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= Stable Diffusion 2.1 Demo

Stable Diffusion 2.1 is the latest text-to-image model from StabilityAl. Access Stable Diffusion 1 Space here
For faster generation and API access you can try DreamStudio Beta.

horse

Generate image

Enter a negative prompt




= Stable Diffusion 2.1 Demo

Stable Diffusion 2.1 is the latest text-to-image model from StabilityAl. Access Stable Diffusion 1 Space here
For faster generation and API access you can try DreamStudio Beta.

horse

Generate image

Enter a negative prompt




What is an object?




Perceiving Physical Objects beyond 2D Pixels
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A “View” of an Object

Motion

3D Object Priors



Geometric Annotations by Humans
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Annotation beyond 2D is hard!

A “View” of an Object\‘\\

J

Physically-grounded 3D Representations

3D surfaces, normals?
Materials (BRDFs)?
Environment lighting?

Physics: force, torque,
mass, friction, velocity,
acceleration...?



Special Capturing Devices

Hard to scale up to all kinds of objects



an we simply learn from “the wild”:
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Luckily, we know how the world Works
(at least kind of...)

* |t's a physical 3D world

* Lots of symmetries / regularities

 We can simulate the image formation process igh ;:}

* . AN\ image plane




Photo-Geometric Autoencoding

Minimize Reconstruction Error
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Photo-Geometric Autoencoding

Minimize Reconstruction Error
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Learning Physical 3D Objects in the Wild

Training Inference — Single Image De-rendering
4 A
Shape I\/Iaterial Motion
\ ' / <
‘ !
\_ Light Camera )
“In-the-Wild” Data Physically-grounded 3D Representations

Physics offers a path for learning compact, generalizable object representations.
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Unsupervised 3D Learning in the Wild

e 3D ann

e Towaro

otations are expensive and often infeasible at scale.

s first principles in vision:

> W

nat are the minimal assumptions for 3D perception?

e Learning through inverse rendering gives rise to:

» Physical interpretability and verifiability
» Better generalization
» Controllable generation
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Learning-based Single-view 3D Reconstruction

ML
Model

|

3D priors learned
during training

.

3D ground truth &
shape models

silhouettes

Supervision

é

multi-views

keypoints

depth maps

camera viewpoint

J

[ 3D annotations are expensive! J
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Unsupervised Single-view 3D Reconstruction

- ML
Model

3D priors learned
during training

NO external
supervision|
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Unsupervised Learning of Symmetric 3D Objects

Training Data Output

Unsup3D —=>

single-view images of a category single image 3D reconstruction
NO other supervision!
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Photo-Geometric Autoencoding

input E & reconstruction
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Photo-Geometric Autoencoding

input E & reconstruction
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Photo-Geometric Autoencoding with Symmetry
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input reconstruction ' reconstruction 2
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decompose & relight input decompose & relight:




MagicPony: Learning Articulated 3D Animals in the Wild

Shangzhe Wu* Ruining Li* Tomas Jakab* Christian Rupprecht Andrea Vedaldi

Visual Geometry Group, University of Oxford

(* Equal Contribution)

CVPR 2023

Training Single-Image Inference

Single-view Images Test Image Articulated 3D Shape Animation



Training Data

Single-view Images

No keypoint or viewpoint supervision,
nor template shapes Self-supervised Image Features

[1] PointRend: Image Segmentation as Rendering. Kirillov et. al. CVPR 2020. [2] Emerging Properties in Self-supervised Vision Transformers. Caron et. al. ICCV 2021.



Correspondences from Self-supervised DINO Features

Self-supervised Image Features



Correspondences from Self-supervised DINO Features

Learned Category-wise Prior

learned canonical DINO feature



Implicit-Explicit 3D Representation

Learned Category-wise Prior

tetrahedral grid
I

!’ |

Feature Neural SDF +
Field Marching Tet

DINO feature  prior mesh

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurlPS 2021.



Implicit-Explicit 3D Representation

Learned Category-wise Prior

tetrahedral grid
I

!’ |

Feature Neural SDF +
Field Marching Tet

il

DINO feature pri‘or mesh

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurlPS 2021.



Implicit-Explicit 3D Representation

Deep Marching Tetrahedra (DMTet)

Learned Category-wise Prior
| Triangular meshes from Signed Distance Function (SDF) s(+)

|
v v

Feature Neural SDF +
Field Marching Tet

_m @ positive SDF . vy - S(wp) — vy - s(vy)
W ﬂ{’vf\ ® negative SDF Vab = s(vp) — s(v,)
1 Mi p N
SDF Mesh DMTet
v’ Flexible topology &+ v* Easy torender - v* Differentiable

v' Smooth gradients  v' Easy to articulate  v' Regular (no self-intersection)
N J

DINO feature prior mesh

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurlPS 2021.



Hierarchical Shape Prediction

Instance-specific Predictions
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Hierarchical Shape Prediction

Instance-specific Predictions

Multi-Hypothesis Viewpoint
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End-to-End Training with Image Rendering Losses

Learned Category-wise Prior

tetrahedral grld
|
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Instance-specific Predictions

E—
feature
input image
v v R ) v
b L2
Deformation | £ 1 3
Field £—> o~

Feature Neural SDF + Albedo
Field Marching Tet Field

T e

DINO feature pr|or mesh

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurlPS 2021.
[2] Emerging Properties in Self-supervised Vision Transformers. Caron et. al. ICCV 2021.
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Frame-by-Frame Inference on Videos

Input Frames Input View 360° Rotations



3D Printed Horse Reconstruction



Learning Articulated 3D Motion Prior

Training Images




Learning Articulated 3D Motion Prior

Training Videos




Learning Articulated 3D Motion Prior

Training Videos / Input Sequence I,.;

Motion VAE

M’

KL D|vergence L

pose sequence &1



Learning Articulated 3D Motion Prior

Sur Rendered /.1 Reconstruction Losses

Training Videos / Input Sequence I;.; ~ Motion VAE
' I pose

sequence - I
il zf ﬁ
“» Enc z Dec
.
KL D|vergence Ly Renderer (o ‘: w LB
N/

Single Image 3D Reconstruction

NWWW

feature field texture 3D shape

I

Trained with 2D reconstruction losses only without any pose annotations!
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Learning Articulated 3D Motion Prior

Training Videos / Input Sequence I;.; Motion VAE $ur Rendered [;.; Reconstruction Losses

pose
Enc / z @ / Dec
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sequence I /1
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Single Image 3D Reconstruction

T
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feature field texture 3D shape

(@ |

canonical
model

Trained with 2D reconstruction losses only without any pose annotations!



Learning Articulated 3D Motion Prior

Generated 3D Motion Sequences
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Input Image Reconstruction Generated 3D Motion Sequences

Walking Jumping



It's a-3B-World, After All
Physical

Physics is the key to interpretability and generality!
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