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Introduction
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Today’s Talk

I I will introduce three papers on combinatorial 3D assembly today.

I These papers solve a combinatorial construction problem that assembles unit
primitives (e.g., 2×4 LEGO bricks) under a fixed rule.

Method Representation Target Info. Approach

Kim et al. [2020] Set Exact target volume Bayesian optimization

Chung et al. [2021] Graph Images Reinforcement learning

Ahn et al. [2022] Voxels – / Incomplete target volume Feed-forward networks

[Kim et al., 2020] J. Kim, H. Chung, et al. Combinatorial 3D shape generation via sequential assembly. In NeurIPS Workshop on ML4Eng, 2020.

[Chung et al., 2021] H. Chung*, J. Kim*, et al. Brick-by-Brick: Combinatorial construction with deep reinforcement learning. In NeurIPS, 2021.

[Ahn et al., 2022] S. Ahn, J. Kim, et al. Budget-aware sequential brick assembly with efficient constraint satisfaction. arXiv preprint arXiv:2210.01021, 2022.
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More Detailed Comparisons

Table 1: Analysis of recent studies in terms of state representation, supervision, conditioning, target
objects, and action validation.

Method State Supervision Conditioning Target
Action

Validation

Hamrick et al. [2018] Image Task-dependent N/A 2D Direct
Bapst et al. [2019] Object/Image Task-dependent Object and/or image 2D Direct
Kim et al. [2020] Set Overlap Exact target volume 3D Sampling
Thompson et al. [2020] Graph Step-wise CE One-hot class info. 3D Direct
Chung et al. [2021] Graph IoU Image or set of images 3D Pretrained
Ahn et al. [2022] Voxels Step-wise CE – / Incomplete target volume 3D Conv.

[Hamrick et al., 2018] J. B. Hamrick, K. R. Allen, et al. Relational inductive bias for physical construction in humans and machines. In CogSci, 2018.

[Bapst et al., 2019] V. Bapst, A. Sanchez-Gonzalez, et al. Structured agents for physical construction. In ICML, 2019.

[Kim et al., 2020] J. Kim, H. Chung, et al. Combinatorial 3D shape generation via sequential assembly. In NeurIPS Workshop on ML4Eng, 2020.

[Thompson et al., 2020] R. Thompson, G. Elahe, et al. Building LEGO using deep generative models of graphs. In NeurIPS Workshop on ML4Eng, 2020.

[Chung et al., 2021] H. Chung*, J. Kim*, et al. Brick-by-Brick: Combinatorial construction with deep reinforcement learning. In NeurIPS, 2021.

[Ahn et al., 2022] S. Ahn, J. Kim, et al. Budget-aware sequential brick assembly with efficient constraint satisfaction. arXiv preprint arXiv:2210.01021, 2022.
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Introduction

I Combinatorial construction via sequential assembly mimics a human assembly
process, by allocating a budget of primitives given.

I We introduce a sequential problem by utilizing an approach to solving combinatorial
3D shape generation.
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Combinatorial 3D Assembly
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Combinatorial 3D Assembly

Figure 1: Taken from this link

I As introduced in [Herman, 2012], a 2 × 4 LEGO brick is the patent granted in 1947
of the Kiddicraft company, founded by Hilary Page.

I It opens a progressive development of building a 3D shape.

[Herman, 2012] S. Herman. Building a History: The LEGO Group. Grub Street Publishers, 2012.

https://worldwide.espacenet.com/publicationDetails/biblio?CC=GB&NR=587206&KC=&FT=E&locale=en_EP
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Combinatorial 3D Assembly

Figure 2: A 2×4 brick

I A 2×4 brick is mainly used as a unit primitive, which has eight studs and their fit
cavities.

I Instead of employing other 3D representations such as point clouds, triangular
meshes, and voxels, we create a sequence of unit primitives.

I Interestingly, possible positions to assemble a brick consistently grow.

I With only six 2×4 bricks, 915,103,765 possible combinations exist [Eilers, 2016].

[Eilers, 2016] S. Eilers. The LEGO counting problem. The American Mathematical Monthly, 123(5):415–426, 2016.
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Combinatorial 3D Assembly: Assumptions

I Every connection types must follow a
fixed rule.

Figure 3: Example of available offsets

I No bricks mutually overlap.

Figure 4: Taken from [Yang et al., 2019]

I If two bricks are connected, the combination of two bricks is considered that they are
soldered together and cannot be broken.

[Yang et al., 2019] B. Yang, J. Wang, et al. Learning object bounding boxes for 3D instance segmentation on point clouds. In NeurIPS, 2019.
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Combinatorial 3D Assembly: Action Space

Figure 5: Successive action space with actions for selecting a pivot brick and an offset from the
pivot brick
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Combinatorial 3D Shape Generation via
Sequential Assembly

Jungtaek Kim, Hyunsoo Chung, Jinhwi Lee, Minsu Cho, and Jaesik Park

NeurIPS Workshop on Machine Learning for Engineering Modeling,
Simulation, and Design, 2020



13/43

Sequential Assembly with Unit Primitives

I Such 2×4 LEGO bricks make our problem more combinatorial and more complex,
compared to other primitives.

