Whitney Stratification of Algebraic Maps and Applications to Kinematic Singularities

```
Martin Helmer
North Carolina State University
joint work with Vidit Nanda (Oxford)
FOCM, 2022: https://doi.org/10.1007/s10208-022-09574-8
June 15, 2023
```


Inverse Kinematics and the Singularities of Kinematic Maps

Think of a kinematic map as: a function $f: C \rightarrow S$ where C is the configuration space and S the output state space (workspace).

Inverse Kinematics and the Singularities of Kinematic Maps

Think of a kinematic map as: a function $f: C \rightarrow S$ where C is the configuration space and S the output state space (workspace).

Even when f, C, and S are smooth the map may have singularities.

Inverse Kinematics and the Singularities of Kinematic Maps

Think of a kinematic map as: a function $f: C \rightarrow S$ where C is the configuration space and S the output state space (workspace).

Even when f, C, and S are smooth the map may have singularities.
Set $m=\operatorname{dim}(C), n=\operatorname{dim}(S)$. The derivative of f at a point $p \in C$ is a linear map $T_{p} C \rightarrow T_{f}(p) S$ between tangent spaces defined by $J(p)$, the $n \times m$ Jacobian matrix of f evaluated at p.

The singular locus of $f: \Sigma_{f}:=\{p \in C \mid \operatorname{rank}(J(p))<\min (m, n)\}$.
At points $p \in \Sigma_{f}$ the mechanism may loose a degree of freedom causing a loss of control, but this may not happen at all points in Σ_{f}.

Inverse Kinematics and the Singularities of Kinematic Maps

Think of a kinematic map as: a function $f: C \rightarrow S$ where C is the configuration space and S the output state space (workspace).

Even when f, C, and S are smooth the map may have singularities.
Set $m=\operatorname{dim}(C), n=\operatorname{dim}(S)$. The derivative of f at a point $p \in C$ is a linear map $T_{p} C \rightarrow T_{f}(p) S$ between tangent spaces defined by $J(p)$, the $n \times m$ Jacobian matrix of f evaluated at p.

The singular locus of $f: \Sigma_{f}:=\{p \in C \mid \operatorname{rank}(J(p))<\min (m, n)\}$.
At points $p \in \Sigma_{f}$ the mechanism may loose a degree of freedom causing a loss of control, but this may not happen at all points in Σ_{f}.

Goal: understand the global geometry \& topology of f, Σ_{f}, f^{-1}.

Mathematical Tools and Setting

More Precise Goal: stratify the map f, i.e. subdivide C and S into finitely many manifold regions so that the fibres $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ are topologically identical for any two points in a region of S.

Mathematical Tools and Setting

More Precise Goal: stratify the map f, i.e. subdivide C and S into finitely many manifold regions so that the fibres $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ are topologically identical for any two points in a region of S.

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for classification of kinematic singularities, to classify all singularities globally.

Mathematical Tools and Setting

More Precise Goal: stratify the map f, i.e. subdivide C and S into finitely many manifold regions so that the fibres $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ are topologically identical for any two points in a region of S.

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for classification of kinematic singularities, to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case where C, S are algebraic varieties and f is a polynomial map.

$$
2 x y z-x^{2}-y^{2}-z^{2}+1=0
$$

Mathematical Tools and Setting

More Precise Goal: stratify the map f, i.e. subdivide C and S into finitely many manifold regions so that the fibres $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ are topologically identical for any two points in a region of S.

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for classification of kinematic singularities, to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case where C, S are algebraic varieties and f is a polynomial map.

$$
2 x y z-x^{2}-y^{2}-z^{2}+1=0
$$

We can see varieties as a non-linear analogue of v . spaces: we rewrite \& solve poly. systems via Gröbner basis instead of linear systems via Gaussian elim.

Stratifying Varieties

To stratify maps we must first stratify varieties.... these contain singular regions, i.e. regions which are not smooth manifolds.

Stratifying Varieties

To stratify maps we must first stratify varieties.... these contain singular regions, i.e. regions which are not smooth manifolds.

Objects of interest: singular spaces defined by polynomials, such as the figures below.

