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Turing’s condition number
of a matrix

A. Turing, 1948

J. von Neumann and H. Goldstine, 1947
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General definition of condition number
I Suppose we have a numerical computation problem

f : Rp
◆ U ! Rq, x 7! y = f (x)

and input x has small error �x .
I Size of errors can be measured in di↵erent ways: absolute or relative

errors, componentwise or normwise ...
I Will focus on normwise relative error k�xk/kxk, which depends on

choice of norm.
I Want to bound relative error k�yk/kyk of output in terms of

relative error k�xk/kxk of input.
I This is done by the normwise relative condition number (f , x) at x :

k�yk/kyk . (f , x) k�xk/kxk

I Formal definition for di↵erentiable f :

(f , x) := kDf (x)k
kxk

kf (x)k

where kDf (x)k denotes the operator norm of the Jacobian of f at x .
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Turing’s Condition Number

Turing’s condition number
I Number inversion f : R \ {0} ! R, x 7! x�1 has condition number

(f , x) = |f 0(x)|
|x |

|f (x)|
= 1.

I Matrix inversion

f : GL(m,R) ! Rm⇥m,A 7! A�1

has derivative Df (A)(Ȧ) = �A�1ȦA�1, hence using spectral norm,
kDf (A)k = kA�1

k
2.

I Obtain classical condition number of A:

(A) := (f ,A) = kAk kA�1
k

I Note that (�A) = (A) for � 2 R⇤.

I (A) was introduced by A. Turing in 1948.
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Turing’s Condition Number

Distance to ill-posedness

Distance to ill-posedness

I We call the set of singular matrices ⌃ ✓ Rm⇥m the set of ill-posed
instances for matrix inversion. Clearly, A 2 ⌃ , detA = 0.

I The Eckart-Young Theorem from 1936 states that

kA�1
k =

1

dist(A,⌃)

where dist either refers to operator norm or to Frobenius norm
(Euclidean norm on Rn⇥n).

I Hence

(A) = kAk kA�1
k =

kAk

dist(A,⌃)

I dist(A,⌃) equals the smallest singular value of A.
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Turing’s Condition Number

Finite precision

Finite precision

I Digital computers operate with floating-point numbers, and every
arithmetic operations produces a round-o↵ error.

I Let ✏mach denote the round-o↵ unit (e.g., 10�12).

I Suppose we compute the approximation ex of x 2 R with relative
error �, i.e. ex = x(1 + �).

I The best we can hope for is � 
1

2
✏mach.

I One calls log10
�

�
✏mach

�
the loss of precision in decimal digits.

I Turing’s condition number is relevant for finite precision analysis of
linear algebra
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Turing’s Condition Number

Finite precision

Backward-error analysis and condition
I Suppose A is a finite-precision algorithm approximately computing

the function f : Rp
! Rq.

I Suppose we can show that for all inputs x there exists e 2 Rp such
that A(x) = f (x + e) with small e (called “backward-error”).

I Can bound “forward-error” by

kA(x)� f (x)k = kf (x + e)� f (x)k . (f , x) kek

I Example: The Householder QR factorization algorithm is one of the
main engines in numerical linear algebra.

I N. Higham: On input an invertible A 2 Rn⇥n and b 2 Rn, this
algorithm computes ex close to x = A�1b such that there exist
eA 2 Rn⇥n and eb 2 Rn satisfying

k eA� AkF  n�cnkAkF , keb � bk  n�cnkbk,

where c > 0 is a small constant and �k := k✏mach

1�k✏mach

for k < ✏�1

mach

I Loss of precision is bounded by

log
⇣

kex�xk
✏machkxk

⌘
 log (A) + 2 log n + O(1)
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Turing’s Condition Number

Complexity

Condition as complexity parameter

I Many numerical algorithms are iterative. Often, the number of
iterations to achieve a certain precision " can be bounded in terms
of the condition of the input.

I Famous example: method of conjugate gradients. On input a
positive definite S 2 Rn⇥n, b 2 Rn, and start value x0 2 Rn, this
algorithm computes a sequence x1, x2, . . . converging to A�1b.

I In order to achieve relative error ", it su�ces to execute

1

2

p
(S) ln

�
1

"

�

iterations (Hestenes and Stiefel, 1952).

I There are many results in this spirit of condition based analysis.

I linear programming (Renegar, ...)

I polynomial equation solving (Shub & Smale,...)

I ...
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Turing’s Condition Number

Probabilistic analysis

Probabilistic analysis of condition number

I Typical values of condition of an instance?

I Suppose A 2 Rn⇥n is a random matrix with independent standard
Gaussian entries.

I Random matrix theory provides the joint probability density of the
eigenvalues �1 � . . . � �n of ATA.

I From this one can derive for the expectation (Edelman 1988):

E(log (A)) = log n + O(1)

I Hence Householder solving Ax = b via QR factorization algorithm
has average loss of precision O(log n).
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Turing’s Condition Number

Probabilistic analysis

Smoothed analysis of condition number

I Smoothed analysis is a more refined form of probabilistic analysis.

