Ensemble Control for Linear and Bilinear Systems

Gunther Dirr

Institute of Mathematics
University of Würzburg, Germany
joint work with
U. Helmke (Uni. Würzburg) and M. Schönlein (Uni. Weimar)

Geometry, Topology and Control System Design, 2023

Table of Contents

(1) Linear Ensembles

- Motivation and the Finite Case
- Infinite Linear Ensembles - the countable and continuum case
(2) Coffee Break

3 Bilinear Ensembles

- Finite Bilinear Ensembles
- Infinite Bilinear Ensembles - the countable and continuum case

Linear Ensemble: motivation and the finite case

Some scenarios - not necessarily linear - which can be cast into the setting of ensemble control:

- "Broadcast control" in the sense that a "swarm" of (almost identical noninteracting) systems which cannot be addressed individually has to be controlled:
- swarms of micro-satellites or micro-robots;
- NMR-spectroscopy;
- more general, huge number of quantum/nano particles (which are in general not accessible to measurement based feedback methods);
- infinite platoons of vehicles (apply Fourier transform, see H. Zwart);
- (desynchronization of) neuron populations for the treatment of epilepsy;
- Mass transport ...
- "Robust open-loop control" in the sense that one seeks for open-loop control strategies which counteract (uniformly distributed) model uncertainties;

Linear Ensemble: motivation and the finite case

Some scenarios - not necessarily linear - which can be cast into the setting of ensemble control:

- "Broadcast control" in the sense that a "swarm" of (almost identical noninteracting) systems which cannot be addressed individually has to be controlled:
- swarms of micro-satellites or micro-robots;
- NMR-spectroscopy;
- more general, huge number of quantum/nano particles (which are in general not accessible to measurement based feedback methods);
- infinite platoons of vehicles (apply Fourier transform, see H. Zwart);
- (desynchronization of) neuron populations for the treatment of epilepsy;
- Mass transport ...
- "Robust open-loop control" in the sense that one seeks for open-loop control strategies which counteract (uniformly distributed) model uncertainties;

Terminology:

ensemble control $=$ simultaneous control $=$ controlling families of systems

Motivation

Starter:

A prime example from quantum control!

Motivation

Starter:

A prime example from quantum control! It's a bilinear ensemble!

The movie "Dancing Arrows" is taken from
Steffen Glaser (TU Munich)

Motivation

Controlled Bloch Equation:

$$
\left(\begin{array}{c}
\dot{x}(t) \tag{B}\\
\dot{y}(t) \\
\dot{z}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\omega_{0} & \varepsilon_{0} u_{2}(t) \\
\omega_{0} & 0 & -\varepsilon_{0} u_{1}(t) \\
-\varepsilon_{0} u_{2}(t) & \varepsilon_{0} u_{1}(t) & 0
\end{array}\right)\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)
$$

Control Inputs: $u_{1}(t), u_{2}(t)$

Motivation

Controlled Bloch Equation:

$$
\left(\begin{array}{l}
\dot{x}(t) \tag{B}\\
\dot{y}(t) \\
\dot{z}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\omega_{0} & \varepsilon_{0} u_{2}(t) \\
\omega_{0} & 0 & -\varepsilon_{0} u_{1}(t) \\
-\varepsilon_{0} u_{2}(t) & \varepsilon_{0} u_{1}(t) & 0
\end{array}\right)\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)
$$

Control Inputs: $u_{1}(t), u_{2}(t)$

Dispersion effects

- Lamor dispersion (results form B-field inhomogeneities)
- Transverse dispersion (results from inhomogeneities of rf-pulses)

Motivation

Controlled Bloch Equation:

$$
\left(\begin{array}{l}
\dot{\dot{x}}(t) \tag{B}\\
\dot{y}(t) \\
\dot{z}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\omega & \varepsilon u_{2}(t) \\
\omega & 0 & -\varepsilon u_{1}(t) \\
-\varepsilon u_{2}(t) & \varepsilon u_{1}(t) & 0
\end{array}\right)\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)
$$

Control inputs: $u_{1}(t), u_{2}(t)$ are independent of ω and ε !
Dispersion effects $=$ uncertain model parameters

- Lamor dispersion $\Longrightarrow \omega \in\left[\omega_{0}-\Delta \omega, \omega_{0}+\Delta \omega\right]=: \mathcal{W}$
- Transverse dispersion $\Longrightarrow \quad \varepsilon \in\left[\varepsilon_{0}-\Delta \varepsilon, \varepsilon_{0}+\Delta \varepsilon\right]=: \mathcal{E}$

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, TU München, presented 2009 at KITP

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009

Motivation

Bottom line (so far):

The infinite bilinear ensemble defined by
the controlled Bloch Equation (under dispersion)
seems to be (approximately) controllable

Why?

Linear Ensemble: motivation and the finite case

Back to linear ensembles - the finite case:

Consider a finite parameter set, e.g. $P:=\{1,2, \ldots, N\}$ and finitely many linear systems $\left(A_{i}, B_{i}, C_{i}\right), i=1, \ldots, N$ with

- (possibly different) state spaces: $x_{i} \in \mathbb{R}^{n_{i}}$;
- common input space: $u:=u_{i} \in \mathbb{R}^{m}$;
- common output space: $y:=y_{i} \in \mathbb{R}^{p}$;

How to build the corresponding ensemble:

Linear Ensemble: motivation and the finite case

Back to linear ensembles - the finite case:

Consider a finite parameter set, e.g. $P:=\{1,2, \ldots, N\}$ and finitely many linear systems $\left(A_{i}, B_{i}, C_{i}\right), i=1, \ldots, N$ with

- (possibly different) state spaces: $x_{i} \in \mathbb{R}^{n_{i}}$;
- common input space: $u:=u_{i} \in \mathbb{R}^{m}$;
- common output space: $y:=y_{i} \in \mathbb{R}^{p}$;

How to build the corresponding ensemble:

- ensemble state space: $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{N}}$;
- ensemble dynamics:

$$
A:=\left(\begin{array}{ccc}
A_{1} & & \tag{E}\\
& \ddots & \\
& & A_{N}
\end{array}\right), \quad B:=\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{N}
\end{array}\right), \quad C:=\left(\begin{array}{lll}
C_{1} & \ldots & C_{N}
\end{array}\right) .
$$

Linear Ensemble: motivation and the finite case

Back to linear ensembles - the finite case:

Consider a finite parameter set, e.g. $P:=\{1,2, \ldots, N\}$ and finitely many linear systems $\left(A_{i}, B_{i}, C_{i}\right), i=1, \ldots, N$ with

- (possibly different) state spaces: $x_{i} \in \mathbb{R}^{n_{i}}$;
- common input space: $u:=u_{i} \in \mathbb{R}^{m}$;
- common output space: $y:=y_{i} \in \mathbb{R}^{p}$;

How to build the corresponding ensemble:

- ensemble state space: $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{N}}$;
- ensemble dynamics:

$$
A:=\left(\begin{array}{ccc}
A_{1} & & \tag{E}\\
& \ddots & \\
& & A_{N}
\end{array}\right), \quad B:=\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{N}
\end{array}\right), \quad C:=\left(\begin{array}{lll}
C_{1} & \ldots & C_{N}
\end{array}\right) .
$$

Parallel connection!

Linear Ensemble: motivation and the finite case

Controllability ${ }^{1}$ condition for $\left(\Sigma_{\mathrm{E}}\right)$:

$$
\left(\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{N}
\end{array}\right)=\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{N}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right)+\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{N}
\end{array}\right) u .
$$

A simple test:

Lemma A (Brockett ???)