Stratifying Varieties

To stratify maps we must first stratify varieties.... these contain singular regions, i.e. regions which are not smooth manifolds.

Objects of interest: singular spaces defined by polynomials, such as the figures below.

We seek to stratify these spaces by separating them into smooth manifolds which join in a nice way.

Stratifying Varieties

More precisely, we will (first) consider (complex) algebraic varieties

$$
X=\mathbb{V}\left(I_{X}\right)=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)=\left\{p \in \mathbb{C}^{n} \mid f_{1}(p)=\cdots=f_{r}(p)=0\right\}
$$

Stratifying Varieties

More precisely, we will (first) consider (complex) algebraic varieties

$$
X=\mathbb{V}\left(I_{X}\right)=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)=\left\{p \in \mathbb{C}^{n} \mid f_{1}(p)=\cdots=f_{r}(p)=0\right\}
$$

A point $p \in X$ is singular if the Jacobian matrix of the f_{i} drops rank at p.

A stratification is a filtration, $X_{0}, \emptyset=X_{-1} \subset X_{0} \subset \cdots \subset X_{n}=X$ of X s.t. $X=\cup_{i} X_{i}$ and s.t. each strata $\mathcal{M}=X_{i}-X_{i-1}$ is either empty or smooth, i.e. is a manifold, and has pure dimension.

Stratifying Varieties

More precisely, we will (first) consider (complex) algebraic varieties

$$
X=\mathbb{V}\left(I_{X}\right)=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)=\left\{p \in \mathbb{C}^{n} \mid f_{1}(p)=\cdots=f_{r}(p)=0\right\}
$$

A point $p \in X$ is singular if the Jacobian matrix of the f_{i} drops rank at p.

A stratification is a filtration, $X_{0}, \emptyset=X_{-1} \subset X_{0} \subset \cdots \subset X_{n}=X$ of X s.t. $X=\cup_{i} X_{i}$ and s.t. each strata $\mathcal{M}=X_{i}-X_{i-1}$ is either empty or smooth, i.e. is a manifold, and has pure dimension.

Additionally: want decomposition $X=\sqcup_{i} \mathcal{M}_{i}$ to be equisingular, i.e. the neighbourhood in X of any 2 points in a connected comp. of \mathcal{M}_{i} is "similar".

Whitney Stratification

For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$

Whitney Stratification

For X_{0} to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$ for any sequences $\left\{x_{i}\right\} \subset \sigma,\left\{y_{i}\right\} \subset \tau$, both converging to y

Whitney Stratification

For X_{0} to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$ for any sequences $\left\{x_{i}\right\} \subset \sigma,\left\{y_{i}\right\} \subset \tau$, both converging to y if secant lines $\left[x_{i}, y_{i}\right] \rightarrow \ell$

Whitney Stratification

For X_{\bullet} to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$ for any sequences $\left\{x_{i}\right\} \subset \sigma,\left\{y_{i}\right\} \subset \tau$, both converging to y if secant lines $\left[x_{i}, y_{i}\right] \rightarrow \ell$ and tangent planes $T_{x_{i}} \sigma \rightarrow T$ then $\ell \subset T$

Whitney Stratification

For X_{\bullet} to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$ for any sequences $\left\{x_{i}\right\} \subset \sigma,\left\{y_{i}\right\} \subset \tau$, both converging to y if secant lines $\left[x_{i}, y_{i}\right] \rightarrow \ell$ and tangent planes $T_{x_{i}} \sigma \rightarrow T$ then $\ell \subset T$

Theorem (H. Whitney, Annals of Math.1965)
A stratification where all strata pairs satisfy Condition B exists for all algebraic varieties. Further, Condition B implies equisingularity.

Whitney Stratification

For X_{\bullet} to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata $\sigma, \tau \subset X$ and a point $y \in \tau$ for any sequences $\left\{x_{i}\right\} \subset \sigma,\left\{y_{i}\right\} \subset \tau$, both converging to y if secant lines $\left[x_{i}, y_{i}\right] \rightarrow \ell$ and tangent planes $T_{x_{i}} \sigma \rightarrow T$ then $\ell \subset T$

Theorem (H. Whitney, Annals of Math.1965)
A stratification where all strata pairs satisfy Condition B exists for all algebraic varieties. Further, Condition B implies equisingularity.

