Structure-preserving learning of
embedded closure models

Benjamin Sanderse, Syver Agdestein, Toby van Gastelen, Henrik Rosenberger, Hugo Melchers

20th June 2023

BIRS Workshop on Scientific Machine Learning W

JOIN OUR
EVENTS!

9 - 13 October
AUTUMN SCHOOL

23 November
SOCIETY & INDUSTRY

6 - 8 December
WORKSHOP

Throughout the program

SEMINAR++

2%

1| ¥

cwi.nl/semesterprogramme

B0

RESEARCH [l
SEMESTER
PROGRAMME

Scientific
Machine
Learning

AUTUMN SCHOOL

Scientific Machine Learning semester programme

» Data-driven reduced-order models
» Neural networks and differential equati

» Data-driven multiscale modeling

9 - 13 OCTOBER 2023

Scientific Machine Learning
& Dynamical Systems

SPEAKERS
Andrea Beck

- 9
@o—e
Erik Bekkers .i’:;
(O ;
NIY YOS 24

J

Hod Lipson
Andrea Manzoni
Chris Rackauckas

Karen Veroy-Grepl ‘_\.
Max Welling k.

Motivation: multiscale problems

~10 km

Simulating all scales with a computational model is unfeasible

Accurate and stable closure models needed

closure
model

~10 km

Closure model approximates effect of small scales on large scales

— Basics of closure modelling

e Multiscale fluid flow: Navier-Stokes equations

ou

- = (@) flu):=-V-(u@u) - Vp+rViu

e NS describes (too) many scales of motion for small viscosity v

e Reduce range of scales by a filtering operation:
= Alu) Alu) = /u(ﬁ,t)G(zL’,f)dS u=u—1u

e Aim: use coarser meshes and larger time steps when solving for w

R

— Basics of closure modelling

e Problem: filter and PDE operator do not commute

e Art: find a closure model with parameters 0 s.t.

c(w;0) = ClA, fl(u) =V - (u@u) - V- (a@a)

e Finding c(w;0) is an inverse problem (model discovery)

e Common form: %—? = f(u) + c(u;0)

Neural networks as closure model

Exact (—)

0)

(

c(u;0) = NN

V(uu)—V- - (u®u)

Kurz & Beck, “A machine learning framework for LES closure terms”, 2021

— Issue: NNs destabilize the dynamical system

5 = /(W) + NN(u; 0)

e NN accurately matches
closure term (operator fit)

e But: solution is wrong

|

|

1.4

1.45

1.5
t

Kurz & Beck, Investigating Model-Data Inconsistency in Data-Informed Turbulence Closure Terms, 2020

1.55

— Tackling instability in dynamical systems with NNs

Instability common problem for ML-based closure models (mismatch training
environment and prediction environment)

Recent approaches:

Stability training on data with artificial noise (Kurz & Beck, 2021)
Minimizing (or eliminating) backscatter (Park & Choi, 2021)

Projection onto a stable basis (Beck et al., 2019)

Trajectory fitting (List et al., 2022; MacArt et al., 2021)

Reinforcement learning (Bae & Koumoutsakos, 2022; Kurz et al. 2022)

Our approach: “discretize first” + “preserve structure” + “embedded learning”

— Common approach in closure modelling

all scales large scales

4
7 /a\), closure
>) / / \/ =
reduce o A

confinuous

complexity N
l discretize

‘large scales

.................................

I closure
model

discrete

- Alternative: discretize first

continuous

discrete

all scales

ou

ot

F(u ldiscrefize

e Consistency training data and prediction environment
e Inverse problem easier on discrete level
e |ess regularity requirements
e Easier to handle boundary conditions
e Observation data is always discrete
reduce iorge scoles
compiciy discrete
I, —+ closure
du model
dt

Examples of preserving structure

4B
e ODE formulation (“neural ODE") d—? = NN(u;0)
du _ _
e Closure model form (“neural closure model”) i f(a) + NN(u;0)
. du ~ _
e Conservation form T f(a) + V -NN(u;0)
e Translation invariance CNN architecture

e Energy conservation

Energy conservation implies stability

Many PDEs possess secondary conservation laws, such as energy or entropy,
which give a stability bound