For the assertions
(a) the "ensemble" $\left(\Sigma_{\mathrm{E}}\right)$ is controllable;
(b) all subsystems $\left(A_{i}, B_{i}\right)$ are controllable;
(c) $\sigma\left(A_{i}\right) \cap \sigma\left(A_{j}\right)=\emptyset$ for $i \neq j$;
one has the following implications:
$(a) \Longrightarrow(b)$,
(b) \& (c)
$\Longrightarrow(a)$ and for $m=1$
(b) \& (c)
$\Longleftrightarrow(a)$

Proof: Trivial, e.g. Hautus-Test.
${ }^{1}$ No observability and no discrete-time systems in this talk

Linear Ensemble: motivation and the finite case

The general case:

Recall:

- (A, B) is controllable if and only if $(z I-A)$ and B are left-coprime.
- There exists always a right-coprime factorizations

$$
N_{i}(z) D_{i}(z)^{-1}=(z l-A)^{-1} B
$$

of the "transfer function".

Theorem A (Fuhrmann/Helmke)

The "ensemble" (Σ_{E}) is controllable if and only if the following conditions are satisfied:
(a) all subsystems $\left(A_{i}, B_{i}\right)$ are controllable;
(b) the matrices $D_{1}(z), \ldots, D_{N}(z)$ are mutually left coprime;

Remark: For $m=1$ one can choose $D_{i}(z)=\operatorname{det}\left(z I-A_{i}\right)$ and thus Theorem A reduces to Lemma A.

Infinite Linear Ensembles - the countable/ continuum case

Let $P=\mathbb{N}$ or let $P \subset \mathbb{R}^{d}$ be compact and consider the infinite parallel connections:

Linear Ensemble

$$
\begin{equation*}
\dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u(t), \quad x_{i}(0) \in \mathbb{C}^{n}, \quad i \in \mathbb{N} \tag{E}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial x}{\partial t}(t, \theta)=A(\theta) x(t, \theta)+B(\theta) u(t), \quad x(0, \theta)=x_{0}(\theta) \in \mathbb{C}^{n}, \quad \theta \in P \tag{E}
\end{equation*}
$$

Infinite Linear Ensembles - the countable/ continuum case

Let $P=\mathbb{N}$ or let $P \subset \mathbb{R}^{d}$ be compact and consider the infinite parallel connections:

Linear Ensemble

$$
\begin{equation*}
\dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u(t), \quad x_{i}(0) \in \mathbb{C}^{n}, \quad i \in \mathbb{N} \tag{E}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial x}{\partial t}(t, \theta)=A(\theta) x(t, \theta)+B(\theta) u(t), \quad x(0, \theta)=x_{0}(\theta) \in \mathbb{C}^{n}, \quad \theta \in P \tag{E}
\end{equation*}
$$

Problem / Freedom of choosing the right state space?

Infinite Linear Ensembles - the countable/ continuum case

Countable Case:

Linear Ensemble

$$
\dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u(t), \quad x_{i}(0) \in \mathbb{C}^{n}, \quad i \in \mathbb{N}
$$

Choose our favorite sequence space $X \subset \mathcal{S}\left(\mathbb{N}, \mathbb{C}^{n}\right)$, e.g.:

- Possible state spaces: $X=I_{q}\left(\mathbb{N}, \mathbb{C}^{n}\right)$ with $(1 \leq q<\infty)$;
- Ensemble matrices:
$\left(A_{i}\right)_{i \in \mathbb{N}} \in I_{\infty}\left(\mathbb{N}, \mathbb{C}^{n \times n}\right) ;$
$\left(B_{i}\right)_{i \in \mathbb{N}} \in I_{p}\left(\mathbb{N}, \mathbb{C}^{n \times m}\right) ;$
- Control: $u(\cdot) \in L_{\text {loc }}^{1}\left(\mathbb{R}_{0}^{+}, \mathbb{C}^{m}\right)$;

Infinite Linear Ensembles - the countable/ continuum case

Countable Case:

Linear Ensemble

$$
\dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u(t), \quad x_{i}(0) \in \mathbb{C}^{n}, \quad i \in \mathbb{N}
$$

Choose our favorite sequence space $X \subset \mathcal{S}\left(\mathbb{N}, \mathbb{C}^{n}\right)$, e.g.:

- Possible state spaces: $X=I_{q}\left(\mathbb{N}, \mathbb{C}^{n}\right)$ with $(1 \leq q<\infty)$;
- Ensemble matrices:
$\left(A_{i}\right)_{i \in \mathbb{N}} \in I_{\infty}\left(\mathbb{N}, \mathbb{C}^{n \times n}\right) ;$
$\left(B_{i}\right)_{i \in \mathbb{N}} \in I_{p}\left(\mathbb{N}, \mathbb{C}^{n \times m}\right) ;$
- Control: $u(\cdot) \in L_{\text {loc }}^{1}\left(\mathbb{R}_{0}^{+}, \mathbb{C}^{m}\right)$;

Remark: Real versus complex!

Infinite Linear Ensembles - the countable/ continuum case

Continuum Case:

Linear Ensemble

$$
\begin{equation*}
\frac{\partial x}{\partial t}(t, \theta)=A(\theta) x(t, \theta)+B(\theta) u(t), \quad x(0, \theta)=x_{0}(\theta) \in \mathbb{C}^{n}, \quad \theta \in P \tag{E}
\end{equation*}
$$

Again choose our favorite function space $X \subset \mathcal{F}\left(P, \mathbb{C}^{n}\right)$, e.g.:

- Possible state spaces: $X=C\left(P, \mathbb{C}^{n}\right)$ or $X=L^{q}\left(P, \mathbb{C}^{n}\right)$ with $1 \leq q<\infty$;
- Ensemble matrices:
$A(\cdot) \in C\left(P, \mathbb{C}^{n \times n}\right) ;$
$B(\cdot)=\left(b_{1}(\cdot) \quad \cdots \quad b_{m}(\cdot)\right)$ with $b_{i}(\theta) \in C\left(P, \mathbb{C}^{n}\right)$ or $b_{i}(\cdot) \in L^{q}\left(P, \mathbb{C}^{n}\right) ;$
- Control: $u(\cdot) \in L_{\text {loc }}^{1}\left(\mathbb{R}_{0}^{+}, \mathbb{C}^{m}\right)$;

Infinite Linear Ensembles - the countable/ continuum case

Unified notation: $x(t, i):=x_{i}(t)$ for $i \in \mathbb{N}$.

"The" ensemble control problem

Given a pair of initial and final states $x_{0}(\cdot), x_{*}(\cdot) \in X$.

$$
\begin{equation*}
\frac{\partial x}{\partial t}(t, \theta)=A(\theta) x(t, \theta)+B(\theta) u(t), \quad \theta \in P \tag{E}
\end{equation*}
$$

Does there exist a parameter-independent control $u(t)$ which steers $x_{0}(\cdot)$ in some finite time $T \geq 0$ (approximately) to $x_{*}(\cdot)$?

More precisely: Given any $x_{0}(\cdot), x_{*}(\cdot) \in X$. Does there exist for all $\varepsilon>0$ a time $T \geq 0$ and a control $u \in L^{1}\left([0, T], \mathbb{C}^{m}\right)$ such that

$$
\left\|x\left(T, x_{0}, u\right)-x_{*}\right\|_{X} \leq \varepsilon ?
$$

Infinite Linear Ensembles - the countable/ continuum case

Ensembles as infinite-dimensional linear systems

- State space X, e.g. $X=C\left(P, \mathbb{C}^{n}\right)$ or $X=L^{q}\left(P, \mathbb{C}^{n}\right)$ or $X=I_{q}\left(P, \mathbb{C}^{n}\right)$
- System operator (= multiplication operator)

$$
\mathcal{A}: X \rightarrow X, \quad(\mathcal{A} x)(\theta)=A(\theta) x(\theta)
$$

- Input operator (= finite rank operator)

$$
\mathcal{B}: \mathbb{C}^{m} \rightarrow X, \quad(\mathcal{B} u)(\theta)=B(\theta) u
$$

Resulting infinite-dimensional linear system

$$
\begin{equation*}
\dot{x}=\mathcal{A} x+\mathcal{B} u \tag{X}
\end{equation*}
$$

General assumption

Let X be a Banach space and \mathcal{A} be a bounded operator.