Goal: given equations defining X efficiently compute a Whitney stratification (compute $=$ find equations for each X_{i}).

Example: Our Algorithm Applied to the Whitney Umbrella

There has long been significant interest in algorithmic computation of Whitney stratifications (e.g. Mostowski \& Rannou 1991, Rannou 1998, Đinh \& Jelonek 2021); previous methods have proved impractical on even the smallest examples.

```
Macaulay2, version 1.21
with packages: ConwayPolynomials, Elimination
i1 : needsPackage "WhitneyStratifications
o1 = WhitneyStratifications
o1 : Package
i2 : R=QQ[x..z];
i3 : X=ideal((x^2*z-y^2);
03 : Ideal of R
i4 : time W=whitneyStratify X;
    -- used 0.28765 seconds
i5 : peek W
05 = MutableHashTable{0 => {ideal (z, y, x)}}
                                    1 => {ideal (y, x)}
    2 => {ideal(x z - y )}
```


First Ingredients: Conormal Variety

Notation: write $X_{\text {reg }}=$ set of all smooth points of a variety $X=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)$.
The conormal variety of X is the subvariety

$$
\operatorname{Con}(X)=\overline{\left\{(p, \xi) \mid p \in X_{\mathrm{reg}}, T_{p} X_{\mathrm{reg}} \subset \xi\right\} \subset X \times\left(\mathbb{P}^{n}\right), ~}
$$

given by closing the set of pairs of points $p \in X_{\text {reg }}$ with hyperplanes ξ containing $T_{p} X_{\text {reg }}$; hyperplanes are represented by their normal vectors.

First Ingredients: Conormal Variety

Notation: write $X_{\text {reg }}=$ set of all smooth points of a variety $X=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)$.
The conormal variety of X is the subvariety

$$
\operatorname{Con}(X)=\overline{\left\{(p, \xi) \mid p \in X_{\mathrm{reg}}, T_{p} X_{\mathrm{reg}} \subset \xi\right\}} \subset X \times\left(\mathbb{P}^{n}\right)
$$

given by closing the set of pairs of points $p \in X_{\text {reg }}$ with hyperplanes ξ containing $T_{p} X_{\text {reg }}$; hyperplanes are represented by their normal vectors.
The Conormal map is the projection $\kappa_{X}: \operatorname{Con}(X) \rightarrow X$.
The fiber $\kappa_{X}^{-1}(p)$ consists of all hyperplanes containing a tangent space or limiting tangent space at p.

First Ingredients: Conormal Variety

Notation: write $X_{\text {reg }}=$ set of all smooth points of a variety $X=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right)$.
The conormal variety of X is the subvariety

$$
\operatorname{Con}(X)=\overline{\left\{(p, \xi) \mid p \in X_{\mathrm{reg}}, T_{p} X_{\mathrm{reg}} \subset \xi\right\}} \subset X \times\left(\mathbb{P}^{n}\right)
$$

given by closing the set of pairs of points $p \in X_{\text {reg }}$ with hyperplanes ξ containing $T_{p} X_{\text {reg }}$; hyperplanes are represented by their normal vectors.

The Conormal map is the projection $\kappa_{X}: \operatorname{Con}(X) \rightarrow X$.
The fiber $\kappa_{X}^{-1}(p)$ consists of all hyperplanes containing a tangent space or limiting tangent space at p.

Eqs. $I_{\text {Con }(X)}$ defining Con (X) are easily computed from the f_{i} via Gröbner basis.

