto y=f(x)
$$

and input x has small error Δx.

- Size of errors can be measured in different ways: absolute or relative errors, componentwise or normwise ...
- Will focus on normwise relative error $\|\Delta x\| /\|x\|$, which depends on choice of norm.
- Want to bound relative error $\|\Delta y\| /\|y\|$ of output in terms of relative error $\|\Delta x\| /\|x\|$ of input.
- This is done by the normwise relative condition number $\kappa(f, x)$ at x :

$$
\|\Delta y\| /\|y\| \lesssim \kappa(f, x)\|\Delta x\| /\|x\|
$$

- Formal definition for differentiable f :

$$
\kappa(f, x):=\|D f(x)\| \frac{\|x\|}{\|f(x)\|}
$$

where $\|D f(x)\|$ denotes the operator norm of the Jacobian of f at x.

Turing's condition number

- Number inversion $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto x^{-1}$ has condition number

$$
\kappa(f, x)=\left|f^{\prime}(x)\right| \frac{|x|}{|f(x)|}=1
$$

- Matrix inversion

$$
f: \mathrm{GL}(m, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}, A \mapsto A^{-1}
$$

has derivative $\operatorname{Df}(A)(\dot{A})=-A^{-1} \dot{A} A^{-1}$, hence using spectral norm, $\|D f(A)\|=\left\|A^{-1}\right\|^{2}$.

- Obtain classical condition number of A :

$$
\kappa(A):=\kappa(f, A)=\|A\|\left\|A^{-1}\right\|
$$

- Note that $\kappa(\lambda A)=\kappa(A)$ for $\lambda \in \mathbb{R}^{*}$.
- $\kappa(A)$ was introduced by A . Turing in 1948.

Distance to ill-posedness

- We call the set of singular matrices $\Sigma \subseteq \mathbb{R}^{m \times m}$ the set of ill-posed instances for matrix inversion. Clearly, $A \in \Sigma \Leftrightarrow \operatorname{det} A=0$.
- The Eckart-Young Theorem from 1936 states that

$$
\left\|A^{-1}\right\|=\frac{1}{\operatorname{dist}(A, \Sigma)}
$$

where dist either refers to operator norm or to Frobenius norm (Euclidean norm on $\mathbb{R}^{n \times n}$).

- Hence

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\frac{\|A\|}{\operatorname{dist}(A, \Sigma)}
$$

- $\operatorname{dist}(A, \Sigma)$ equals the smallest singular value of A.

Finite precision

- Digital computers operate with floating-point numbers, and every arithmetic operations produces a round-off error.
- Let $\epsilon_{\text {mach }}$ denote the round-off unit (e.g., 10^{-12}).
- Suppose we compute the approximation \widetilde{x} of $x \in \mathbb{R}$ with relative error δ, i.e. $\widetilde{x}=x(1+\delta)$.
- The best we can hope for is $\delta \leq \frac{1}{2} \epsilon_{\text {mach }}$.
- One calls $\log _{10}\left(\frac{\delta}{\epsilon_{\text {mach }}}\right)$ the loss of precision in decimal digits.
- Turing's condition number is relevant for finite precision analysis of linear algebra

Backward-error analysis and condition

- Suppose \mathcal{A} is a finite-precision algorithm approximately computing the function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$.
- Suppose we can show that for all inputs x there exists $e \in \mathbb{R}^{p}$ such that $A(x)=f(x+e)$ with small e (called "backward-error").
- Can bound "forward-error" by

$$
\|\mathcal{A}(x)-f(x)\|=\|f(x+e)-f(x)\| \lesssim \kappa(f, x)\|e\|
$$

- Example: The Householder QR factorization algorithm is one of the main engines in numerical linear algebra.
- N. Higham: On input an invertible $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm computes \widetilde{x} close to $x=A^{-1} b$ such that there exist $\widetilde{A} \in \mathbb{R}^{n \times n}$ and $\widetilde{b} \in \mathbb{R}^{n}$ satisfying

$$
\|\widetilde{A}-A\|_{F} \leq n \gamma_{c n}\|A\|_{F}, \quad\|\tilde{b}-b\| \leq n \gamma_{c n}\|b\|
$$

where $c>0$ is a small constant and $\gamma_{k}:=\frac{k \epsilon_{\text {mach }}}{1-k \epsilon_{\text {mach }}}$ for $k<\epsilon_{\text {mach }}^{-1}$

- Loss of precision is bounded by

$$
\log \left(\frac{\|\tilde{x}-x\|}{\epsilon_{\text {mach }}\|x\|}\right) \leq \log \kappa(A)+2 \log n+O(1)
$$

Condition as complexity parameter

- Many numerical algorithms are iterative. Often, the number of iterations to achieve a certain precision ε can be bounded in terms of the condition of the input.
- Famous example: method of conjugate gradients. On input a positive definite $S \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, and start value $x_{0} \in \mathbb{R}^{n}$, this algorithm computes a sequence x_{1}, x_{2}, \ldots converging to $A^{-1} b$.
- In order to achieve relative error ε, it suffices to execute

$$
\frac{1}{2} \sqrt{\kappa(S)} \ln \left(\frac{1}{\varepsilon}\right)
$$

iterations (Hestenes and Stiefel, 1952).