I Fix any A 2 Rn⇥n with kAk  1 and assume A is isotropic Gaussian
with mean A and variance �2. Wschebor proved (2004):

Prob
A⇠N(A,�2I )

�
(A) � t

 
= O

⇣ n

�t

⌘

I This implies for all A with kAk  1

EA⇠N(A,�2I ) log((A)) = log n + log
1

�
+ O(1)

For all A and all slight random perturbations A of A, it is unlikely that
(A) will be large.



Condition Numbers Tutorial Talk

Turing’s Condition Number

Probabilistic analysis

Smoothed analysis of numerical algorithms
I Smoothed analysis was proposed as a new form of analysis of

algorithms by Spielman and Teng that blends the best of both
worst-case and average-case.

I They carried out a smoothed analysis of the running time of the
simplex algorithm (2001).

I For many numerical algorithms, a smoothed analysis of their running
time can be reduced to a smoothed analysis of condition numbers.
I linear programming (Renegar, ...)
I polynomial equation solving (Shub & Smale,...)
I ...

I See my monograph “Condition” with Felipe Cucker (Springer 2013).
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Variants of Condition Numbers: Structured Data

Variants of Condition Numbers:
Structured Data
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Variants of Condition Numbers: Structured Data

CN for structured pertubations

I We generally defined normwise condition of f : Rp
! Rq at x by

condf (x) := lim
�!0

sup
RelError(x)�

RelError(f (x))

RelError(x)

I For matrix inversion f : A 7! A�1 this gives condf (A) = (A)

I However, for structured data, one should only allow structured
perturbations in the definition

I E.g., when focusing on matrices L of certain sparsity pattern,
condfsparse(L)  (L), and the upper bound may be pessimistic
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Variants of Condition Numbers: Structured Data

Triangular matrices

Triangular matrices

I Suppose L 2 Rn⇥n is lower triangular with independent standard
Gaussian entries `ij for i � j . Viswanathan and Trefethen (1998):

E(log (L)) = ⌦(n)

I Would the loss of precision in the solution of triangular systems
conform to this bound, we would not be able to accurately find
these solutions!

I But practitioners observed since long that triangular systems of
equations are generally solved to high accuracy.

Explanation?
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Variants of Condition Numbers: Structured Data

Componentwise relative errors

Componentwise relative errors
I Classical condition number (matrix inversion)

(A) = lim
�!0

sup
RelError(A)�

RelError(A�1)

RelError(A)

is defined w.r.t. normwise relative error (with spectral norm k k)

RelError(A) :=
k eA� Ak

kAk

I Instead we may use the componentwise relative error (respects
sparsity)

CwRelError(A) := max
i,j

| eaij � aij |

|aij |

I Componentwise condition number of matrix inversion defined as

Cw†(A) := lim
�!0

sup
CwRelError(A)�

CwRelError(A�1)

CwRelError(A)
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Variants of Condition Numbers: Structured Data

Componentwise relative errors

Backward substitution is componentwise stable

I Backward substitution is the obvious algorithm for solving a
triangular linear system Lx = b.

I The loss of precision of backward substitution can be shown to be
bounded by O(log Cw†(L) + log n)

I Cheung & Cucker (2009):

E(log Cw†(L)) = O(log n)

for a random lower-triangular matrix L 2 Rn⇥n with independent
standard Gaussian random entries `ij

I This explains why linear triangular systems can be solved by
backward substitution with high accuracy.
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General geometric framework

General geometric framework
for condition numbers

J.R. Rice 1966
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General geometric framework

Di↵erential geometric setting

I X (smooth) manifold of inputs, Y manifold of outputs, V ✓ X ⇥ Y
submanifold, n := dimX = dimV

I (x , y) 2 V expresses that y is a solution for input x
I Implicit Function Thm: The projection ⇡1 : V ! X , (x , y) 7! x can

be locally inverted around (x0, y0) 2 V if derivative D⇡1(x0, y0) has
full rank n. (Otherwise, call (x0, y0) ill-posed.)

I The local inverse x 7! (x ,G (x)) of ⇡1 is given by the solution
map G , where G (x0) = y0. Its derivative

DG (x0) : Tx0X ! Ty0Y

is called the condition map.
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General geometric framework

General definition of condition

I Assume tangent spaces TxX and TyY are normed vector spaces.

I This is the case if X and Y are Riemannian manifolds: they have
smoothly varying inner products on tangent spaces TxX and TyY .

I Define (absolute) normwise condition number as operator norm

kDG (x0)k := max
kẋk=1

kDG (x0)(ẋ)k
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Eigenpairs of matrices

Condition of eigenpairs of matrices
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Eigenpairs of matrices

Geometric framework

Geometric framework for eigenpairs

I Problem: Compute eigenvectors and eigenvalues of given matrix

I Input manifold X = Cn⇥n, output manifold Y = C⇥ P(Cn)

I Submanifold V := {(A,�, v) 2 X ⇥ Y | Av = �v}

I Endow X and Y with standard Riemannian metrics (on P(Cn) take
Fubini-Study metric).