Infinite Linear Ensembles - the countable/ continuum case

First observations I:

Lemma B (Triggiani 75)

The following assertions are equivalent:

- $\Sigma_{\mathrm{E}}=(A(\theta), B(\theta))_{\theta \in P}$ is ensemble controllable (with respect to X);
- $\Sigma_{x}=(\mathcal{A}, \mathcal{B})$ is approximately controllable;
- For every $T \geq 0$ the closure of the image of the reachability map

$$
\mathcal{R}_{T}: u \mapsto \int_{0}^{T} e^{A(\cdot)(T-s)} B(\cdot) u(s) \mathrm{d} s
$$

is equal to X.

- The generalized Kalman condition $R(\mathcal{A}, \mathcal{B}):=\overline{\sum_{k=0}^{\infty} i \operatorname{im} \mathcal{A}^{k} \mathcal{B}}=X$ holds;
- The approximation conditions $\overline{\left\{\sum_{i=1}^{m} p_{i}(\mathcal{A}) b_{i}: p_{i} \in \mathbb{C}[z]\right\}}=X$ holds;
- The the operator \mathcal{A} is m-cyclic with cyclic vectors $b_{1}(\cdot), \ldots, b_{m}(\cdot)$;

Infinite Linear Ensembles - the countable/ continuum case

First observations II:

- Many standard results on approximate controllability for infinite-dimensional systems do not apply as the multiplication operator \mathcal{A} has mostly continuous spectrum;
- Most infinite ensemble systems are not (exactly) controllable (Triggiani 75); therfore, only approximate notions of controllability are reasonable in general;

Infinite Linear Ensembles - the countable/ continuum case

First observations II:

- Many standard results on approximate controllability for infinite-dimensional systems do not apply as the multiplication operator \mathcal{A} has mostly continuous spectrum;
- Most infinite ensemble systems are not (exactly) controllable (Triggiani 75); therfore, only approximate notions of controllability are reasonable in general;

Reason:

\mathcal{B} has finite-dimensional range and this results in general in a compact input-to-state operator;

Infinite Linear Ensembles - the countable/ continuum case

A useful result for parallel connections of infinite-dimensional systems:

Theorem B (Schönlein, D. 2021)

Suppose the (possible ∞-dimensional) linear systems $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ satisfy the following conditions:
(a) $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are approximately controllable;
(b) $\sigma\left(A_{1}\right)$ and $\sigma\left(A_{2}\right)$ have only finitely many connected components;
(c) $\sigma\left(\boldsymbol{A}_{1}\right)$ and $\sigma\left(\boldsymbol{A}_{2}\right)$ are non-separating (i.e. $\mathbb{C} \backslash \sigma\left(\boldsymbol{A}_{i}\right)$ is connected);
(d) $\sigma\left(A_{1}\right) \cap \sigma\left(A_{2}\right)=\emptyset$;

Then the parallel connection $\left(\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right),\binom{B_{1}}{B_{2}}\right)$ is approximately controllable.

Idea of Proof: ...

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

Some results for particular state spaces.
Case I: $X:=C\left(P, \mathbb{C}^{n}\right)$

Lemma C

Suppose the ensemble $(A(\theta), B(\theta))_{\theta \in P}$ is uniformly ensemble controllable. Then $(A(\theta), B(\theta))_{\theta \in K}$ is also uniformly ensemble controllable on any compact subset of $K \subset P$.

Proof: Use Tietze's Extension Theorem

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

Corollary A (Helmke, Schönlein, D. 2014/2021)

Let $P \subset \mathbb{R}^{d}$ and suppose the single-input ensemble $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable. Then
(N1) For every $\theta \in P$ the linear system $(A(\theta), B(\theta))$ is controllable.
(N2) For every $\theta \in P$ the eigenvalues of $A(\theta)$ have geometric multiplicity one.
(N3) The spectral map is one-to-one, i.e. $\sigma\left(A\left(\theta_{1}\right)\right) \cap \sigma\left(A\left(\theta_{2}\right)\right)=\emptyset$.
(N4) For $d \geq 2$ the set P has no interior points.

Proof:

- (N1) - (N3) follow straightforward from Lemma A and C;
- to show (N4) reduce problem to the particular case $P=\partial D$;

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

Lemma D (Helmke, Schönlein, D. 2014/2021)

Let $P \subset \mathbb{C}$ be a compact and contractible set with empty interior. Then the following assertions are equivalent:
(a) $(a(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable;
(b) $a: P \rightarrow \mathbb{C}$ is one-to-one and $b(\theta) \neq 0$ for all $\theta \in P$;

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

Lemma D (Helmke, Schönlein, D. 2014/2021)

Let $P \subset \mathbb{C}$ be a compact and contractible set with empty interior. Then the following assertions are equivalent:
(a) $(a(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable;
(b) $a: P \rightarrow \mathbb{C}$ is one-to-one and $b(\theta) \neq 0$ for all $\theta \in P$;

Proof:

- $(a) \Longrightarrow(b)$: see Corollary A;
- (b) \Longrightarrow (a): For simplicity assume $a:\left[\theta_{1}, \theta_{2}\right] \rightarrow \mathbb{R}$ and w.I.lo.g. $b \equiv 1$;
- Then the approximation condition boils down to

$$
\overline{\{p(a(\cdot)): p \in \mathbb{C}[z]\}}=C\left(\left[\theta_{1}, \theta_{2}\right], \mathbb{C}\right)
$$

and, since the map a: $\left[\theta_{1}, \theta_{2}\right] \rightarrow \mathbb{R}$ is one-to-one, (\star) is equivalent to

$$
\overline{\{p(\cdot): p \in \mathbb{C}[z]\}}=C\left(a\left(\left[\theta_{1}, \theta_{2}\right]\right), \mathbb{C}\right)
$$

- The above approximation problem can be solved by the Weierstraß Approximation Theorem and in the complex case by Mergelyan's Theorem.

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

The Magic Result (Helmke, Scherlein, Schönlein 2014/2016)

Let $P \subset \mathbb{C}$ be a compact and contractible and let $(A(\theta), b(\theta))_{\theta \in P}$ satisfy the necessary conditions (N1) - (N4) as well as the magic condition (MC), i.e. the characteristic polynomials $\chi(z, \theta)$ are of the form

$$
\begin{equation*}
\chi(z, \theta)=z^{n}-a_{n-1} z^{n-1}-\cdots-a_{1} z-a_{0}(\theta) \tag{MC}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n-1} \in \mathbb{C}$ and some $a_{0} \in C(P, \mathbb{C})$. Then $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable.

Remark: Lemma D is obviously a special case of the "magic condition".

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

The Magic Result (Helmke, Scherlein, Schönlein 2014/2016)

Let $P \subset \mathbb{C}$ be a compact and contractible and let $(A(\theta), b(\theta))_{\theta \in P}$ satisfy the necessary conditions (N1) - (N4) as well as the magic condition (MC), i.e. the characteristic polynomials $\chi(z, \theta)$ are of the form

$$
\begin{equation*}
\chi(z, \theta)=z^{n}-a_{n-1} z^{n-1}-\cdots-a_{1} z-a_{0}(\theta) \tag{MC}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n-1} \in \mathbb{C}$ and some $a_{0} \in C(P, \mathbb{C})$. Then $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable.

Proof:

- (a) Use the $T(\theta)=\left(\begin{array}{lll}b(\theta) & \ldots & \left.A^{n-1}(\theta) b(\theta)\right)\end{array}\right.$ to obtain the canonical from

$$
A(\theta) \sim\left(\begin{array}{ccc}
0 & & a_{0}(\theta) \\
1 & & a_{1} \\
& \ddots & \vdots \\
& 1 & \vdots
\end{array}\right), \quad b(\theta) \sim e_{n-1} .
$$

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

The Magic Result (Helmke, Scherlein, Schönlein 2014/2016)

Let $P \subset \mathbb{C}$ be a compact and contractible and let $(A(\theta), b(\theta))_{\theta \in P}$ satisfy the necessary conditions (N1) - (N4) as well as the magic condition (MC), i.e. the characteristic polynomials $\chi(z, \theta)$ are of the form

$$
\begin{equation*}
\chi(z, \theta)=z^{n}-a_{n-1} z^{n-1}-\cdots-a_{1} z-a_{0}(\theta) \tag{MC}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n-1} \in \mathbb{C}$ and some $a_{0} \in C(P, \mathbb{C})$. Then $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable.