- There are many results in this spirit of condition based analysis.
- linear programming (Renegar, ...)
- polynomial equation solving (Shub \& Smale,...)

Probabilistic analysis of condition number

- Typical values of condition of an instance?
- Suppose $A \in \mathbb{R}^{n \times n}$ is a random matrix with independent standard Gaussian entries.
- Random matrix theory provides the joint probability density of the eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ of $A^{T} A$.
- From this one can derive for the expectation (Edelman 1988):

$$
\mathbb{E}(\log \kappa(A))=\log n+O(1)
$$

- Hence Householder solving $A x=b$ via QR factorization algorithm has average loss of precision $O(\log n)$.

Smoothed analysis of condition number

- Smoothed analysis is a more refined form of probabilistic analysis.
- Fix any $\bar{A} \in \mathbb{R}^{n \times n}$ with $\|\bar{A}\| \leq 1$ and assume A is isotropic Gaussian with mean \bar{A} and variance σ^{2}. Wschebor proved (2004):

$$
\underset{A \sim N\left(\bar{A}, \sigma^{2} I\right)}{\operatorname{Prob}}\{\kappa(A) \geq t\}=O\left(\frac{n}{\sigma t}\right)
$$

- This implies for all \bar{A} with $\|\bar{A}\| \leq 1$

$$
\mathbb{E}_{A \sim N\left(\bar{A}, \sigma^{2} /\right)} \log (\kappa(A))=\log n+\log \frac{1}{\sigma}+O(1)
$$

For all \bar{A} and all slight random perturbations A of \bar{A}, it is unlikely that $\kappa(A)$ will be large.

Smoothed analysis of numerical algorithms

- Smoothed analysis was proposed as a new form of analysis of algorithms by Spielman and Teng that blends the best of both worst-case and average-case.
- They carried out a smoothed analysis of the running time of the simplex algorithm (2001).
- For many numerical algorithms, a smoothed analysis of their running time can be reduced to a smoothed analysis of condition numbers.
- linear programming (Renegar, ...)
- polynomial equation solving (Shub \& Smale,...)
- ...
- See my monograph "Condition" with Felipe Cucker (Springer 2013).

Variants of Condition Numbers: Structured Data

CN for structured pertubations

- We generally defined normwise condition of $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ at \times by

$$
\operatorname{cond}^{f}(x):=\lim _{\delta \rightarrow 0} \sup _{\operatorname{Rel} \operatorname{Error}(x) \leq \delta} \frac{\operatorname{Rel} \operatorname{Error}(f(x))}{\operatorname{RelError}(x)}
$$

- For matrix inversion $f: A \mapsto A^{-1}$ this gives cond ${ }^{f}(A)=\kappa(A)$
- However, for structured data, one should only allow structured perturbations in the definition
- E.g., when focusing on matrices L of certain sparsity pattern, $\operatorname{cond}_{\text {sparse }}^{f}(L) \leq \kappa(L)$, and the upper bound may be pessimistic

Triangular matrices

- Suppose $L \in \mathbb{R}^{n \times n}$ is lower triangular with independent standard Gaussian entries $\ell_{i j}$ for $i \geq j$. Viswanathan and Trefethen (1998):

$$
\mathbb{E}(\log \kappa(L))=\Omega(n)
$$

- Would the loss of precision in the solution of triangular systems conform to this bound, we would not be able to accurately find these solutions!
- But practitioners observed since long that triangular systems of equations are generally solved to high accuracy.

Explanation?

Componentwise relative errors

- Classical condition number (matrix inversion)

$$
\kappa(A)=\lim _{\delta \rightarrow 0} \sup _{\operatorname{Rel} \operatorname{Error}(A) \leq \delta} \frac{\operatorname{Rel} \operatorname{Error}\left(A^{-1}\right)}{\operatorname{Rel} \operatorname{Error}(A)}
$$

is defined w.r.t. normwise relative error (with spectral norm \|| \|)

$$
\operatorname{Rel} \operatorname{Error}(A):=\frac{\|\widetilde{A}-A\|}{\|A\|}
$$

- Instead we may use the componentwise relative error (respects sparsity)

$$
\operatorname{CwReIError}(A):=\max _{i, j} \frac{\left|\widetilde{a_{i j}}-a_{i j}\right|}{\left|a_{i j}\right|}
$$