Example: Korteweg - de Vries

ou

ot

dr ~ Ox3

ou? O3u dee d 1
i — dt — dt 2

1
EZE/’U?dQ

Idea: impose a similar structure on the filtered equations

— Korteweg - de Vries equation

e KdV discretized using skew-symmetric scheme:

ou ou? I3 du

ou gout 0 = S0 = _3G(u)-D
ot +3 ox ox3 dt () .

e Energy conservation (periodic BCs):

dE d 1 [,
e 0 = —) =
= dt2/Qud (U — (u,—) =0
———
=:F

— Discrete filtering and reconstruction

e Spatial filter W: t=0.0
u
uy uz us ugq us ue uy usg ug
'W' w11 w12 w13 w21 w22 w23 w31 w32 w33

ﬁI _ J_l_hIhIhI"Zr
e Subgrid-scales defined
via reconstruction operator R: ol

u’ u e
-1 1 < L L 1
- X
I u subgrid scales important near sharp gradients

— Energy decomposition

e Decompose the energy as:

e Time evolution:

dE, [aE, @) [dE; W)

dt: dtJr dt

=0

e To use energy conservation we need
information about the small scales

—E,=E,+E,

Eh

0.0 2.5 5.0 7.5 10.0
t
Total energy is conserved

Energy of filtered solution is not conserved

— Subgrid compression

u
S i B
e Introduce (linear) compressed subgrid variables s: I - E

e Require s to have same energy as u’: —(s,8)q ~ E; (1)

e Solve minimization problem (“local POD”): IIl= argmlnz || sd — —W(23

— Compressed variables learn effective subgrid content

t=20.0

—u
— Ru
s

compressed subgrid variable identifies sharp gradients

0.8

0.6 -

04 r

0.2 |

0.0 25 5.0 7.5 10.0
t

learned compression matches subgrid energy closely

o =@+ 7w - (@
— Energy-conserving closure model

e Extended neural closure model:

413

Idea: learn a skew-symmetric matrix C
whose entries are NN outputs

co(U,8;0,) . u
[cs(ﬁ,s;es)] = K(q,s; 9) [s]
Energy conservation:

ol -0 =

dEp(w) | 1d(s,s)w _
dt 2 dt

/ Large scale dynamics

Compressed small
scale dynamics

— New closure model improves quality + stability

15 r

1.0

0.0

-1.0 Y

e Trained on different initial conditions, tested on unseen initial conditions

e Reduction from N =600 to N =30

e Compare to standard CNN

t=20.0

—— Reference
——— Skew-NN
—— NN

20

30

True
Skew-NN
—— NN

no closure

\IJV

What about training neural closure models?

S

Derivative fitting

TN\ /\

—0ar ONN
Requires (easy)
=10 80
0 1 2 .;: 4 5

Loss = H (d_u) — f(Qyer) — NN(Uyer; 0)
ref

1 /’,F‘\\
/// : \\
y; \
/ X |
o A ,
3 a—
Requires — (involved)
=y 00 :
\
~ 8 \
-2t |)
0 1 2 3 4 5
t
Loss = Z || Tpef |“, where i f(u) + NN(

2

Loss = H (d_u) — f(Qyer) — NN(Uyef; 0)
dt ref

— Derivative fitting: theoretical results

Theorem 3.1 (Hairer et al. [11]). Let uyes(t) € RN= ¢t > 0 be given, let u(t) € RN= ¢t > 0 be the solution of
the ODE 92 = g(u;9) with initial condition u(0) = u,ef(0), and let ||-|| be a norm on RN=. If the following
holds:

) H %uref(t) — g(Wrer(); V)

b) llg(a;¥) — g(b;9)|| < Clla—bf,

<e

)

for fized Lipschitz constant C > 0 and fized € > 0. Then the following error bound holds:

|tret(t) — u(t)|| < % (et - 1). 0.5

0.45

If a neural ODE:

e approximates the derivative well

e s Lipschitz

Then, the resulting solution may be inaccurate.