I (A,�, v) well-posed i↵ � is simple eigenvalue of A

I Denote by A�,v the linear iso of v?
' Cn�1 induced by A� �I .

I Components of solution map G = (Gevector ,Gevalue) give

kDGevectork = kA�1

�,vk, kDGevaluek =
kukkvk

|hu, vi|
=

1

cos ✓

where u is left-eigenvector of A: A⇤u = �u.

I If A is hermitian, kDGevaluek = 1 and kDGevectork
�1 equals distance

of � to closest eigenvalue.
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Eigenpairs of matrices

Condition number for eigenpairs

Condition number for eigenpairs

I Denote by ⌃0 the set of ill-posed triples (A,�, v), i.e., � is multiple
eigenvalue of A.

I For (A,�, v) 62 ⌃0 define scale-invariant condition number

µ(A,�, v) := kAkF · kDGevectork = kAkF · kA�1

�,vk

Reason: kDGevectork dominates kDGevaluek

I Armentano 2014: Condition number theorem in spirit of
Eckart-Young:

µ(A,�, v) 
const

dist
�
(A,�, v),⌃0

v

�

here ⌃0
v denotes the fibre over v of the projection ⌃0

! P(Cn)

I Generalizes earlier result by Wilkinson (1965)



Condition Numbers Tutorial Talk

Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Stable and e�cient algorithms for eigenpairs

I Bezout series by Shub and Smale (1993–1996): development of
rigorous geometric framework for numerically solving systems of
polynomial equations (Smale’s 17th problem)

I Algorithms based on homotopy continuation with stepsizes
controlled by condition numbers

I Underlying principles are widely applicable

I Armentano, Beltran, B, Cucker, Shub 2018 elaborated on this to develop a
numerically stable and theoretically e�cient algorithm for
computation of eigenpairs.

I Their algorithm runs in average (and smoothed) poly time, but it is
not competitive with the algorithms used in practice.

I Motivation: the algorithms for eigenpair computation sucessfully
used in practice (Hessenberg QR with shifts) were not analyzed

I Exciting recent progress by Banks, Vargas, Shrivastava on global
Convergence of the Hessenberg QR algorithm with shifts.



Condition Numbers Tutorial Talk

Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Homotopy continuation algorithm for eigenpairs

I Recall solution variety

V := {(A,�, v) 2 X ⇥ Y | Av = �v} ✓ Cn⇥n
⇥ C⇥ P(Cn)

with subvariety ⌃0 of ill-posed triples

I Use a well-conditioned start triple (A0,�0, v0) 2 V

I On input A 2 Cn⇥n consider the line segment [A0,A], consisting of

At := (1� t)A0 + tA for t 2 [0, 1]

I If [A0,A] does not meet the discriminant variety (i.e., none of the At

has a multiple eigenvalue), then there exists a unique lifting to V ,

� : [0, 1] ! V , t 7! (At ,�t , vt),

called solution curve.
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Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Adaptive linear homotopy continuation

Cn⇥n

C⇥ P(Cn)

A0 AAi Ai+1

(�i , vi )
�i+1, vi+1)

(µi ,wi )
(µi+1,wi+1)

Newton

(�0, v0)

I The idea is to follow the solution curve � numerically: partition [0, 1]
into t0 = 0, . . . , tk = 1. Writing Ai := Ati , �i := �ti , vi := vti ,
successively compute approximations (µi ,wi ) of (�i , vi ) by Newton’s
method starting with (µ0, v0) = (�0, v0).
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Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Stepsize and condition length

I How to choose the stepsize ti+1 � ti?

Essential theorem: The radius of quadratic attraction of Newton iteration
can be upper bounded by inverse condition number.

I We choose the step size ti+1 � ti as an appropriate function of the
current condition number µ(Ai ,�i , vi ).

I One can prove that the number of Newton steps can be upper
bounded by the condition length of the solution curve �:

Z 1

0

µ(�(t))k�̇(t)k dt
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Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Probabilistic analysis
I We fix a well-conditioned start triple (A0,�0, v0) 2 V .
I For a standard Gaussian input matrix A 2 Cn⇥n we show that the

average number of Newton iterations is bounded by

O
�
n4µ(A0,�0, v0)

2)

I Smoothed analysis: let A satisfy kAkF = 1 and assume
A ⇠ N(A,�2I ). We can bound the smoothed average number of
Newton iterations by

O
�
n4µ(A0,�0, v0)

2��2)

I Can achieve average number of Newton iterations O
�
n4) for

computing one eigenpair; each iteration costs O(n3) arithmetic
operations

I Algorithm is provably numerically stable and strongly accurate (can
produce approximation a la Smale and hence "-forward
approximation)
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Eigenpairs of matrices

A stable and e�cient homotopy algorithm for eigenpairs

Thank you for your attention!