- Componentwise condition number of matrix inversion defined as

$$
\mathrm{Cw}^{\dagger}(A):=\lim _{\delta \rightarrow 0} \sup _{\mathrm{CwRelError}(A) \leq \delta} \frac{\mathrm{CwRelError}\left(A^{-1}\right)}{\operatorname{CwRelError}(A)}
$$

Backward substitution is componentwise stable

- Backward substitution is the obvious algorithm for solving a triangular linear system $L x=b$.
- The loss of precision of backward substitution can be shown to be bounded by $\mathcal{O}\left(\log \mathrm{Cw}^{\dagger}(L)+\log n\right)$
- Cheung \& Cucker (2009):

$$
\mathbb{E}\left(\log \mathrm{Cw}^{\dagger}(L)\right)=\mathcal{O}(\log n)
$$

for a random lower-triangular matrix $L \in \mathbb{R}^{n \times n}$ with independent standard Gaussian random entries $\ell_{i j}$

- This explains why linear triangular systems can be solved by backward substitution with high accuracy.

General geometric framework for condition numbers

J.R. Rice 1966

Differential geometric setting

- X (smooth) manifold of inputs, Y manifold of outputs, $V \subseteq X \times Y$ submanifold, $n:=\operatorname{dim} X=\operatorname{dim} V$
- $(x, y) \in V$ expresses that y is a solution for input x
- Implicit Function Thm: The projection $\pi_{1}: V \rightarrow X,(x, y) \mapsto x$ can be locally inverted around $\left(x_{0}, y_{0}\right) \in V$ if derivative $D \pi_{1}\left(x_{0}, y_{0}\right)$ has full rank n. (Otherwise, call $\left(x_{0}, y_{0}\right)$ ill-posed.)
- The local inverse $x \mapsto(x, G(x))$ of π_{1} is given by the solution map G, where $G\left(x_{0}\right)=y_{0}$. Its derivative

$$
D G\left(x_{0}\right): T_{x_{0}} X \rightarrow T_{y_{0}} Y
$$

is called the condition map.

General definition of condition

- Assume tangent spaces $T_{x} X$ and $T_{y} Y$ are normed vector spaces.
- This is the case if X and Y are Riemannian manifolds: they have smoothly varying inner products on tangent spaces $T_{x} X$ and $T_{y} Y$.
- Define (absolute) normwise condition number as operator norm

$$
\left\|D G\left(x_{0}\right)\right\|:=\max _{\|\dot{x}\|=1}\left\|D G\left(x_{0}\right)(\dot{x})\right\|
$$

Condition of eigenpairs of matrices

Geometric framework for eigenpairs

- Problem: Compute eigenvectors and eigenvalues of given matrix
- Input manifold $X=\mathbb{C}^{n \times n}$, output manifold $Y=\mathbb{C} \times \mathbb{P}\left(\mathbb{C}^{n}\right)$
- Submanifold $V:=\{(A, \lambda, v) \in X \times Y \mid A v=\lambda v\}$
- Endow X and Y with standard Riemannian metrics (on $\mathbb{P}\left(\mathbb{C}^{n}\right)$ take Fubini-Study metric).
- (A, λ, v) well-posed iff λ is simple eigenvalue of A
- Denote by $A_{\lambda, v}$ the linear iso of $v^{\perp} \simeq \mathbb{C}^{n-1}$ induced by $A-\lambda I$.
- Components of solution map $G=\left(G_{\text {evector }}, G_{\text {evalue }}\right)$ give

$$
\left\|D G_{\text {evector }}\right\|=\left\|A_{\lambda, v}^{-1}\right\|, \quad\left\|D G_{\text {evalue }}\right\|=\frac{\|u\|\|v\|}{|\langle u, v\rangle|}=\frac{1}{\cos \theta}
$$

where u is left-eigenvector of $A: A^{*} u=\bar{\lambda} u$.

- If A is hermitian, $\left\|D G_{\text {evalue }}\right\|=1$ and $\left\|D G_{\text {evector }}\right\|^{-1}$ equals distance of λ to closest eigenvalue.