Proof:

- (a) Use the $T(\theta)=\left(\begin{array}{lll}b(\theta) & \ldots & A^{n-1}(\theta) b(\theta)\end{array}\right)$ to obtain the canonical from

$$
A(\theta) \sim\left(\begin{array}{ccc}
0 & & a_{0}(\theta) \\
1 & & a_{1} \\
& \ddots & \vdots \\
& & \vdots \\
a_{n-1}
\end{array}\right), \quad b(\theta) \sim e_{1} .
$$

- Simply start computing $A^{k}(\theta) b(\theta)$. - Think mathematically - act computationally!

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

The Magic Result (Helmke, Scherlein, Schönlein 2014/2016)

Let $P \subset \mathbb{C}$ be a compact and contractible and let $(A(\theta), b(\theta))_{\theta \in P}$ satisfy the necessary conditions (N1) - (N4) as well as the magic condition (MC), i.e. the characteristic polynomials $\chi(z, \theta)$ are of the form

$$
\begin{equation*}
\chi(z, \theta)=z^{n}-a_{n-1} z^{n-1}-\cdots-a_{1} z-a_{0}(\theta) \tag{MC}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n-1} \in \mathbb{C}$ and some $a_{0} \in C(P, \mathbb{C})$. Then $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable.

Proof:

- (a) Use the $T(\theta)=\left(\begin{array}{lll}b(\theta) & \ldots & A^{n-1}(\theta) b(\theta)\end{array}\right)$ to obtain the canonical from

$$
A(\theta) \sim\left(\begin{array}{ccc}
0 & & a_{0}(\theta) \\
1 & & a_{1} \\
& \ddots & \vdots \\
& & 1 \\
a_{n-1}
\end{array}\right), \quad b(\theta) \sim e_{1} .
$$

- Simply start computing $A^{k}(\theta) b(\theta)$.
- Finally, again Weierstraß / Mergelyan does the job.

Uniform Ensemble Control, i.e. $X:=C\left(P, \mathbb{C}^{n}\right)$

Glueing Result (Schönlein, D. 2014/2021)

Let $P \subset \mathbb{C}$ be a compact and contractible and let $(A(\theta), b(\theta))_{\theta \in P}$ satisfy the necessary conditions (N1) - (N4). If the following conditions are additionally satisfied then $(A(\theta), b(\theta))_{\theta \in P}$ is uniformly ensemble controllable.
(a) $(A(\theta), b(\theta))_{\theta \in P}$ satisfies a technical spectral condition;
(b) The corresponding subsystems satisfy the magic condition;

Proof:

- Use the spectral condition to decompose $(A(\theta), b(\theta))_{\theta \in P}$ into subsystems

$$
A(\theta) \sim\left(\begin{array}{ccc}
A_{1}(\theta) & & \\
& \ddots & \\
& & A_{r}(\theta)
\end{array}\right), \quad b(\theta) \sim\left(\begin{array}{c}
b_{1}(\theta) \\
\vdots \\
b_{r}(\theta)
\end{array}\right) .
$$

- Apply the magic result and "glue" things together via Theorem B.

La-Ensemble Control

Case II: $X:=L^{q}\left(P, \mathbb{C}^{n}\right)$ with respect to some regular (Borel) measure μ

Corollary B (Schönlein, D. 2021)

Let $P \subset \mathbb{C}$ compact and suppose the single-input ensemble $(A(\theta), b(\theta))_{\theta \in P}$ is L^{q}-ensemble controllable. Then
(N1) For almost all $\theta \in P$ the linear system $(A(\theta), B(\theta))$ is controllable.
(N2) For almost all $\theta \in P$ the eigenvalues of $A(\theta)$ have geometric multiplicity one.
(N3) Every L^{∞}-eigenvalue selection of $A(\cdot)$ is essentially one-to-one.

Proof: similar to Corollary A
Remark: So far interior points are not excluded!

Lq-Ensemble Control

Lemma E (Schönlein, D. 2021)

Let $P \subset \mathbb{C}$ be a compact and $q \in[1, \infty)$. Then the following assertions are equivalent:
(a) $(a(\theta), b(\theta))_{\theta \in P}$ is L^{p} ensemble controllable;
(b) $a: P \rightarrow \mathbb{C}$ is essentially one-to-one and $b(\theta) \neq 0$ for all almost all $\theta \in P$ and

$$
\inf _{p \in \mathbb{C}[z]} \int_{P}\|p(a) b-\bar{a} b\|^{q} \mathrm{~d} \mu=0 .
$$

A few remarks concerning the proof:

- (a) \Longrightarrow (b): use Corollary B, the fact that $\bar{a} b \in L^{q}(P, \mathbb{C})$ and the result that the multiplication operator induced by $a(\cdot)$ is cyclic if and only if $a(\cdot)$ is essentially one-to-one.
- $(\mathrm{b}) \Longrightarrow(\mathrm{a}): \ldots$

Lq-Ensemble Control

No-Go Theorem (Chen 2021)

Let $P \subset \mathbb{R}^{d}, d \geq 2$ be compact with non-empty interior and let μ be the d-dimensional Lebesgue-measure on P. If the ensemble $(A(\theta), B(\theta))_{\theta \in P}$ is real analytic at some interior point of P then it is never L^{q}-controllable for $q \geq 2$.

Lq-Ensemble Control

No-Go Theorem (Chen 2021)

Let $P \subset \mathbb{R}^{d}, d \geq 2$ be compact with non-empty interior and let μ be the d-dimensional Lebesgue-measure on P. If the ensemble $(A(\theta), B(\theta))_{\theta \in P}$ is real analytic at some interior point of P then it is never L^{q}-controllable for $q \geq 2$.

Corollary

For $d \geq 2$ and $q \geq 2$ cyclic vectors of the multiplication operator induced by $A(\cdot)$ are nowhere real analytic (in the interior of P).

A few remarks concerning the proof:

- Transform $A(\theta)$ locally to a block-triangular structure such that the problem can be reduced to the scalar case $P \subset \mathbb{C}=\mathbb{R}^{2}$ and $a: P \rightarrow \mathbb{C}$;
- A further reduction yields $a(\theta)=\theta$;
- Consider w.l.o.g. $P=\overline{\mathbb{D}}$ and assume that $B(\theta)$ is holomorphic; then the closure of $b_{1}(\theta) \theta^{k}, \ldots, b_{m}(\theta) \theta^{k}$ is contained in the Hardy $H^{2}(\mathbb{D})$ and thus not equal to $L^{2}(\mathbb{D})$;

Lq-Ensemble Control

No-Go Theorem (Chen 2021)

Let $P \subset \mathbb{R}^{d}, d \geq 2$ be compact with non-empty interior and let μ be the d-dimensional Lebesgue-measure on P. If the ensemble $(A(\theta), B(\theta))_{\theta \in P}$ is real analytic at some interior point of P then it is never L^{q}-controllable for $q \geq 2$.

Corollary

For $d \geq 2$ and $q \geq 2$ cyclic vectors of the multiplication operator induced by $A(\cdot)$ are nowhere real analytic (in the interior of P).

A few remarks concerning the proof:

- Transform $A(\theta)$ locally to a block-triangular structure such that the problem can be reduced to the scalar case $P \subset \mathbb{C}=\mathbb{R}^{2}$ and $a: P \rightarrow \mathbb{C}$;
- A further reduction yields $a(\theta)=\theta$;
- Consider w.l.o.g. $P=\overline{\mathbb{D}}$ and assume that $B(\theta)$ is holomorphic; then the closure of $b_{1}(\theta) \theta^{k}, \ldots, b_{m}(\theta) \theta^{k}$ is contained in the Hardy $H^{2}(\mathbb{D})$ and thus not equal to $L^{2}(\mathbb{D})$;
- The tricky part results from the assumption that the $b_{i}(\theta)$ are only real analytic;

Some References

J.-S. Li.