(a) Target shape (b) 1×1-sized primitives (c) 2×4-sized primitives

Figure 6: Assembly of a target shape with 1×1-sized primitives and 2×4-sized primitives
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Combinatorial 3D Shape Generation
I To determine the position of the next primitive, we define two evaluation functions

regarding occupiability and stability.

I Occupiability encourages us to follow a target shape and stability helps to create a
physically-stable combination.

I We determine the position of the next primitive via Bayesian optimization.

I To avoid a suboptimal sequence, our framework includes a rollback step.

(a) Placing an object (b) Applying forces (c) Measuring stability

Figure 7: Stability simulation with PyBullet
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Experimental Results

1 step 20 steps 40 steps

60 steps 80 steps 118 steps

Figure 8: Generated assembling sequence that creates a car shape with 118 unit primitives



16/43

Experimental Results

I We apply our framework in optimizing particular explicit functions.
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Figure 9: Quantitative results on maximizing explicit evaluation functions
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Combinatorial 3D Shape Dataset
I We also introduce a new combinatorial 3D shape dataset that consists of 14 classes

and 406 instances.

Parallel Perpendicular Bar Line Plate Wall

Cuboid Pyramid Bench Sofa Cup Hollow

Table Car

Figure 10: Selected examples from our dataset
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Combinatorial 3D Shape Dataset

I The characteristics of our combinatorial 3D shape dataset are

1. combinatorial: Duplicates of unit primitive is repeatedly connected;

2. sequential: Allowable connections between primitives are sequentially added;

3. decomposable: By the combinatorial property, parts of combination can be sampled if
they are valid in terms of the contact and overlap conditions;

4. manipulable: New primitive is addable or the existing primitives are removable.
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Brick-by-Brick: Combinatorial Construction
with Deep Reinforcement Learning

Hyunsoo Chung*, Jungtaek Kim*, Boris Knyazev, Jinhwi Lee, Graham W. Taylor,
Jaesik Park, and Minsu Cho

NeurIPS, 2021

* Equal contribution
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Overview

⋯

⋯

I It sequentially assembles unit primitives (i.e., LEGO bricks), given only incomplete
target information (i.e., a 2D image or multiple views of a target object).

I It requires a comprehensive understanding of incomplete target information and
long-term planning to append each brick efficiently.
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Overview

I We devise a reinforcement learning (RL) approach along with the absence of
sequence-level supervision.

I We express a brick combination as graph representation, where node and edge
correspond to a single brick and a connection between two bricks, respectively.

I In this domain, however, we struggle to handle both an indefinite action space and
the existence of many invalid actions when applying RL.

I To resolve the aforementioned issues, we adopt an action validity prediction network
that filters out invalid actions to an actor-critic network.
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Combinatorial Construction: Overall Scenario

⋯

⋯

Figure 11: Training and test episodes of combinatorial construction
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Brick-by-Brick

I Suppose that target information T , i.e., a single binary image or a set of three
binary images from different views of a target object, is given as partial information.

I Represent each t-th state st of the MDP as a tuple of
a directed graph Gt composed of t bricks and target information T , i.e., st = (Gt, T ).

I With t bricks assembled, define an action at = (apiv
t , aoff

t ) where apiv
t

is to select a pivot brick and aoff
t is to select an offset with respect to the pivot brick.

I Transform the combination of currently assembled bricks into the
occupancy of the voxels and measure the overlap between them as a reward function:

∆IoU(Ct,T) =
vol(Ct ∩T)

vol(Ct ∪T)
− vol(Ct−1 ∩T)

vol(Ct−1 ∪T)
, (1)

where Ct, Ct−1, and T are the occupied voxels at timestep t, timestep t− 1, and
a desired target, respectively. Note that vol(·) is a function that measures a volume.
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Brick-by-Brick

Figure 12: An overview of our proposed method, named Brick-by-Brick. The red brick in both apiv
t

and offset aoff
t indicates the chosen brick.

I We use a respective graph neural network for apiv
t and aoff

t , inspired by Battaglia et al.
[2018].

[Battaglia et al., 2018] P. W. Battaglia, J. B. Hamrick, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.
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Action Validity Prediction Network

I An action validity prediction network predicts an invalid action using a surrogate for
confirming the validity of a given action.

I It trains a graph neural network, of which the head corresponds to the degree of
validity.

I It is capable of pre-training the graph neural network with the ground-truth validity of
actions, which is obtained by randomly-assembled objects.

