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Sheaves I

sheaves assign data to subsets of topological spaces

came up in 1940s

powerful in algebraic topology and geometry

we consider special case: cellular sheaves

further reading: chapter 4 of Justin Curry’s PhD thesis

Notation (Finite graph)

G = (V,E) with V,E finite sets, E contains ordered tuples (v1, v2).

Partial ordering on G by saying v ≤ e = (v1, v2) if v = v1 or v = v2
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Sheaves II

Definition (Sheaf / cellular sheaf on a graph)

A sheaf assigns a finite-dimensional real vector space F(v) resp.
F(e) to each vertex resp. edge and a linear map Fv≤e : F(v) → F(e)
to each incidence v ≤ e. (Abstractly: A sheaf on G is a functor F
from poset G to finite-dimensional real vector spaces.)

Fu≤e Fv≤e Fv≤f Fw≤f

u

F(u)

v

F(v)

w

F(w)

e

F(e)

f

F(f)

Example of a sheaf

Example (Constant sheaf on G)

Rn for any G and n ∈ N. All stalks are Rn, all restriction maps In.
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Sections I

Definition
Let W ⊂ V and F be sheaf on G. A section of F over W is an
assignment of s(w) ∈ F(w) to each vertex w ∈ W s.t for all edges
e = (w1, w2) between points in W :

Fw1≤e s(w1) = Fw2≤e s(w2).

Sections of F over W form the vector space Γ(W,F). If W = V ,
the section s is called global.

Example
The following sheaf has only the zero-section as global section:

−1
1 1

1
1 1R

R

R
R R

R

Constant sheaves have locally constant global sections.
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Sections II

Sections encode linear local consistency conditions:

Example (Conservation law)

Σ

R⊕ R⊕ R

R⊕ R

R

R
0

Let G represent system of water pipes.
Define flow sheaf on G by:

F(e) = R ∀e ∈ E F(v) = Rdeg(v) ∀v ∈ V

and ±Fv≤e the corresponding projection.
Sections represent flow values s.t. pipes don’t leak.

To ensure the same for nodes, extend F
to sheaf F ′ on G′:
for each v, define v′ with edge e′ to v and let

F ′(v′) = 0 F ′(e′) = R F ′
v≤e′ = (1, . . . , 1).
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Sheaf Cohomology I
Defined similar to cellular cohomology.

Definition
Define vector spaces of 0- resp. 1-cochains by

C0(G,F) :=
⊕
v∈V

F(v) C1(G,F) :=
⊕
e∈E

F(e).

The linear coboundary map δ : C0(G,F) → C1(G,F) is defined by
acting on stalks as

xv ∈ F(v) 7→
∑

e=(vk,v)

Fv≤e xv −
∑

e=(v,vl)

Fv≤e xv.

The sheaf cohomology is defined by

H0(G,F) := ker(δ) H1(G,F) := coker(δ) = C1(G,F)
/
im(δ).
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Sheaf Cohomology II

Example
In example from before:

δ =

 0 −1 1
−1 0 −1
−1 1 0


has rank 3. So H0(G,F) = 0 = H1(G,F).

−1
1 1

1
1 1R

R

R
A

C

B

R R
R

δ is block matrix

choice of orientation irrelevant for cohomology

H0(G,F) = Γ(V,F)

setting F = R gives cellular cohomology and δ = B⊤ for
incidence matrix B ∈ {0,±1}|V |×|E|
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Relative Cohomology

Let A = (V ′, E ′) be subgraph of G.

Definition (Relative cohomology)

Define the relative cochain complex by

C0(G,A;F) :=
⊕

v∈V \V ′

F(v) C1(G,A;F) :=
⊕

e∈E\E′

F(e)

and the coboundary map δ(G,A) by restricting δG to these spaces.

Get SES of chain complexes

0 → C∗(G,A) → C∗(G) → C∗(A) → 0

and LES of cohomology:

0 → H0(G,A) → H0(G) → H0(A) → H1(G,A) → . . .
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Example: Sampling

0 → H0(G,A) → H0(G) → H0(A) → H1(G,A) → . . .

Interpretation: H∗(G,A) is obstruction for global sections of G being
in bijection with global sections of A.

Example (Water pipes revisited)

Recall the example with the water pipes.

What are optimal nodes to measure the system with few
measurements?

Look for subgraph A ⊂ V such that

H0(G,A;F) = 0 = H1(G,A;F).
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The Sheaf Laplacian

Recall the (unweighted) graph Laplacian: LG = BB⊤ : V → V and
that for the sheaf R, B = δ⊤. Set

LF := δ⊤δ : C0(G,F) → C0(G,F).

LF has block structure with

(LF)uv =


∑

v≤eF⊤
v≤e Fv≤e u = v

−F⊤
v≤e Fu≤e u

e∼ v

0 otherwise

LF independent of chosen orientations

ker(LF) = ker(δ) = H0(G,F)
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The Discourse Sheaf
represent social network by a graph G:
V = persons, E = connections

opinions and discourse will be modelled as sheaf F
person v has opinion space Rnv = F(v) and opinion xv

edges stand for discourse about topics in Rne = F(e)

agents v project their opinion to the discussed topics on e via
Fv≤e

consensus along u
e∼ v if Fv≤e xv = Fu≤e xu

global sections have consensus in all discussions (harmonic
situation)

opinion

space

opinion

space

discourse

space

Arne Sheaves on Networks 12 / 19



Dynamics of Opinions

Simplest model: agents v change their opinion towards average
opinion of their friends.