Ensemble control of finite-dimensional time-varying linear systems.
IEEE Trans. Automatic Control 56, 2011.

- based on the singular-value decomposition of the compact input-to-state operator
J.-S. Li, J. Qi.

Ensemble control of time-invariant linear systems with linear parameter variation. IEEE Trans. Automatic Control 61, 2016.
S. Zeng, J.-S. Li.

An operator theoretic approach to linear ensemble control.
Systems \& Control Letters 168, 2022.

- approach based on moments and Schauder basis techniques
J. Loheac, E. Zuazua.

From averaged to simultaneous controllability of parameter dependent finite-dimensional systems.
Ann. Fac. Sci. Toulouse Math. 6, 2016.
B. Gharesifard, X. Chen.

Structural averaged controllability of linear ensemble systems.
IEEE Control Systems Letters 62021.
X. Chen.

Controllability issues of linear ensemble systems over multi-dimensional parameterization spaces.
to appear, see also arXiv, 2020.

G. Dirr and M. Schönlein.

Uniform and L^{q}-ensemble reachability of parameter-dependent linear systems.
Journal of Diff. Equations 283, 2021.

Finite Bilinear Ensembles

A few words about general bilinear systems

$$
\begin{align*}
\dot{x} & =(A+u(t) B) x, & & x(0) \in \mathbb{R}^{n} \tag{IS}\\
\dot{X} & =(A+u(t) B) X, & & x(0) \in G \subset \mathrm{GL}_{n}(\mathbb{C}) \tag{L}
\end{align*}
$$

System Lie algebra: real Lie algebra $\langle A, B\rangle_{L A}$ generated by A and B

Finite Bilinear Ensembles

A few words about general bilinear systems

$$
\begin{align*}
\dot{x} & =(A+u(t) B) x, & & x(0) \in \mathbb{R}^{n} \tag{IS}\\
\dot{X} & =(A+u(t) B) X, & & X(0) \in G \subset \mathrm{GL}_{n}(\mathbb{C}) \tag{L}
\end{align*}
$$

System Lie algebra: real Lie algebra $\langle A, B\rangle_{L A}$ generated by A and B

Accessibility \& Controllability (Brockett, Sussmann, Jurdjevic, ...)

Let G be a path-connected subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ with Lie algebra $\mathfrak{g} \subset \mathbb{C}^{n \times n}$ and let $A, B \in \mathfrak{g}$. Then one has
(a) (L) is accessible (relative to $G) \Longleftrightarrow\langle A, B\rangle_{\llcorner A}=\mathfrak{g} \quad$ (LARC)
(b) If G is additionally compact or $\mathrm{e}^{t A}$ is (almost) periodic, then

$$
(\mathrm{L}) \text { is controllable (relative to } G) \Longleftrightarrow\langle A, B\rangle_{\llcorner A}=\mathfrak{g}
$$

Toy Example

Consider the following two systems

$$
\begin{array}{lll}
\dot{x}_{1}=u(t) b_{1} x_{1}, & x_{1} \in \mathbb{R}^{+}, & u(t) \in \mathbb{R}, \\
\dot{x}_{2}=u(t) b_{2} x_{2}, & x_{2} \in \mathbb{R}^{+}, & u(t) \in \mathbb{R} .
\end{array}
$$

Both evolve on the Lie group \mathbb{R}^{+}and, for $b_{1} \neq 0$ and $b_{2} \neq 0$, both systems are controllable.

Toy Example

Consider the following two systems

$$
\begin{array}{lll}
\dot{x}_{1}=u(t) b_{1} x_{1}, & x_{1} \in \mathbb{R}^{+}, & u(t) \in \mathbb{R} \\
\dot{x}_{2}=u(t) b_{2} x_{2}, & x_{2} \in \mathbb{R}^{+}, & u(t) \in \mathbb{R} . \tag{2}
\end{array}
$$

Both evolve on the Lie group \mathbb{R}^{+}and, for $b_{1} \neq 0$ and $b_{2} \neq 0$, both systems are controllable.

However, the "parallel connection" given by

$$
\left[\begin{array}{cc}
\dot{x}_{1} & 0 \\
0 & \dot{x}_{2}
\end{array}\right]=u(t)\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right] \quad u(t) \in \mathbb{R}
$$

is not controllable on

$$
\left\{\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}^{+}\right\} \cong \mathbb{R}^{+} \times \mathbb{R}^{+}
$$

Finite Bilinear Ensembles

Finite bilinear ensembles - general setting
Given a finite parameter set $P:=\{1,2, \ldots, N\}$ and finitely many bilinear systems

$$
\begin{equation*}
\dot{X}_{i}=\left(A_{i}+\sum_{k=1}^{m} u_{k}(t) B_{i, k}\right) X_{i}, \quad\left(u_{1}(t), \ldots, u_{m}(t)\right) \in \mathbb{R}^{m}, \quad i \in P . \tag{i}
\end{equation*}
$$

defined on Lie groups $G_{i} \subset \mathrm{GL}_{n}(\mathbb{C})$.
Note: $u_{k}(t)$ is independent of $i \in P$

Finite Bilinear Ensembles

Finite bilinear ensembles - general setting
Given a finite parameter set $P:=\{1,2, \ldots, N\}$ and finitely many bilinear systems

$$
\begin{equation*}
\dot{X}_{i}=\left(A_{i}+\sum_{k=1}^{m} u_{k}(t) B_{i, k}\right) X_{i}, \quad\left(u_{1}(t), \ldots, u_{m}(t)\right) \in \mathbb{R}^{m}, \quad i \in P . \tag{i}
\end{equation*}
$$

defined on Lie groups $G_{i} \subset \mathrm{GL}_{n}(\mathbb{C})$.
Note: $u_{k}(t)$ is independent of $i \in P$

Key problem

What can be said about the controllability of the ensemble $\left(\Sigma_{i}\right)_{i \in P}$?

For simplicity from now on: $m \leq 2$

Finite Bilinear Ensembles

The state space of the ensemble is canonically given by the direct product

$$
\mathbf{G}:=G_{1} \times \cdots \times G_{N}
$$

which, for convenience, will be embedded in $\mathrm{GL}_{\bar{n}}(\mathbb{C})$ as follows:

$$
\mathbf{G} \cong\left\{\left[\begin{array}{lll}
X_{1} & & 0 \\
& \ddots & \\
0 & & X_{s}
\end{array}\right]: X_{i} \in G_{i}\right\}
$$

Finite Bilinear Ensembles

The state space of the ensemble is canonically given by the direct product

$$
\mathbf{G}:=G_{1} \times \cdots \times G_{N}
$$

which, for convenience, will be embedded in $\mathrm{GL}_{\bar{n}}(\mathbb{C})$ as follows:

$$
\mathbf{G} \cong\left\{\left[\begin{array}{lll}
X_{1} & & 0 \\
& \ddots & \\
0 & & X_{s}
\end{array}\right]: X_{i} \in G_{i}\right\}
$$

Hence

$$
\left[\begin{array}{ccc}
\dot{X}_{1} & & 0 \tag{E}\\
& \ddots & \\
0 & & \dot{X}_{s}
\end{array}\right]=\left(\left[\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{s}
\end{array}\right]+u(t)\left[\begin{array}{ccc}
B_{1} & & 0 \\
& \ddots & \\
0 & & B_{s}
\end{array}\right]\right)\left[\begin{array}{ccc}
X_{1} & & 0 \\
& \ddots & \\
0 & & X_{s}
\end{array}\right]
$$

Block structure is preserved!

Finite Bilinear Ensembles

Definition

(a) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called simultaneously accessible if Σ_{E} is accessible on G.
(b) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called ensemble controllable if Σ_{E} is controllable on G.