I It applies the network in training an actor-critic network, without re-training.
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Experimental Results: MNIST Construction

Figure 13: Qualitative results on MNIST construction
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Experimental Results: Randomly-Assembled Object Construction

(a) Target images (b) Constructed object from three viewpoints

Figure 14: Qualitative results on randomly-assembled object construction
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Experimental Results: ModelNet Construction

(a) Airplane 1 (b) Airplane 2

(c) Monitor (d) Table

Figure 15: Qualitative results on ModelNet construction
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Experimental Results: Episode Return Curves
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(c) ModelNet

Figure 16: Episode return curves vs. timesteps in different setups. The curves measured by training
and test episodes are reported by repeating 3 times with different seeds.
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Experimental Results: Analysis on Action Validity Prediction
Network
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Figure 17: ROC and PR curves for action validity prediction networks
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Budget-Aware Sequential Brick Assembly
with Efficient Constraint Satisfaction

Seokjun Ahn, Jungtaek Kim, Minsu Cho, and Jaesik Park

Under Review
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Overview

I Our method assesses a brick structure to predict the next brick position and its
confidence by employing a U-shaped sparse 3D convolutional neural network.

I A convolution filter, which is initialized by one, efficiently validates physical
constraints in a parallelizable and scalable manner.

I The convolution filter effectively allows us to deal with different brick types.

I To generate a novel structure, we devise a sampling strategy to determine the next
brick position.

I We consider a budget, i.e., the limited number of bricks and types, in the sampling
strategy.
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Sequential Brick Assembly with Efficient Constraint Satisfaction

U-Net
Voxel-wise 

scores
Brick-wise 

scores

Brick-wise 
validity

Validated 
brick scores

Place a brick 
using scores

Apply brick-sized
convolution filter 

Apply brick-sized
convolution filter 

Next brick position predictor (Sec. 4.1.1)

Brick position validator (Sec. 4.1.2)

Next brick position selection
(Sec. 4.1.3, Sec. 4.1.4)

Figure 18: Our proposed efficient constraint satisfaction method with convolution filters for
sequential brick assembly, named BrECS

I Completion and generation tasks can be solved with our method.
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Sequential Brick Assembly with Efficient Constraint Satisfaction

(a) 61 bricks are attachable (b) 23 bricks are attachable

(c) 33 bricks are attachable (d) 19 bricks are attachable

Figure 19: Attachable brick positions corresponding to brick structures
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Qualitative Results

Ours

DGMLG

BBB

BO

chairtable

Figure 20: Qualitative results for tables and chairs
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Quantitative Results

Figure 21: Quantitative results for a completion task. Asterisk denotes that partial or full
ground-truth information is given to the corresponding model.
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Quantitative Results

Figure 22: Quantitative results for a generation task. Asterisk denotes that partial or full
ground-truth information is given to the corresponding model.
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Discussion & Conclusion
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More Detailed Comparisons

Table 2: Analysis of recent studies in terms of state representation, supervision, conditioning, target
objects, and action validation.

Method State Supervision Conditioning Target
Action

Validation

Hamrick et al. [2018] Image Task-dependent N/A 2D Direct
Bapst et al. [2019] Object/Image Task-dependent Object and/or image 2D Direct
Kim et al. [2020] Set Overlap Exact target volume 3D Sampling
Thompson et al. [2020] Graph Step-wise CE One-hot class info. 3D Direct
Chung et al. [2021] Graph IoU Image or set of images 3D Pretrained
Ahn et al. [2022] Voxels Step-wise CE – / Incomplete target volume 3D Conv.

[Hamrick et al., 2018] J. B. Hamrick, K. R. Allen, et al. Relational inductive bias for physical construction in humans and machines. In CogSci, 2018.

[Bapst et al., 2019] V. Bapst, A. Sanchez-Gonzalez, et al. Structured agents for physical construction. In ICML, 2019.

[Kim et al., 2020] J. Kim, H. Chung, et al. Combinatorial 3D shape generation via sequential assembly. In NeurIPS Workshop on ML4Eng, 2020.

[Thompson et al., 2020] R. Thompson, G. Elahe, et al. Building LEGO using deep generative models of graphs. In NeurIPS Workshop on ML4Eng, 2020.

[Chung et al., 2021] H. Chung*, J. Kim*, et al. Brick-by-Brick: Combinatorial construction with deep reinforcement learning. In NeurIPS, 2021.

[Ahn et al., 2022] S. Ahn, J. Kim, et al. Budget-aware sequential brick assembly with efficient constraint satisfaction. arXiv preprint arXiv:2210.01021, 2022.
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Discussion

I We open a new line of research on a sequential and combinatorial construction
problem.

I More realistic rewards such as stability and feasibility can be discussed.

I Better graph representation to express the state of brick combination can be
suggested.

I Text-guided combinatorial assembly can be investigated.

I A large-scale graph dataset, which contains randomly-assembled objects with diverse
types of unit primitives, e.g., 2×4, 2×2, and 1×2 bricks, can be created.
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Conclusion

I We proposed the problem formulation of sequential assembly for a combinatorial
construction problem.

I This line of research shows that it can successfully generate a 3D object in a
combinatorial manner.

I We investigated three representations, i.e., sets, graphs, and voxels, and three
approaches, i.e., Bayesian optimization, deep reinforcement learning, and feed-forward
neural networks with efficient constraint satisfaction.

I Also, we created a new dataset for combinatorial 3D models, which allows us to
generate 3D shapes sequentially.
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Any Questions?
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