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Inverse Kinematics and the Singularities of Kinematic Maps

Think of a kinematic map as: a function
f : C → S where C is the configura-
tion space and S the output state space
(workspace).

Even when f , C , and S are smooth the map may have singularities.

Set m = dim(C ), n = dim(S). The derivative of f at a point p ∈ C is a
linear map TpC → Tf (p)S between tangent spaces defined by J(p), the
n ×m Jacobian matrix of f evaluated at p.

The singular locus of f : Σf := {p ∈ C | rank(J(p)) < min(m, n)}.

At points p ∈ Σf the mechanism may loose a degree of freedom causing
a loss of control, but this may not happen at all points in Σf .

Goal: understand the global geometry & topology of f , Σf , f −1.
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Mathematical Tools and Setting

More Precise Goal: stratify the map f , i.e. subdivide C and S into
finitely many manifold regions so that the fibres f −1(q) and f −1(q′) are
topologically identical for any two points in a region of S .

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for

classification of kinematic singularities],to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case
where C , S are algebraic varieties and f is a polynomial map.

2xyz − x2 − y2 − z2 + 1 = 0 x4 − x2 + z2 = y2 − x2 = 0

We can see varieties as a non-linear analogue of v. spaces: we rewrite & solve
poly. systems via Gröbner basis instead of linear systems via Gaussian elim.



Mathematical Tools and Setting

More Precise Goal: stratify the map f , i.e. subdivide C and S into
finitely many manifold regions so that the fibres f −1(q) and f −1(q′) are
topologically identical for any two points in a region of S .

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for

classification of kinematic singularities],to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case
where C , S are algebraic varieties and f is a polynomial map.

2xyz − x2 − y2 − z2 + 1 = 0 x4 − x2 + z2 = y2 − x2 = 0

We can see varieties as a non-linear analogue of v. spaces: we rewrite & solve
poly. systems via Gröbner basis instead of linear systems via Gaussian elim.



Mathematical Tools and Setting

More Precise Goal: stratify the map f , i.e. subdivide C and S into
finitely many manifold regions so that the fibres f −1(q) and f −1(q′) are
topologically identical for any two points in a region of S .

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for

classification of kinematic singularities],to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case
where C , S are algebraic varieties and f is a polynomial map.

2xyz − x2 − y2 − z2 + 1 = 0 x4 − x2 + z2 = y2 − x2 = 0

We can see varieties as a non-linear analogue of v. spaces: we rewrite & solve
poly. systems via Gröbner basis instead of linear systems via Gaussian elim.



Mathematical Tools and Setting

More Precise Goal: stratify the map f , i.e. subdivide C and S into
finitely many manifold regions so that the fibres f −1(q) and f −1(q′) are
topologically identical for any two points in a region of S .

Upshot: we can use topological criteria, e.g. [Leve, 2020, Homological invariants for

classification of kinematic singularities],to classify all singularities globally.

Setting: To enable effective global computations we restrict to the case
where C , S are algebraic varieties and f is a polynomial map.

2xyz − x2 − y2 − z2 + 1 = 0 x4 − x2 + z2 = y2 − x2 = 0

We can see varieties as a non-linear analogue of v. spaces: we rewrite & solve
poly. systems via Gröbner basis instead of linear systems via Gaussian elim.



Stratifying Varieties

To stratify maps we must first stratify varieties.... these contain
singular regions, i.e. regions which are not smooth manifolds.

Objects of interest: singular spaces defined by polynomials, such
as the figures below.

We seek to stratify these spaces by separating them into smooth
manifolds which join in a nice way.
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Stratifying Varieties

More precisely, we will (first) consider (complex) algebraic varieties

X = V(IX ) = V(f1, . . . , fr ) = {p ∈ Cn | f1(p) = · · · = fr (p) = 0} .

A point p ∈ X is singular if the Jacobian matrix of the fi drops rank at p.

A stratification is a filtration, X•, ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X of
X s.t. X = ∪iXi and s.t. each strataM = Xi − Xi−1 is either
empty or smooth, i.e. is a manifold, and has pure dimension.

Additionally: want decomposition X = tiMi to be
equisingular; i.e. the neighbourhood in X of
any 2 points in a connected comp. of Mi is “similar”.
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Whitney Stratification

For X• to be a Whitney Stratification these strata must satisfy
Condition B: for each pair of strata σ, τ ⊂ X and a point y ∈ τ

for any sequences {xi} ⊂ σ, {yi} ⊂ τ , both converging to y

if secant lines [xi , yi ]→ ` and tangent planes Txiσ → T
then ` ⊂ T

Theorem (H. Whitney, Annals of Math.,1965)
A stratification where all strata pairs satisfy Condition B exists for all
algebraic varieties. Further, Condition B implies equisingularity.

Goal: given equations defining X efficiently compute a Whitney
stratification (compute = find equations for each Xi ).
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Example: Our Algorithm Applied to the Whitney Umbrella

There has long been significant interest in algorithmic computation of
Whitney stratifications (e.g. Mostowski & Rannou 1991, Rannou 1998, Ðinh & Jelonek 2021);
previous methods have proved impractical on even the smallest examples.



First Ingredients: Conormal Variety

Notation: write Xreg = set of all smooth points of a variety X = V(f1, . . . , fr ).