Finite Bilinear Ensembles

Definition

(a) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called simultaneously accessible if Σ_{E} is accessible on G.
(b) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called ensemble controllable if Σ_{E} is controllable on G.

Key notion:

Definition

Given $A, B \in \mathfrak{g}$ and $A^{\prime}, B^{\prime} \in \mathfrak{g}^{\prime}$, where \mathfrak{g} and \mathfrak{g}^{\prime} are arbitrary Lie algebras. We call the pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ Lie-related, if there exists a Lie algebra isomorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ such that

$$
A^{\prime}=\tau(A) \quad \text { and } \quad B^{\prime}=\tau(B)
$$

Finite Bilinear Ensembles

Definition

(a) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called simultaneously accessible if Σ_{E} is accessible on G.
(b) The ensemble $\left(\Sigma_{i}\right)_{i \in P}$ is called ensemble controllable if Σ_{E} is controllable on G.

Key notion:

Definition

Given $A, B \in \mathfrak{g}$ and $A^{\prime}, B^{\prime} \in \mathfrak{g}^{\prime}$, where \mathfrak{g} and \mathfrak{g}^{\prime} are arbitrary Lie algebras. We call the pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ Lie-related, if there exists a Lie algebra isomorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ such that

$$
A^{\prime}=\tau(A) \quad \text { and } \quad B^{\prime}=\tau(B)
$$

The standard Lie algebra isomorphism/automorphism are:

$$
A \mapsto T A T^{-1} \quad \text { (inner automorphism) and } A \mapsto-A^{\top}
$$

Finite Bilinear Ensembles

A general result for semisimple Lie groups:

Theorem (D. 2012, Turinici 2014)

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{N}$ be a semisimple (matrix) Lie algebra with simple ideals \mathfrak{g}_{i} and let G be the corresponding connected (matrix) Lie group. Then the following statements are equivalent:
(a)

$$
\dot{X}=(A+u(t) B) X, \quad u(t) \in \mathbb{R}
$$

is accessible on G.
(1) For all $i \in\{1, \ldots, N\}$ one has $\left\langle A_{i}, B_{i}\right\rangle_{L}=\mathfrak{g}_{i}$ and for all $i \neq j$ the pairs $\left(A_{i}, B_{i}\right)$ and $\left(A_{j}, B_{j}\right)$ are Lie-unrelated.

Here, A_{i} and B_{i} denote the i-th component of A and B with respect to the decomposition $\mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{N}$.

Finite Bilinear Ensembles

A few comments:

semisimple $=$ direct sum of simple Lie algebras

$$
\text { simple }=\text { no non-trivial ideals }
$$

- Examples of simple Lie algebras: $\mathfrak{s l}_{n}(\mathbb{R}), \mathfrak{s l}_{n}(\mathbb{C}), \mathfrak{s u}_{n}, \ldots$
- Given simple Lie algebras $\mathfrak{g}_{i} \subset \mathfrak{g l}_{n_{i}}(\mathbb{C}), i=1, \ldots, N$. Then

$$
\mathfrak{g}:=\left\{\left[\begin{array}{lll}
x_{1} & & 0 \\
& \ddots & \\
0 & & X_{s}
\end{array}\right] \quad X_{i} \in \mathfrak{g}_{i},\right\}
$$

constitutes a semisimple Lie subalgebra of $\mathfrak{g l}_{\bar{n}}(\mathbb{C})$ with $\bar{n}:=n_{1}+\cdots+n_{s}$.

- Not every semisimple Lie algebra is of the above "block form", for instance $\mathfrak{s o}_{4} \cong \mathfrak{5 o}_{3} \oplus \mathfrak{5 0}_{3}$.
- If G is compact then accessibility can be replaced by controllability.

Finite Bilinear Ensembles

Application to bilinear ensembles:

Corollary

Let \mathfrak{g}_{i} be simple (matrix) Lie algebras and let $G_{i} \subset G L_{n_{i}}(\mathbb{C})$ be the respective Lie subgroup. Moreover, let $A_{i}, B_{i} \in \mathfrak{g}_{i}$ for $i=1, \ldots, s$. Then the following statements are equivalent:
(a) The bilinear ensemble

$$
\begin{equation*}
\dot{X}_{i}=\left(A_{i}+u(t) B_{i}\right) X_{i}, \quad u(t) \in \mathbb{R}, \quad i=1, \ldots N \tag{i}
\end{equation*}
$$

is simultaneously accessible (ensemble controllable in the compact case).
(b) For all $i=1, \ldots, N$ one has $\left\langle A_{i}, B_{i}\right\rangle_{L}=\mathfrak{g}_{i}$ and for all $i \neq j$ the pairs $\left(A_{i}, B_{i}\right)$ and $\left(A_{j}, B_{j}\right)$ are Lie-unrelated.

Proof: Apply the previous result to the Lie algebra $\mathfrak{g}:=\underbrace{\mathfrak{g}_{0} \times \cdots \times \mathfrak{g}_{0}}_{s \text {-times }}$.

Sketch of the proof of the Theorem

Proof: For simplicity assume $N=2$ and $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}=\left\{\left[\begin{array}{cc}x_{1} & 0 \\ 0 & X_{2}\end{array}\right]: X_{i} \in \mathfrak{g}_{i}, i=1,2\right\}$. $" \Longrightarrow "$ Assume that $\left\langle A_{1}, B_{1}\right\rangle_{L}=: \mathfrak{s}_{1} \neq \mathfrak{g}_{1}$. Then

$$
\left\langle\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\right\rangle_{L} \subset \mathfrak{s}_{1} \oplus \mathfrak{g}_{2} \neq \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
$$

Next, assume $\left(A_{1}, B_{1}\right)$ and (A_{2}, B_{2}) are Lie-related, i.e. there exists a Lie isomorphism $\tau: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that

$$
A_{2}=\tau\left(A_{1}\right) \quad \text { and } \quad B_{2}=\tau\left(B_{1}\right)
$$

Clearly, this implies

$$
\left\langle\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\right\rangle_{L}=\left\{\left.\left[\begin{array}{cc}
X & 0 \\
0 & \tau(X)
\end{array}\right] \right\rvert\, X \in \mathfrak{g}_{1}\right\} \varsubsetneqq \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
$$

Hence the LARC fails in both cases and thus accessibility does not hold.

Sketch of the Proof of the Theorem

Proof: " \Longleftarrow ": To prove this direction, we need the following result:

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be simple and assume $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$. If the Lie algebra \mathfrak{s} generated by $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ and $\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right]$ is a graph over \mathfrak{g}_{1}, i.e.

$$
\mathfrak{s}=\left\{\left.\left[\begin{array}{cc}
x_{1} & 0 \\
0 & \Phi\left(X_{1}\right)
\end{array}\right] \right\rvert\, X_{1} \in \mathfrak{g}_{1}\right\}
$$

for some map $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$, then $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie algebra isomorphism.

Sketch of the Proof of the Theorem

Proof: " "": To prove this direction, we need the following result:

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be simple and assume $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$. If the Lie algebra \mathfrak{s} generated by $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ and $\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right]$ is a graph over \mathfrak{g}_{1}, i.e.

$$
\mathfrak{s}=\left\{\left.\left[\begin{array}{cc}
x_{1} & 0 \\
0 & \Phi\left(X_{1}\right)
\end{array}\right] \right\rvert\, X_{1} \in \mathfrak{g}_{1}\right\}
$$

for some map $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$, then $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie algebra isomorphism.

Proof of the lemma:

$\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ has to be onto due to the assumption $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$

Sketch of the Proof of the Theorem

Proof: " $\Longleftarrow ":$ To prove this direction, we need the following result:

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be simple and assume $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$. If the Lie algebra \mathfrak{s} generated by $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ and $\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right]$ is a graph over \mathfrak{g}_{1}, i.e.

$$
\mathfrak{s}=\left\{\left.\left[\begin{array}{cc}
x_{1} & 0 \\
0 & \Phi\left(X_{1}\right)
\end{array}\right] \right\rvert\, X_{1} \in \mathfrak{g}_{1}\right\}
$$

for some map $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$, then $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie algebra isomorphism.

