Complexity of decomposing a symmetric matrix as a sum of a diagonal and low-rank matrix

Stephen Vavasis

University of Waterloo
Combinatorics \& Optimization

Joint work with Levent Tunçel (Waterloo) and Jingye Xu (Georgia Tech)

Problems under consideration

P1 Given $A \in \mathbb{S}_{+}^{n}$ and r, write $A=D+R$, where $D \in \mathbb{S}_{+}^{n}$ is diagonal and $R \in \mathbb{S}_{+}^{n}$ has rank $\leq r$.
P2 Given $A \in \mathbb{S}^{n}$ and r, write $A=D+R$, where $D \in \mathbb{S}^{n}$ is diagonal and $R \in \mathbb{S}_{+}^{n}$ has rank $\leq r$.
Notation:

- $\mathbb{S}^{n}=n \times n$ symmetric matrices,
- $\mathbb{S}_{+}^{n}=$ positive semidefinite symmetric matrices,
- $\mathbb{S}_{++}^{n}=$ positive definite symmetric matrices

Applications

- Problems P1 and P2 have appeared in various bodies of literature for almost a century.
- Example application of P1: Given an empirically measured covariance matrix A of n stock prices, seek interpretation of A as a sum of r market factors, $r \ll n$, that influence all stock prices plus n independent stock variabilities.
- Example application of P2: fit an ellipsoid in \mathbb{R}^{n} through n given data points (Saunderson, Chandrasekaran, Parrilo, Willsky 2011)

Related work

- Albert (1944): Factor analysis
- Saunderson et al. (2011): SDP relaxation
- Wu et al. (2020): Block coordinate descent
- Gao \& Absil (2022): Manifold optimization
- Recht \& Ré (2023): Stochastic gradient descent

Our results

- P1 and P2 are solvable in time polynomial in n for fixed r. (Superexponential in r.)
- P1 and P2 are NP-hard. Furthermore, even if we allow approximate data and approximate solutions, they remain NP-hard.
- P2 is $\exists \mathbb{R}$-complete. (This result assumes exact data and exact solution.)

Solving P2 in the case $r=1(\mathrm{I})$

- To illustrate our algorithm, consider the special case of P 2 when $r=1$: Given $A \in \mathbb{S}^{n}$, find decomposition $A=D+\boldsymbol{u} \boldsymbol{u}^{T}$ for some $\boldsymbol{u} \in \mathbb{R}^{n}$.
- WLOG A is hollow, i.e., $A(i, i)=0$ $\forall i=1, \ldots, n$
- Clearly $A(i, j)=u_{i} u_{j} \forall i \neq j$ and $D(i, i)=-u_{i}^{2}$ $\forall i$
- Assume $A(2: n, 1) \neq \mathbf{0}$ (else reduce problem to $A(2: n, 2: n))$

Solving P2 in the case $r=1$ (II)

- Assumption implies $u_{1} \neq 0$ and $D(1,1)<0$
- $A(i, 1)=u_{1} u_{i} \forall j>1$ and $A(i, j)=u_{i} u_{j}$ $\forall i>j>1$.
- Yields equation:
$-A(1, i) A(1, j) / D(1,1)=A(i, j) \forall i>j>1$
(numerator is $u_{1}^{2} u_{i} u_{j}$; denominator is $-u_{1}^{2}$).
- \Rightarrow many linear equations for $x:=1 / D(1,1)$
- Solve any one of these equations to obtain $D(1,1)$; let $u_{1}=\sqrt{-D(1,1)}$.
- Obtain $D(i, i)=-u_{i}^{2}, i>1$, via
$-A(1, i)^{2} / D(1,1)=\left(u_{1} u_{i}\right)^{2} / u_{1}^{2}=u_{i}^{2}$.

Solving P2 in the case $r=1$ (III)

- Algorithm on previous slide fails if all linear equations are $0 \cdot x=0$.
- This happens iff all but one entry (say $A(1,2)$) of $A(1,2: n)$ are zeroes.
- This can happen only if $\boldsymbol{u}(3: n)=\mathbf{0}$.
- In this case, problem reduces to 2×2 case, easily handled.
- The 2×2 case, though trivial, requires a solution of both equations and inequalities.

Solving P2 in the case $r>1$

- Full algorithm in our paper proposes algorithm for rank-r case.
- For 'generic' data, all entries of D are found by solving overdetermined linear equations.
- But for nongeneric data (interesting cases that include hard instances), one obtains $O\left(n^{r}\right)$ polynomial systems each with $O\left(r^{2}\right)$ variables and $O\left(r^{2}\right)$ constraints.

NP-hardness of P1 and P2

- Our reductions are from the problem of testing graph 3-colorability.
- Recall: a graph is 3-colorable if there is an assignment of colors red, green, blue to each node such that there is no monochromatic edge.
- Proved by Garey, Johnson \& Stockmeyer (1976) that deciding whether a graph is 3-colorable is NP-complete.

Partially specified matrices

- Start from a partially specified matrix $A \in(\mathbb{R} \cup\{*\})^{m \times n}$.
- A completion of A is matrix $A^{\#} \in \mathbb{R}^{m \times n}$ such that $A^{\#}(i, j)=A(i, j)$ for all (i, j) such that $A(i, j) \neq *$.
- Given a partially specified A, let $\mathcal{C}(A)$ be the set of all its completions.
- P2 can be described as: Given a symmetric $A \in(\mathbb{R} \cup\{*\})^{n \times n}$ in which $A(i, j)=* \Leftrightarrow i=j$, find a low-rank semidefinite element of $\mathcal{C}(A)$.