One Last Ingredient: Associated Primes

For a polynomial ideal I we can compute a primary decomposition:

$$
I=Q_{1} \cap \cdots \cap Q_{\ell}
$$

where Q_{i} is a primary ideal (if $a b \in Q_{i}$, either a or b^{n} is in Q_{i}).
The associated prime ideals $P_{i}=\sqrt{Q_{i}}$ are unique (Q_{i} need not be) and

$$
\mathbb{V}(I)=\mathbb{V}\left(Q_{1}\right) \cup \cdots \cup \mathbb{V}\left(Q_{\ell}\right)=\mathbb{V}\left(P_{1}\right) \cup \cdots \cup \mathbb{V}\left(P_{\ell}\right)
$$

where each variety above is irreducible. $\mathbb{V}\left(P_{j}\right) \subset \mathbb{V}\left(P_{i}\right)$ is possible;

One Last Ingredient: Associated Primes

For a polynomial ideal I we can compute a primary decomposition:

$$
I=Q_{1} \cap \cdots \cap Q_{\ell}
$$

where Q_{i} is a primary ideal (if $a b \in Q_{i}$, either a or b^{n} is in Q_{i}).
The associated prime ideals $P_{i}=\sqrt{Q_{i}}$ are unique (Q_{i} need not be) and

$$
\mathbb{V}(I)=\mathbb{V}\left(Q_{1}\right) \cup \cdots \cup \mathbb{V}\left(Q_{\ell}\right)=\mathbb{V}\left(P_{1}\right) \cup \cdots \cup \mathbb{V}\left(P_{\ell}\right)
$$

where each variety above is irreducible. $\mathbb{V}\left(P_{j}\right) \subset \mathbb{V}\left(P_{i}\right)$ is possible;e.g. $I=\left\langle x^{2} y^{2}-x^{2} y-y^{3}+y^{2}, x^{3} y-x^{3}-x y^{2}+x y\right\rangle=\langle y-1\rangle \cap\left\langle y-x^{2}\right\rangle \cap\left\langle x, y^{3}\right\rangle$

The associated primes are:

$$
\langle y-1\rangle,\left\langle y-x^{2}\right\rangle,\langle x, y\rangle .
$$

Our Algebraic Criterion

Let X be a pure dimensional variety and $Y \subset X_{\text {Sing }}=\left(X-X_{\text {reg }}\right)$ be a nonempty irreducible subvariety.

Goal: find all points in Y where Condition B fails w.r.t. X.

Our Algebraic Criterion

Let X be a pure dimensional variety and $Y \subset X_{\text {Sing }}=\left(X-X_{\text {reg }}\right)$ be a nonempty irreducible subvariety.

Goal: find all points in Y where Condition B fails w.r.t. X.
Theorem (H. and Nanda, 2022)
Set $I_{\kappa_{X}^{-1}(Y)}:=I_{C o n(X)}+I_{Y}$. Let $\left\{P_{1}, \ldots, P_{s}\right\}$ be the associated primes of $I_{\kappa_{X}^{-1}(Y)}$, let $\sigma \subset\{1,2, \ldots, s\}$ be the set of indices i with $\operatorname{dim} \kappa_{x}\left(\mathbb{V}\left(P_{i}\right)\right)<\operatorname{dim} Y$ and let

$$
A:=\left[\bigcup_{i \in \sigma} \kappa_{X}\left(\mathbb{V}\left(P_{i}\right)\right)\right] \cup Y_{\text {sing }} .
$$

Then the pair $\left(X_{\text {reg }}, Y-A\right)$ satisfies Condition (B).

Our Algebraic Criterion

Let X be a pure dimensional variety and $Y \subset X_{\text {Sing }}=\left(X-X_{\text {reg }}\right)$ be a nonempty irreducible subvariety.

Goal: find all points in Y where Condition B fails w.r.t. X.

Theorem (H. and Nanda, 2022)

Set $I_{\kappa_{X}^{-1}(Y)}:=I_{\operatorname{Con}(X)}+I_{Y}$. Let $\left\{P_{1}, \ldots, P_{s}\right\}$ be the associated primes of $I_{\kappa_{X}^{-1}(Y)}$, let $\sigma \subset\{1,2, \ldots, s\}$ be the set of indices i with $\operatorname{dim} \kappa_{x}\left(\mathbb{V}\left(P_{i}\right)\right)<\operatorname{dim} Y$ and let

$$
A:=\left[\bigcup_{i \in \sigma} \kappa_{X}\left(\mathbb{V}\left(P_{i}\right)\right)\right] \cup Y_{\text {sing }} .
$$

Then the pair $\left(X_{\text {reg }}, Y-A\right)$ satisfies Condition (B).