Ein

0.4

1.6

Ny _
Loss = ; la(t;) — a(t;)]|*, where ‘;—‘: =
— Trajectory fitting: theoretical results
Theorem 3.2. Let uyes(ti),i = 0,1,...,... be a sequence of vectors in RN+ where t; = iAt, let ||-| be a

7 =
norm on RN« and let G(-;9) : RN+ — RN= be a function such that:

@) ure(tisn) = Glures(t:)i Dl < for all i =1,2,..., N,

b) ||G(a;¥) — G(b;9)|| < C|la—Db| for alla,b e]RNI,

for fized Lipschitz constant C > 0,C # 1 and fized € > 0. Define the sequence u(t;y1) =

u(0) = uyes(0). Then the following error bound holds:
k_

1
C -1 fork=0,1,2,....

“u(tk) - uref(tk)” <e

G(u(t;); ¥) with

f(a) + NN(u

If a discretised neural ODE:
e accurately represents single time steps

Trajectory length should be
sufficiently large

e s Lipschitz
Then the resulting ODE solution may be inaccurate.

;0)

— Trajectory fitting: computing

1. Discretise-then-optimise (DtO):
o Need differentiable solver
o Preferably explicit

2. Optimise-then-discretise (OtD):
o Solve adjoint equations?
o Here: interpolating adjoint
o Need dense output

1Chen et al, Neural ordinary differential equations, NeurlPS 2018

dLoss
do

— Derivative fitting vs. trajectory fitting

Trajectory fitting

Derivative fitting DtO OtD
Differentiability required NN NN, f, ODE solver NN, f
Accuracy of loss function gradients Exact Exact Approximate
Learns long-term accuracy No Yes Yes
Requires time-derivatives of training data Yes No No
Computational cost Low High High

— Kuramoto-Sivashinsky equation & 20z W) B~

e Chaotic:
o Trajectory lengths not too large

e Stiff:

o OtD: impl/expl RK, KenCarp471

o DtO: expl ETDRK4 in Fourier domain? °
e Filter W:

o downsampling 1024 => 128

t/TDyap

1Kennedy and Carpenter, Higher-order additive Runge-Kutta schemes for ODEs, Applied Numerical Mathematics, 2019.
2Kassam & Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing, 2005

60

50

40

30

20

10

Effect of trajectory length, OtD

prediction errors

VPT

short trajectories (24 steps)

60

50

40

30

20

10

VPT

prediction errors

long trajectories (144 steps)

Effect of trajectory length, DtO

10

VPT

| E— DtO outperforms OtD
Q ') -
@ @0
| &0 o 9
)
@ 1000 epochs
© 5000 epochs
1 1 1 1 1 1 1 1 1 .l

1

2 4 8

15 30

1
60 90 100 110 120

trajectory length

Trajectories should
not be too long

— DtO outperforms OtD and derivative fitting

OtD sensitive to 107
. \
longer intervals
DtO overall best
L] performance
n
=
© 1072t
—— Coarse ODE
/ —— Derivative fitting
—— Opt-disc, Nt = 24

Derivative fitting / —— Opt-disc, Ne = 144
—— Opt-disc, Nt = 144, weighted
OK, but testcase —— Disc-opt, Nt = 30

dependent L L L L -
0.0 2.5 5.0 7.5 10.0

t/ TLyap

— Conclusions

e “Discretize first”
o Tailor-made closure models
o Useful framework for NNs, eases analysis

e “Preserve structure”
o Accuracy improvement by adding physics knowledge
o Non-linear stability with energy-conserving methods

e “Embedded learning” with trajectory fitting
o Discretise-then-optimise with differentiable solvers preferred
o Promising, but “strings attached”: problem-dependent, comparison not easy

— Julia is great for differentiable programming

e Neural closure models (OXO) N%UTal
o https://github.com/HugoMelchers/neural-closure-models @g@ ﬁogg%geﬂ