Condition number for eigenpairs

- Denote by Σ^{\prime} the set of ill-posed triples (A, λ, v), i.e., λ is multiple eigenvalue of A.
- For $(A, \lambda, v) \notin \Sigma^{\prime}$ define scale-invariant condition number

$$
\mu(A, \lambda, v):=\|A\|_{F} \cdot\left\|D G_{\text {evector }}\right\|=\|A\|_{F} \cdot\left\|A_{\lambda, v}^{-1}\right\|
$$

Reason: $\left\|D G_{\text {evector }}\right\|$ dominates $\left\|D G_{\text {evalue }}\right\|$

- Armentano 2014: Condition number theorem in spirit of Eckart-Young:

$$
\mu(A, \lambda, v) \leq \frac{\text { const }}{\operatorname{dist}\left((A, \lambda, v), \Sigma_{v}^{\prime}\right)}
$$

here Σ_{v}^{\prime} denotes the fibre over v of the projection $\Sigma^{\prime} \rightarrow \mathbb{P}\left(\mathbb{C}^{n}\right)$

- Generalizes earlier result by Wilkinson (1965)

Stable and efficient algorithms for eigenpairs

- Bezout series by Shub and Smale (1993-1996): development of rigorous geometric framework for numerically solving systems of polynomial equations (Smale's 17th problem)
- Algorithms based on homotopy continuation with stepsizes controlled by condition numbers
- Underlying principles are widely applicable
- Armentano, Beltran, B, Cucker, Shub 2018 elaborated on this to develop a numerically stable and theoretically efficient algorithm for computation of eigenpairs.
- Their algorithm runs in average (and smoothed) poly time, but it is not competitive with the algorithms used in practice.
- Motivation: the algorithms for eigenpair computation sucessfully used in practice (Hessenberg QR with shifts) were not analyzed
- Exciting recent progress by Banks, Vargas, Shrivastava on global Convergence of the Hessenberg QR algorithm with shifts.

Homotopy continuation algorithm for eigenpairs

- Recall solution variety

$$
V:=\{(A, \lambda, v) \in X \times Y \mid A v=\lambda v\} \subseteq \mathbb{C}^{n \times n} \times \mathbb{C} \times \mathbb{P}\left(\mathbb{C}^{n}\right)
$$

with subvariety Σ^{\prime} of ill-posed triples

- Use a well-conditioned start triple $\left(A_{0}, \lambda_{0}, v_{0}\right) \in V$
- On input $A \in \mathbb{C}^{n \times n}$ consider the line segment $\left[A_{0}, A\right]$, consisting of

$$
A_{t}:=(1-t) A_{0}+t A \quad \text { for } t \in[0,1]
$$

- If $\left[A_{0}, A\right]$ does not meet the discriminant variety (i.e., none of the A_{t} has a multiple eigenvalue), then there exists a unique lifting to V,

$$
\gamma:[0,1] \rightarrow V, t \mapsto\left(A_{t}, \lambda_{t}, v_{t}\right)
$$

called solution curve.

Adaptive linear homotopy continuation

- The idea is to follow the solution curve γ numerically: partition $[0,1]$ into $t_{0}=0, \ldots, t_{k}=1$. Writing $A_{i}:=A_{t_{i}}, \lambda_{i}:=\lambda_{t_{i}}, v_{i}:=v_{t_{i}}$, successively compute approximations $\left(\mu_{i}, w_{i}\right)$ of $\left(\lambda_{i}, v_{i}\right)$ by Newton's method starting with $\left(\mu_{0}, v_{0}\right)=\left(\lambda_{0}, v_{0}\right)$.

Stepsize and condition length

- How to choose the stepsize $t_{i+1}-t_{i}$?

Essential theorem: The radius of quadratic attraction of Newton iteration can be upper bounded by inverse condition number.

- We choose the step size $t_{i+1}-t_{i}$ as an appropriate function of the current condition number $\mu\left(A_{i}, \lambda_{i}, v_{i}\right)$.
- One can prove that the number of Newton steps can be upper bounded by the condition length of the solution curve γ :

$$
\int_{0}^{1} \mu(\gamma(t))\|\dot{\gamma}(t)\| d t
$$

Probabilistic analysis

- We fix a well-conditioned start triple $\left(A_{0}, \lambda_{0}, v_{0}\right) \in V$.
- For a standard Gaussian input matrix $A \in \mathbb{C}^{n \times n}$ we show that the average number of Newton iterations is bounded by

$$
O\left(n^{4} \mu\left(A_{0}, \lambda_{0}, v_{0}\right)^{2}\right)
$$

- Smoothed analysis: let \bar{A} satisfy $\|\bar{A}\|_{F}=1$ and assume $A \sim N\left(\bar{A}, \sigma^{2} I\right)$. We can bound the smoothed average number of Newton iterations by

$$
O\left(n^{4} \mu\left(A_{0}, \lambda_{0}, v_{0}\right)^{2} \sigma^{-2}\right)
$$

- Can achieve average number of Newton iterations $O\left(n^{4}\right)$ for computing one eigenpair; each iteration costs $O\left(n^{3}\right)$ arithmetic operations
- Algorithm is provably numerically stable and strongly accurate (can produce approximation a la Smale and hence ε-forward approximation)

L Eigenpairs of matrices
LA stable and efficient homotopy algorithm for eigenpairs

Thank you for your attention!