Note: this identifies the points of interest and is computable using Gröbner basis calculations only.

Idea of Our Algorithm

Input: An ideal I_{X} defining a variety X of dimension k.
Our Criterion: All points in $Y_{\text {reg }}$ where Condition B fails with respect to X are contained in $\bigcup_{i \in \sigma} \kappa_{X}\left(\mathbb{V}\left(P_{i}\right)\right)$.

Roughly speaking, our algorithm proceeds as follows:

- Compute $Y_{1}=X_{\text {Sing }}$ by finding the ideal generated by the $(n-k) \times(n-k)$-minors of the Jacobian of I_{X}.

Idea of Our Algorithm

Input: An ideal I_{X} defining a variety X of dimension k.
Our Criterion: All points in $Y_{\text {reg }}$ where Condition B fails with respect to X are contained in $\bigcup_{i \in \sigma} \kappa X\left(\mathbb{V}\left(P_{i}\right)\right)$.
Roughly speaking, our algorithm proceeds as follows:

- Compute $Y_{1}=X_{\text {Sing }}$ by finding the ideal generated by the $(n-k) \times(n-k)$-minors of the Jacobian of I_{X}.
- Compute $I_{\kappa_{X}^{1}\left(Y_{1}\right)}=I_{\operatorname{Con}(X)}+I_{Y_{1}}$.
- Compute associated primes $\left\{P_{1}, \ldots, P_{s}\right\}$ of $I_{\kappa_{X}^{-1}\left(Y_{1}\right)}$ and by our criterion Condition B fails on $Y_{2}=\bigcup_{i \in \sigma} \kappa X\left(\mathbb{V}\left(\hat{P}_{i}\right)\right) \cup Y_{\text {sing }}$ where σ collects all i with $\operatorname{dim}\left(\kappa_{X}^{-1}\left(\mathbb{V}\left(P_{i}\right)\right)\right)<\operatorname{dim} Y_{1}$.

Idea of Our Algorithm

Input: An ideal I_{X} defining a variety X of dimension k.
Our Criterion: All points in $Y_{\text {reg }}$ where Condition B fails with respect to X are contained in $\bigcup_{i \in \sigma} \kappa X\left(\mathbb{V}\left(P_{i}\right)\right)$.

Roughly speaking, our algorithm proceeds as follows:

- Compute $Y_{1}=X_{\text {Sing }}$ by finding the ideal generated by the $(n-k) \times(n-k)$-minors of the Jacobian of I_{X}.
- Compute $I_{\kappa_{X}^{1}\left(Y_{1}\right)}=I_{\operatorname{Con}(X)}+I_{Y_{1}}$.
- Compute associated primes $\left\{P_{1}, \ldots, P_{s}\right\}$ of $I_{\kappa_{X}^{-1}\left(Y_{1}\right)}$ and by our criterion Condition B fails on $Y_{2}=\bigcup_{i \in \sigma} \kappa X\left(\mathbb{V}\left(\hat{P}_{i}\right)\right) \cup Y_{\text {sing }}$ where σ collects all i with $\operatorname{dim}\left(\kappa_{X}^{-1}\left(\mathbb{V}\left(P_{i}\right)\right)\right)<\operatorname{dim} Y_{1}$.
- Repeat this with Y_{2}; continue until done.

The above leads to a procedure to construct a stratification where each peice satisfies Whitney's Condition B with respect to the top stratum.

Stratifying Maps

Recall: we wanted to globally understand kinematic maps $f: C \rightarrow S$ via stratification where the configuration and state spaces are varieties.

Exact Map Stratification Definition:

Let X, Y be algebraic varieties and $f: X \rightarrow Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that the restriction $\left.f\right|_{s}: S \rightarrow R$ is surjective, with a surjective derivative.

Stratifying Maps

Recall: we wanted to globally understand kinematic maps $f: C \rightarrow S$ via stratification where the configuration and state spaces are varieties.

Exact Map Stratification Definition:

Let X, Y be algebraic varieties and $f: X \rightarrow Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that the restriction $\left.f\right|_{s}: S \rightarrow R$ is surjective, with a surjective derivative.