Proof of the lemma:

$\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ has to be onto due to the assumption $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$
The kernel of $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is an ideal of \mathfrak{g}_{1}, hence $\operatorname{ker} \Phi=\{0\}$ or $\operatorname{ker} \Phi=\mathfrak{g}_{1}$.

Sketch of the Proof of the Theorem

Proof: " "": To prove this direction, we need the following result:

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be simple and assume $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$. If the Lie algebra \mathfrak{s} generated by $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ and $\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right]$ is a graph over \mathfrak{g}_{1}, i.e.

$$
\mathfrak{s}=\left\{\left.\left[\begin{array}{cc}
X_{1} & 0 \\
0 & \Phi\left(X_{1}\right)
\end{array}\right] \right\rvert\, X_{1} \in \mathfrak{g}_{1}\right\}
$$

for some map $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$, then $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie algebra isomorphism.

Proof of the lemma:

$\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ has to be onto due to the assumption $\left\langle A_{2}, B_{2}\right\rangle_{L}=\mathfrak{g}_{2}$
The kernel of $\Phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is an ideal of \mathfrak{g}_{1}, hence $\operatorname{ker} \Phi=\{0\}$ or $\operatorname{ker} \Phi=\mathfrak{g}_{1}$.
Since $\mathfrak{g}_{2} \neq\{0\}$, we conclude $\operatorname{ker} \Phi=\{0\}$ and hence Φ yields an isomorphism.

Sketch of the Proof of the Theorem

Proof: Now back to the proof of " \Longleftarrow ". Assume that the system is not accessible. Then the LARC implies

$$
\mathfrak{s}:=\left\langle\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\right\rangle_{L} \neq \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}
$$

Consider the canonical projections

$$
\begin{array}{lll}
\pi_{1} & : & \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \rightarrow \mathfrak{g}_{1},
\end{array} \quad \pi_{1}\left(\left[\begin{array}{cc}
x_{1} & 0 \\
0 & X_{2}
\end{array}\right]\right)=x_{1}, ~=\mathfrak{g}_{2}, \quad \pi_{2}\left(\left[\begin{array}{cc}
x_{1} & 0 \\
0 & X_{2}
\end{array}\right]\right)=x_{2} .
$$

It is easy to see that π_{1} and π_{2} are Lie algebra homomorphisms. Moreover, by assumption $\left.\pi_{1}\right|_{\mathfrak{s}}$ and $\left.\pi_{2}\right|_{\mathfrak{s}}$ are onto.
Simplicity of \mathfrak{g}_{2} then guarantees that the kernel of $\left.\pi_{1}\right|_{\mathfrak{s}}$ is either $\{0\}$ or \mathfrak{g}_{2}; the later case can be excluded by the assumption $\mathfrak{s} \neq \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$

Hence, \mathfrak{s} is a graph over \mathfrak{g}_{1} and the result follows by the previous lemma.

Infinite Bilinear Ensembles - the countable/continuum case

Given A parameter dependent family of bilinear systems (= bilinear ensemble)

$$
\begin{equation*}
\frac{\partial X}{\partial t}(t, \theta)=\left(A(\theta)+\sum_{k=1}^{m} u_{k}(t) B_{k}(\theta)\right) X(\theta), \quad u(t) \in \mathbb{R}^{m}, \quad \theta \in P \tag{E}
\end{equation*}
$$

defined on a common Lie group $G \subset \mathrm{GL}_{n}(\mathbb{C})$ with parameter set P.
Note: $u_{k}(t)$ is independent of $\theta \in P$
Possible parameter sets: $P:=\mathbb{N}$ or $P \subset \mathbb{R}^{d}$ compact

Key problems:

What's the "right" state space for the "ensemble"?
What can be said about the controllability of the "ensemble"?

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the countable case $P:=\mathbb{N}$
First approach: $\mathbf{G}=G^{\mathbb{N}}$ and $\mathfrak{g}=\mathfrak{g}^{\mathbb{N}}$
Problem: Does there exist a suitable Lie group structure for $G^{\mathbb{N}}$?

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the countable case $P:=\mathbb{N}$
First approach: $\mathbf{G}=G^{\mathbb{N}}$ and $\mathfrak{g}=\mathfrak{g}^{\mathbb{N}}$
Problem: Does there exist a suitable Lie group structure for $G^{\mathbb{N}}$?
Answer: $G^{\mathbb{N}}$ constitutes a Frechet Lie group with Lie algebra $\mathfrak{g}^{\mathbb{N}}$, but ...
BETTER: Consider suitable subgroups/subalgebras of $G^{\mathbb{N}}$ and $\mathfrak{g}^{\mathbb{N}}$, which can be equipped with a Banach Lie group/algebra structure, e.g.

$$
\ell_{p}(\mathfrak{g}):=\left\{\left(A_{k}\right)_{k \in \mathbb{N}}: \sum_{k=1}^{\infty}\left\|A_{k}\right\|^{p}<\infty\right\} \subset p \text {-Schatten class operators }
$$

acting on $\ell_{2}\left(\mathbb{R}^{n}\right)$, if $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R})$.

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the countable case $P:=\mathbb{N}$
First approach: $\mathbf{G}=G^{\mathbb{N}}$ and $\mathfrak{g}=\mathfrak{g}^{\mathbb{N}}$
Problem: Does there exist a suitable Lie group structure for $G^{\mathbb{N}}$?
Answer: $G^{\mathbb{N}}$ constitutes a Frechet Lie group with Lie algebra $\mathfrak{g}^{\mathbb{N}}$, but ...
BETTER: Consider suitable subgroups/subalgebras of $G^{\mathbb{N}}$ and $\mathfrak{g}^{\mathbb{N}}$, which can be equipped with a Banach Lie group/algebra structure, e.g.

$$
\ell_{p}(\mathfrak{g}):=\left\{\left(A_{k}\right)_{k \in \mathbb{N}}: \sum_{k=1}^{\infty}\left\|A_{k}\right\|^{p}<\infty\right\} \subset p \text {-Schatten class operators }
$$

acting on $\ell_{2}\left(\mathbb{R}^{n}\right)$, if $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R})$.

So far almost no results available!

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the continuum case $P \subset \mathbb{R}^{d}$
First approach: $\widehat{G}=G^{[0,1]}$ and $\widehat{\mathfrak{g}}=\mathfrak{g}^{[0,1]}$

Bad idea: $\mathfrak{g}^{[0,1]}$ is "only" a locally convex space

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the continuum case $P \subset \mathbb{R}^{d}$
First approach: $\widehat{G}=G^{[0,1]}$ and $\widehat{\mathfrak{g}}=\mathfrak{g}^{[0,1]}$

Bad idea: $\mathfrak{g}^{[0,1]}$ is "only" a locally convex space
BETTER: Consider again suitable subgroups/subalgebras of $G^{[0,1]}$ and $\mathfrak{g}^{[0,1]}$, which can be equipped with a Banach Lie group/algebra structure, e.g.

$$
C(P, G) \quad \text { and } \quad C(P, \mathfrak{g})
$$

acting on $C\left(P, \mathbb{R}^{n}\right)$ or $L^{p}\left(P, \mathbb{R}^{n}\right)$ as bounded multiplication operators, if $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R})$.

Infinite Bilinear Ensembles - the countable/continuum case

"Nice" state spaces in the continuum case $P \subset \mathbb{R}^{d}$
First approach: $\widehat{G}=G^{[0,1]}$ and $\widehat{\mathfrak{g}}=\mathfrak{g}^{[0,1]}$

Bad idea: $\mathfrak{g}^{[0,1]}$ is "only" a locally convex space
BETTER: Consider again suitable subgroups/subalgebras of $G^{[0,1]}$ and $\mathfrak{g}^{[0,1]}$, which can be equipped with a Banach Lie group/algebra structure, e.g.

$$
C(P, G) \quad \text { and } \quad C(P, \mathfrak{g})
$$

acting on $C\left(P, \mathbb{R}^{n}\right)$ or $L^{p}\left(P, \mathbb{R}^{n}\right)$ as bounded multiplication operators, if $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R})$.