ND
e Incompressible, energy-conserving Navier-Stokes code b% Incompressible

o https://github.com/agdestein/IncompressibleNavierStokes.jl NavierStokes.jl

e DifferentialEquations.jl by Rackauckas et al. (
o https://sciml.ai u

https://github.com/HugoMelchers/neural-closure-models
https://github.com/agdestein/IncompressibleNavierStokes.jl
https://sciml.ai/

— References

)v3 [math.NA] 28 Feb 2023

Energy-Conserving Neural Network for Turbulence Closure Modeling

T. van Gastelen®, W. Edeling®, B. Sanderse®

aCentrum Wiskunde & Informatica, Science Park 123, Amsterdam, The Netherlands

Abstract

In turbulence modeling, and more particularly in the Large-Eddy Simulation (LES) framework, we are
concerned with finding closure models that represent the effect of the unresolved subgrid scales on the
resolved scales. Recent approaches gravitate towards machine learning techniques to construct such models.
However, the stability of machine-learned closure models and their abidance by physical structure (e.g.
symmetries, conservation laws) are still open problems. To tackle both issues, we take the ‘discretize first,
filter next’ approach, in which we apply a spatial averaging filter to existing energy-conserving (fine-grid)
discretizations. The main novelty is that we extend the system of equations describing the filtered solution
with a set of equations that describe the evolution of (a compressed version of) the energy of the subgrid
scales. Having an estimate of the energy of the subgrid scales, we can use the concept of energy conservation
and derive stability of the discrete representation. The compressed variables are determined via a data-
driven technique in such a way that the energy of the subgrid scales is matched. For the extended system,
the closure model should be energy-conserving, and a new skew-symmetric convolutional neural network
architecture is proposed that has this property. Stability is thus guaranteed, independent of the actual
weights and biases of the network. Importantly, our framework allows energy exchange between resolved
scales and compressed subgrid scales and thus enables backscatter. To model dissipative systems (e.g. viscous
flows), the framework is extended with a diffusive component. The introduced neural network architecture is
constructed such that it also satisfies momentum conservation. We apply the new methodology to both the
viscous Burgers’ equation and the Korteweg-De Vries equation in 1D and show superior stability properties
when compared to a vanilla convolutional neural network.

Computers and Mathematics with Applications 143 (2023) 94-107

1
I

ELSEVIER

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa |

s

Contents lists available at ScienceDirect

Comparison of neural closure models for discretised PDEs

Hugo Melchers »>!, Daan Crommelin *®, Barry Koren ¢, Vlado Menkovski ¢, Benjamin Sanderse **

* Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, the Netherlands
® Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG, Amsterdam, the Netherlands
© Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands

ARTICLE INFO

ABSTRACT

Dataset link: https://github.com/
HugoMelchers/neural-closure-models

Keywords:

Ordinary differential equations
Neural networks

Neural ODE

Partial differential equations
Multiscale modelling

Closure model

Neural closure models have recently been proposed as a method for efficiently approximating small scales
in multiscale systems with neural networks. The choice of loss function and associated training procedure
has a large effect on the accuracy and stability of the resulting neural closure model. In this work, we
systematically compare three distinct procedures: “derivative fitting”, “trajectory fitting” with discretise-then-
optimise, and “trajectory fitting” with optimise-then-discretise. Derivative fitting is conceptually the simplest
and computationally the most efficient approach and is found to perform reasonably well on one of the test
problems (Kuramoto-Sivashinsky) but poorly on the other (Burgers). Trajectory fitting is computationally more
expensive but is more robust and is therefore the preferred approach. Of the two trajectory fitting procedures, the
discretise-then-optimise approach produces more accurate models than the optimise-then-discretise approach.
While the optimise-then-discretise approach can still produce accurate models, care must be taken in choosing
the length of the trajectories used for training, in order to train the models on long-term behaviour while still
producing reasonably accurate gradients during training. Two existing theorems are interpreted in a novel way
that gives insight into the long-term accuracy of a neural closure model based on how accurate it is in the short
term.