Consequence: For q, q^{\prime} in the same stratum N of Y the fibers $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ have the same topology.

Stratifying Maps

Recall: we wanted to globally understand kinematic maps $f: C \rightarrow S$ via stratification where the configuration and state spaces are varieties.

Exact Map Stratification Definition:

Let X, Y be algebraic varieties and $f: X \rightarrow Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that the restriction $\left.f\right|_{s}: S \rightarrow R$ is surjective, with a surjective derivative.

Consequence: For q, q^{\prime} in the same stratum N of Y the fibers $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ have the same topology.

In our 2022 paper (H.\& Nanda, in Found. Comut Math) we construct an effective algorithm to stratify a map $f: X \rightarrow Y$ where $X \subset \mathbb{C}^{n}, Y \subset \mathbb{C}^{m}$.

Stratifying Maps

Recall: we wanted to globally understand kinematic maps $f: C \rightarrow S$ via stratification where the configuration and state spaces are varieties.

Exact Map Stratification Definition:

Let X, Y be algebraic varieties and $f: X \rightarrow Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that the restriction $\left.f\right|_{s}: S \rightarrow R$ is surjective, with a surjective derivative.

Consequence: For q, q^{\prime} in the same stratum N of Y the fibers $f^{-1}(q)$ and $f^{-1}\left(q^{\prime}\right)$ have the same topology.

In our 2022 paper (H.\& Nanda, in Found. Comut Math) we construct an effective algorithm to stratify a map $f: X \rightarrow Y$ where $X \subset \mathbb{C}^{n}, Y \subset \mathbb{C}^{m}$.

The key ingredient is the Whitney stratification algorithm presented earlier.

Stratifying Maps between Real Varieties

For planar mechanisms we can use the complex version directly via isotropic coordinates on \mathbb{R}^{2}, i.e. represent $(x, y) \in \mathbb{R}^{2}$ as $x+i y \in \mathbb{C}$.

This introduces unnecessary computational overhead, however, and even more so when generalized to \mathbb{R}^{3}.

Stratifying Maps between Real Varieties

For planar mechanisms we can use the complex version directly via isotropic coordinates on \mathbb{R}^{2}, i.e. represent $(x, y) \in \mathbb{R}^{2}$ as $x+i y \in \mathbb{C}$.

This introduces unnecessary computational overhead, however, and even more so when generalized to \mathbb{R}^{3}.

In ongoing work (funded by the AFOSR) nearing completion, which should be appearing on the arxiv in the next couple months, we extend our algorithms to real varieties.

Stratifying Maps between Real Varieties

For planar mechanisms we can use the complex version directly via isotropic coordinates on \mathbb{R}^{2}, i.e. represent $(x, y) \in \mathbb{R}^{2}$ as $x+i y \in \mathbb{C}$.

This introduces unnecessary computational overhead, however, and even more so when generalized to \mathbb{R}^{3}.

In ongoing work (funded by the AFOSR) nearing completion, which should be appearing on the arxiv in the next couple months, we extend our algorithms to real varieties.

This will allow us to compute Whitney stratification of real varieties $V \subset \mathbb{R}^{n}$ and of polynomial maps $f: X \rightarrow Y$, where $X \subset \mathbb{R}^{n}, Y \subset \mathbb{R}^{m}$, using Gröbner basis calculations only.

Summary

We have described an algorithm to compute a Whitney stratification an algebraic variety $X \subset \mathbb{C}^{n}$ and of algebraic maps $f: X \rightarrow Y$.

- Ongoing work (funded by AFOSR) gives a similar algorithm to find Whitney stratifications of real varieties $X \subset \mathbb{R}^{n}$ and to stratify algebraic maps between real varieties.
- This will allow us to stratify kinematic maps $f: C \rightarrow S$, where C and S are real varieties, (eventually) enabling a global study of their singularities using topological techniques.
- There is a M2 package called WhitneyStratifications which implements this.

Package Docs: https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/ Macaulay2/WhitneyStratifications/html/index.html

Thank You!

Thank you for your attention!

Paper: https://doi.org/10.1007/s10208-022-09574-8
Code: https://faculty.math.i1linois. .edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/ WhitneyStratifications/html/index.html