The conormal variety of X is the subvariety

Con(X ) = {(p, ξ) | p ∈ Xreg, TpXreg ⊂ ξ} ⊂ X × (Pn),

given by closing the set of pairs of points p ∈ Xreg with hyperplanes ξ
containing TpXreg; hyperplanes are represented by their normal vectors.

The Conormal map is the projection κX : Con(X )→ X .

The fiber κ−1
X (p) consists of all hyperplanes containing a tangent space

or limiting tangent space at p.

Eqs. ICon(X ) defining Con(X ) are easily computed from the fi via Gröbner basis.
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One Last Ingredient: Associated Primes

For a polynomial ideal I we can compute a primary decomposition:

I = Q1 ∩ · · · ∩ Q`

where Qi is a primary ideal (if ab ∈ Qi , either a or bn is in Qi ).

The associated prime ideals Pi =
√
Qi are unique (Qi need not be) and

V(I ) = V(Q1) ∪ · · · ∪ V(Q`) = V(P1) ∪ · · · ∪ V(P`),

where each variety above is irreducible. V(Pj) ⊂ V(Pi ) is possible;

e.g.

I = 〈x2y2− x2y − y3+ y2, x3y − x3− x y2+ x y〉 = 〈y − 1〉 ∩ 〈y − x2〉 ∩ 〈x , y3〉

The associated primes are:
〈y − 1〉, 〈y − x2〉, 〈x , y〉.
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Our Algebraic Criterion

Let X be a pure dimensional variety and Y ⊂ XSing = (X − Xreg)

be a nonempty irreducible subvariety.

Goal: find all points in Y where Condition B fails w.r.t. X .

Theorem (H. and Nanda, 2022)

Set Iκ−1X (Y ) := ICon(X ) + IY . Let {P1, . . . ,Ps} be the associated
primes of Iκ−1X (Y ), let σ ⊂ {1, 2, . . . , s} be the set of indices i with
dimκX (V(Pi )) < dimY and let

A :=

[⋃
i∈σ

κX (V(Pi ))

]
∪ Ysing.

Then the pair (Xreg,Y − A) satisfies Condition (B).

Note: this identifies the points of interest and is computable using
Gröbner basis calculations only.
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Idea of Our Algorithm

Input: An ideal IX defining a variety X of dimension k .

Our Criterion: All points in Yreg where Condition B fails with
respect to X are contained in

⋃
i∈σ κX (V(Pi )).

Roughly speaking, our algorithm proceeds as follows:

• Compute Y1 = XSing by finding the ideal generated by the
(n − k)× (n − k)-minors of the Jacobian of IX .

• Compute Iκ−1
X (Y1)

= ICon(X ) + IY1 .

• Compute associated primes {P1, . . . ,Ps} of Iκ−1
X (Y1)

and by our
criterion Condition B fails on Y2 =

⋃
i∈σ κX (V(Pi )) ∪ Ysing where

σ collects all i with dim(κ−1
X (V(Pi ))) < dimY1.

• Repeat this with Y2; continue until done.

The above leads to a procedure to construct a stratification where each
peice satisfies Whitney’s Condition B with respect to the top stratum.
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Stratifying Maps

Recall: we wanted to globally understand kinematic maps f : C → S via
stratification where the configuration and state spaces are varieties.

Exact Map Stratification Definition:
Let X ,Y be algebraic varieties and f : X → Y an algebraic map. A
stratification of f , is a Whitney stratification of X and Y so that for every
strata S of X there is a strata R of Y such that the restriction f |S : S → R is
surjective, with a surjective derivative.

Consequence: For q, q′ in the same stratum N of Y the fibers f −1(q) and
f −1(q′) have the same topology.

In our 2022 paper (H.& Nanda, in Found. Comut Math) we construct an effective
algorithm to stratify a map f : X → Y where X ⊂ Cn, Y ⊂ Cm.

The key ingredient is the Whitney stratification algorithm presented earlier.
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Stratifying Maps between Real Varieties

For planar mechanisms we can use the complex version directly via isotropic
coordinates on R2, i.e. represent (x , y) ∈ R2 as x + iy ∈ C.

This introduces unnecessary computational overhead, however, and even more

so when generalized to R3.

In ongoing work (funded by the AFOSR) nearing completion, which
should be appearing on the arxiv in the next couple months, we
extend our algorithms to real varieties.

This will allow us to compute Whitney stratification of real
varieties V ⊂ Rn and of polynomial maps f : X → Y , where
X ⊂ Rn, Y ⊂ Rm, using Gröbner basis calculations only.
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Summary

We have described an algorithm to compute a Whitney
stratification an algebraic variety X ⊂ Cn and of algebraic maps
f : X → Y .

• Ongoing work (funded by AFOSR) gives a similar algorithm to
find Whitney stratifications of real varieties X ⊂ Rn and to
stratify algebraic maps between real varieties.

• This will allow us to stratify kinematic maps f : C → S , where
C and S are real varieties, (eventually) enabling a global study
of their singularities using topological techniques.

• There is a M2 package called WhitneyStratifications which
implements this.

Package Docs: https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/
Macaulay2/WhitneyStratifications/html/index.html

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/WhitneyStratifications/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/WhitneyStratifications/html/index.html


Thank You!

Thank you for your attention!

Paper: https://doi.org/10.1007/s10208-022-09574-8

Code: https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/
WhitneyStratifications/html/index.html

https://doi.org/10.1007/s10208-022-09574-8
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/WhitneyStratifications/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/WhitneyStratifications/html/index.html