Here some results are available!

Infinite Bilinear Ensembles - the continuous case

Theorem (Bloch Equation) [Khaneja \& Li 2009]

Let $P=[a, b]$ with $a>0$ and let $\mathbf{G}:=\mathrm{C}([a, b], S O(3))$. Then the infinite ensemble

$$
\frac{\partial X}{\partial t}(t, \theta)=\left(u_{1}(t) \theta \Omega_{1}+u_{2}(t) \theta \Omega_{1}\right) X(t, \theta), \quad\left(u_{1}(t), u_{2}(t)\right) \in \mathbb{R}^{2}
$$

is uniformly ensemble controllable on \mathbf{G}. Here, Ω_{1} and Ω_{1} denote the standard generators of rotations around the x - and y-axis, respectively, i.e.

$$
\Omega_{1}:=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array} 0 \quad 10 \text { and } \Omega_{2}:=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] .\right.
$$

Remark: A similar result has been proven by Beauchard, Coron, Rouchon 2010 Uniformly ensemble controllability: For all $X_{0}, X_{*} \in \mathbf{G}$ and all $\varepsilon>0$ there exists a $T \geq 0$ and a control $u:[0, T] \rightarrow \mathbb{R}^{2}$ such that

$$
\max _{\theta \in[a, b]}\left\|X\left(T, X_{0}, u\right)(\theta)-X_{*}(\theta)\right\|<\varepsilon
$$

Infinite Bilinear Ensembles - the continuous case

Sketch of the proof:

- Computing commutators between the control vector fields $\theta \Omega_{1}$ and $\theta \Omega_{2}$ yields:

$$
\begin{gathered}
{\left[\theta \Omega_{1}, \theta \Omega_{2}\right]=\theta^{2} \Omega_{3}, \quad\left[\theta^{2} \Omega_{3}, \theta \Omega_{1}\right]= \pm \theta^{3} \Omega_{2}, \quad\left[\theta^{2} \Omega_{3}, \theta \Omega_{2}\right]= \pm \theta^{3} \Omega_{1},} \\
{\left[\theta \Omega_{1}, \theta^{3} \Omega_{2}\right]=\theta^{4} \Omega_{3}, \quad\left[\theta^{4} \Omega_{3}, \theta \Omega_{1}\right]= \pm \theta^{5} \Omega_{2}, \quad \ldots}
\end{gathered}
$$

- Again Weierstraß shows that the closure of all these vector fields yields the entire Lie algebra and thus the closure of the reachable set coincides which $C([a, b], S O(3))$.

Infinite Bilinear Ensembles - the continuous case

Theorem [Chen 2019]

Let $P \subset \mathbb{R}^{d}$ be compact and $G \subset \mathrm{GL}(\mathbb{C})$ be a semisimple (matrix) Lie Group with Lie algebra \mathfrak{g}. Then there exist Lie algebra elements $B_{i} \in \mathfrak{g}$ and function $\rho_{j}: P \rightarrow \mathbb{R}$ such that the bilinear ensemble

$$
\frac{\partial X}{\partial t}(t, \theta)=\left(A(\theta)+\sum_{i, j} u_{i j}(t) \rho_{j}(\theta) B_{i}\right) X(t, \theta), \quad u_{i j} \in \mathbb{R}
$$

is uniformly ensemble controllable.

Idea of the proof: Use the root space decomposition of \mathfrak{g} and the StoneWeierstraß Approximation Theorem.

Infinite Bilinear Ensembles - the continuous case

Theorem (D. 2018 unpublished)

Let $P=[a, b]$ and let $\mathbf{G}:=\mathrm{C}([a, b], S U(n))$. Then the ensemble

$$
\frac{\partial X}{\partial t}(t, \theta)=\mathrm{i}\left(H_{0}(\theta)+u_{1}(t) H_{1}(\theta)+u_{2}(t) H_{2}(\theta)\right) X(t, \theta), \quad u_{1}(t), u_{2}(t) \in \mathbb{R}
$$

is uniformly ensemble controllable on \mathbf{G} if none of the off-diagonal entries of $H_{2}(\theta)$ vanishes and
$H_{1}(\theta)=\left(\begin{array}{ccc}\lambda_{1}(p) & & \\ & \ddots & \\ & & \lambda_{n}(p)\end{array}\right)$ is strongly regular in the following sense:

- $\lambda_{i}(\theta)-\lambda_{j}(\theta) \neq \lambda_{k}(\theta)-\lambda_{l}(\theta)$ for all $\theta \in P$ and $(i, j) \neq(k, l)$ with $i \neq j, k \neq I$.
- $\lambda_{i}(\theta)-\lambda_{j}(\theta) \neq \lambda_{k}\left(\theta^{\prime}\right)-\lambda_{l}\left(\theta^{\prime}\right)$ for all $\theta, \theta^{\prime} \in P$ with $\theta \neq \theta^{\prime}$ and $i \neq j, k \neq l$.

Note: The above results covers the previous result by Khaneja \& Li.

Infinite Bilinear Ensembles - the continuous case

Proof:

- Consider the linear operator

$$
\operatorname{ad}_{i H_{1}(\theta)}: \mathrm{C}([a, b], \mathfrak{s u}(n)) \rightarrow \mathrm{C}([a, b], \mathfrak{s u}(n))
$$

restricted to the subspace of all $\mathrm{i} H(\cdot)$ which vanish on the diagonal. Then $\mathrm{i} H_{2}(\cdot)$ is a cyclic vector of $\mathrm{iad}_{H_{1}(\cdot)}$ according to part I and the strong regularity assumption.

Infinite Bilinear Ensembles - the continuous case

Proof:

- Consider the linear operator

$$
\operatorname{ad}_{\mathrm{i} H_{1}(\theta)}: \mathrm{C}([a, b], \mathfrak{s u}(n)) \rightarrow \mathrm{C}([a, b], \mathfrak{s u}(n))
$$

restricted to the subspace of all $\mathrm{i} H(\cdot)$ which vanish on the diagonal. Then $\mathrm{i} H_{2}(\cdot)$ is a cyclic vector of $\mathrm{iad}_{H_{1}(\cdot)}$ according to part I and the strong regularity assumption.

- Reconstruct the diagonal elements of $\mathrm{C}([a, b], \mathfrak{s u}(n))$ as "usual" by taking further commutators.
- This shows that the closure of the system algebra coincides with $\mathrm{C}([a, b], \mathfrak{s u}(n))$ and thus we conclude uniform ensemble controllability.

Remark:

- Note that we did not use any compactness or recurrence arguments.
- If we have only one control even accessibility is not guaranteed!

Some References

Jr-ShinLi, N. Khaneja.
Ensemble control of Bloch equations.
IEEE Trans. Automatic Control 54, 2009.
K. Beauchard, JM. Coron, P. Rouchon.

Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations.
Communications in Mathematical $296,2010$.
X. Chen.

Structure theory for ensemble controllability, observability, and duality.
Mathematics of Control, Signals, and Systems, 31, 2019.
A. Agrachev, Y. Barishnikov, A. Sarychev.

Ensemble controllability by Lie algebraic methods.
ESAIM: Control, Optimization and Calculus of Variations 22, 2016.
A. Agrachev, A. Sarychev.

Control in the spaces of ensembles of points.
SIAM J. Control Optim. 58, 2020.
R. Robin, N. Augier, U. Boscain, M. Sigalotti.

Ensemble qubit controllability with a single control via adiabatic and rotating wave approximations.
Journal of Differential Equations 318, 2022.
FC. Chittaro, JP. Gauthier.
Asymptotic ensemble stabilizability of the Bloch equation.
Systems \& Control Letters 113, 2018.

Thanks a lot for your attention!