Peeters result

- Let $\hat{*}$ denote an unspecified entry that must be filled in with a nonzero number.
- Peeters (1996) proved: Given a graph G, one can construct a partially specified symmetric matrix B all of whose diagonal entries are $\hat{*}$. Graph G is 3 -colorable iff there exists a completion B whose rank is 3 .
- Our NP-hardness proofs all rely on Peeters' construction.

$$
B=\left(\begin{array}{ccccc}
\hat{*} & 0 & * & \cdots & 0 \\
0 & \hat{*} & 0 & \cdots & * \\
* & 0 & \hat{*} & & \\
\vdots & \vdots & & \ddots & \\
0 & * & & & \hat{*}
\end{array}\right) \xrightarrow{ } \quad \text { Us } A=\left(\begin{array}{ccc|c}
* & & & \\
& \ddots & & K \\
& & * & \\
\hline & K^{T} & U
\end{array}\right)
$$

$$
B=\left(\begin{array}{ccccc}
\hat{*} & 0 & * & \cdots & 0 \\
0 & \hat{*} & 0 & \cdots & * \\
* & 0 & \hat{*} & & \\
\vdots & \vdots & & \ddots & \\
0 & * & & & \hat{*}
\end{array}\right) \xrightarrow{ } \text { Us } A=\left(\begin{array}{ccc|c}
* & & & \\
& \ddots & & K \\
& & * & \\
\hline & K^{\top} & U
\end{array}\right)
$$

Construction of K and U

- K is a node-edge adjacency matrix, two 1's per column
- U constructed as follows:

$$
\begin{aligned}
& B=\left(\begin{array}{ccccc}
\hat{*} & 0 & * & \cdots & 0 \\
0 & \hat{*} & 0 & \cdots & * \\
* & 0 & \hat{*} & & \\
\vdots & \vdots & & \ddots & \\
0 & * & & \hat{*}
\end{array}\right) \rightarrow U=\left(\begin{array}{ccccc}
H & Z & S & \cdots & Z \\
Z & H & Z & \cdots & S \\
S & Z & H & & \\
\vdots & \vdots & & \ddots & \\
Z & S & & & H
\end{array}\right) \text { where } \\
& H=\left(\begin{array}{ccc}
* & 1 & 1 \\
1 & * & 1 \\
1 & 1 & *
\end{array}\right), Z=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), S=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right) .
\end{aligned}
$$

How this works

- The entries of the upper left diagonal block can be chosen so that, after its elimination, the ' 2 ' entries in U are decreased (e.g., to 0 or 1).
- The rank of the completion is equal to q plus the rank of the Schur complement after elimination of the diagonal block.
- In order for rank of the Schur complement to be ≤ 3 :
- The diagonal blocks of the Schur complement must be filled in with 1's.
- The 0-1 pattern must correspond to three color classes.

NP-hardness of P1

- Similar construction as in P2 works, except we place large entries on the diagonal instead of 0 's.
- This is because P1 can only subtract elements from the diagonal ($R=A-D$ in P 1 , where $D \in \mathbb{S}_{+}^{n}$)
- Same Schur complement argument applies.

Approximate P1 and P2

- Approximate P1: Given $A \in \mathbb{S}_{+}^{n}$ and a promise that there exists a rank- r semidefinite R_{0} and positive definite diagonal D_{0} such that $\left\|A-D_{0}-R_{0}\right\| \leq \epsilon\left(A, r, \epsilon\right.$ given; D_{0}, R_{0} not given).
- Find positive definite diagonal D, semidefinite matrix R such that $\|A-D-R\| \leq \epsilon c_{n}$, where c_{n} depends on n and can be arbitrary.
- We show: This problem is NP-hard. So is Approximate P2 (much more complicated argument).

$\exists \mathbb{R}$ complete problems

- The canonical $\exists \mathbb{R}$ problem: Given a sequence of multivariate polynomial equations and inequalities with integer coefficients, does the system have a real root?
- A general decision problem is in $\exists \mathbb{R}$ if it can be transformed to a question about polynomial equations as in the first bullet.
- It is known: $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE (Canny).

Matrix completion is $\exists \mathbb{R}$-complete

- Shitov showed: matrix completion is $\exists \mathbb{R}$ complete.
- Specifically, Shitov showed that given a polynomial system, one can construct from it a partly specified symmetric matrix that has a semidefinite rank-3 completion iff the system has a real root.

Our reduction

- In order to use Shitov's construction for P2, we need to overcome the same issues as mentioned earlier:
- In P2, unspecified entries are confined to the diagonal, and
- In P2, all diagonal entries must be unspecified.
- We reuse the similar techniques as before, namely,
- We use take Schur complement of two diagonal matrices to transform a matrix-completion problem with an arbitrary pattern of unspecified entries to one in which all unspecified entries are on the diagonal.
- We make multiple copies of certain rows/columns diagonal elements must have certain values in any rank-3 completion.

P1 is not known to be $\exists \mathbb{R}$-complete

- P1 NP-hardness proof: Replace *'s on the diagonal in P 2 gadget A with big numbers to get a P1 instance.
- However, for general integer matrices, the norm of D in the P2 solution can be double exponentially larger than the norm of A.
- This follows because the $\exists \mathbb{R}$-completeness of P2 shows that the system: $x_{0}=2, x_{1}=x_{0}^{2}$, $x_{2}=x_{1}^{2}, \ldots, x_{n}=x_{n-1}^{2}$ can be encoded as an $O(n)$-sized matrix completion problem even though the solution has $x_{n}=2^{\left(2^{n}\right)}$.
- These big diagonal entries cannot be written down in polynomial time, so not clear how to transform a polynomial system to P 1 .

