Worst Case Complexity of Solving (Structured) Linear Systems

Richard Peng
University of Waterloo
March 6, 2023
BIRS Workshop on Complexity of Matrix Computations

Solving Systems of Linear Equations

- Input:
- n-by-n matrix A with m non-zeros
- vector b
- Output x such that $\mathbf{A x}=\mathbf{b}$
- Goal: design an algorithm whose worst case complexity as function of size of $\mathbf{A} \&$ output error tolerance is small

Worst Case analysis

- Why? Linear solvers are often used as inner loops:
- Preconditioning
- Use in inner loop
- Complexity-theoretic reductions

Parameterizing the complexity of $\mathbf{A x}=\mathrm{b}$

- Model: exact arithmetic, bit complexity, low memory, distributed
- Output: norm bound, entry-wise, eigenvector, determinant
- Representation of numbers: finite field, fractions, rounding

Assumptions on A

- Symmetry
- Small condition number
- Low rank
- Low factor width: graph Laplacians, finite element methods
- Displacement structure: Toeplitz/Hankel, hierarchical
- Geometric correspondence

Some rather strange worst-case complexities

- Krylov space methods: over finite fields/exact arithmetic, sparse linear systems can be solved in $O(n m)$ time.
- Over finite fields \& poly-conditioned floats, solving 1 linear system in \mathbf{A} is as expensive as solving n systems ($\mathbf{A X}=\mathbf{B}$).
- [Storjohann `05]: bit-complexity of finding exact fractional solution to integer $\mathbf{A x}=\mathbf{b}$ is same as matrix multiplication over finite fields $\left(O\left(n^{\omega}\right)\right)$.
- Laplacian solvers: over fixed-point numbers, poly-conditioned factor width 2 systems can be solved in nearly-linear time.
- Dimensionality reduction/matrix concentration: in poly conditioned floats, can reduce problem size close to rank.
- [Kyng-Zhang `17] \& subsequent: many well-studied classes of structured systems are complete for solving general linear systems.

Combinations of Strange Complexities

- Does structure help for computing exact rational solutions?
- Exact rational solution of low-rank problems?
- Solving sequences of systems over low displacement matrices?
- Empirical comparisons of shifted 2-adics / Hansel lifting vs. floats?
- Complexity of solving Laplacians over floating point representation?
- Are there other (than Laplacians / low displacement) classes of systems that can be solved in sub-CG time in some model?