Consider v and friend u connected by e. Their disagreement (seen
from v) is Fu≤e xu −Fv≤e xv. So given an orthonormal basis {ei} of
F(v), v changes her opinion according to:

d

dt
xv(t) = α

∑
i

⟨Fu≤e xu −Fv≤e xv,Fv≤e ei⟩ ei

= αF⊤
v≤e (Fu≤e xu −Fv≤e xv)

That yields the heat equation

d

dt
x(t) = α

∑
v
e∼u

F⊤
v≤e(Fu≤e xu −Fv≤e xv) = −αLF x (1)
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Solution for Basic Model

Theorem (Hansen/Ghrist 2021)

Solutions x(t) to eq. (1) converge exponentially to the orthogonal
projection of x(0) ∈ C0(G,F) onto H0(G,F) as t → ∞.

Proof.
LF = δ⊤δ is symmetric and positive semi-definite. Therefore:

LF = ODO⊤.

Equation (1) has solution

x(t) = exp(−αLF)x(0) = O exp(−αDt)O⊤x(0).

As t → ∞, this becomes orthogonal projection to 0-eigenspace of
LF , which is the kernel.
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Stubborn Agents

Assume, a subset U ⊂ V is stubborn. Modified heat equation:(
dx

dt

)
v

=

{
−(αLF x)v v ∈ V \ U
0 v ∈ U.

Theorem (Hansen/Ghrist 2021)

For every y ∈ C0(U), there is a harmonic extension of y to all of V ,
i.e. a 0-cochain x with x|U = y and (LFx)v = 0 for all v ∈ V \ U .

If H0(G,U ;F) = 0, this is unique.

For every starting configuration x0, the modified heat equation
converges exponentially to a harmonic extension of x0|U .

Consequence: control over set U with H0(G,U) = 0 gives control
over the network
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Bounded Confidence

0 D
0

1Idea: connections are ignored if difference
in opinion along this edge is too large.

For each edge e, consider a threshold De and
smooth bump function ϕe : [0,∞] → R that
strictly falls on [0, De) and vanishes on [De,∞].

Modify dynamics to:

d

dt
x(t) = α

∑
v
e∼u

ϕe (||Fu≤e xu −Fv≤e xv||)F⊤
v≤e(Fu≤e xu −Fv≤e xv)

Hansen and Ghrist showed that this vanishes if on each edge e

||Fu≤e xu −Fv≤e xv|| ∈ {0} ∪ [De,∞]

and starting sufficiently close to a stable configuration, the system
converges to that configuration.
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Changing Expression of Opinions
Assume on each edge v

e∼ u the Fv≤e change according to
d

dt
Fv≤e = β(Fu≤e xu −Fv≤e xv)

x⊤
v

||xv||2
.

Example (Learning to lie)

0 1 2 3

−1

0

1

2

time in h

xu
xv

Fu≤e

Fv≤e

Consider the network

Fu≤e Fv≤e

u
R

v
R

e
R

and the (initial) data

Fu≤e(0) = Fu≤e(0) = 1

xu(0) = 2 xv(0) = −1

α = β = h−1

to obtain the dynamics shown:
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Conclusion

Σ

R⊕ R⊕ R

R⊕ R

R

R
0

Sheaves, sections and (relative) cohomology
can be generalised to cellular complexes

We saw an application to
water pipes and sampling,

the sheaf Laplacian,

and how to use sheaves to
model opinion dynamics

opinion

space

opinion

space

discourse

space

Arne Sheaves on Networks 18 / 19



Sources

Justin Curry: Sheaves, Cosheaves and Applications, 2014,
https://arxiv.org/abs/1303.3255

Glen Bredon: Sheaf Theory. Second Edition, 1997; ISBN
978-1-4612-6854-3

Robert Ghrist: Elementary Applied Topology. 2014,
https://www2.math.upenn.edu/~ghrist/notes.html

Jakob Hansen, Robert Ghrist: Opinion Dynamics on Discourse
Sheaves, 2021, https://arxiv.org/abs/2005.12798

Jakob Hansen: A gentle introduction to sheaves on graphs, 2021,
https://www.jakobhansen.org/publications/
gentleintroduction.pdf

Michael Robinson: Sheaves are the canonical data structure for
sensor integration, 2014, https://arxiv.org/abs/1603.01446

Jakob Hansen, Robert Ghrist: Toward a Spectral Theory of Cellular
Sheaves, 2019, https://arxiv.org/abs/1808.01513

Arne Sheaves on Networks 19 / 19

https://arxiv.org/abs/1303.3255
https://www2.math.upenn.edu/~ghrist/notes.html
https://arxiv.org/abs/2005.12798
https://www.jakobhansen.org/publications/gentleintroduction.pdf
https://www.jakobhansen.org/publications/gentleintroduction.pdf
https://arxiv.org/abs/1603.01446
https://arxiv.org/abs/1808.01513

	Definitions
	Sheaves
	Sections
	Sheaf Cohomology
	Relative Cohomology
	The Sheaf Laplacian

	Opinion Dynamics
	The Discourse Sheaf
	Basic Dynamics
	Extensions


