Remote Estimation of Two-State Markov Sources: a State Estimation Entropy Perspective

BIRS Workshop

Andrea Munari – joint work with Gianluigi Liva, Giuseppe Cocco (UPC, Spain) DLR - Institute of Communications and Navigation Banff. 2024.03.12

How to maintain an accurate knowledge from remote sensors

The challenge of maintaining an accurate knowledge from remote sensors

- monitor state of remotely-deployed sensor nodes
 - smart agriculture
 - environmental monitoring
 - asset tracking, ...
- o possibly massive number of battery-powered, low-complexity devices
 - transmit only terminals
 - constraints on protocols complexity
- sporadic traffic, following non-regular patterns
 - high cost for coordination and resource assignment (grant-based)

The challenge of maintaining an accurate knowledge from remote sensors

- o random access procedures commonly used for medium sharing
 - advanced schemes (modern random access)¹
 - ALOHA-like access employed in most practical systems, e.g. LoRaWAN, Sigfox

^{1.} Y. Polyanskiy, "A Perspective on Massive Random Access," in Proc. IEEE ISIT, 2017.

^{2.} S. Kaul, M. Gruteser, V. Rai, and J. Kenney, "Minimizing age of information in vehicular networks," in Proc. IEEE SECON, June 2011.

The challenge of maintaining an accurate knowledge from remote sensors

- o random access procedures commonly used for medium sharing
 - advanced schemes (modern random access)¹
 - ALOHA-like access employed in most practical systems, e.g. LoRaWAN, Sigfox
- o non-trivial challenges hinder performance
 - packet losses due to collisions, absence of feedback

^{1.} Y. Polyanskiy, "A Perspective on Massive Random Access," in Proc. IEEE ISIT, 2017.

^{2.} S. Kaul, M. Gruteser, V. Rai, and J. Kenney, "Minimizing age of information in vehicular networks," in Proc. IEEE SECON, June 2011.

The challenge of maintaining an accurate knowledge from remote sensors

- o random access procedures commonly used for medium sharing
 - advanced schemes (modern random access)¹
 - ALOHA-like access employed in most practical systems, e.g. LoRaWAN, Sigfox
- o non-trivial challenges hinder performance
 - packet losses due to collisions, absence of feedback
- o goal is to maintain accurate knowledge of the monitored sources at the receiver
 - first step is definition of metrics that can capture this capability
 - pioneering role played by age of information (AoI)²

^{1.} Y. Polyanskiy, "A Perspective on Massive Random Access," in Proc. IEEE ISIT, 2017.

^{2.} S. Kaul, M. Gruteser, V. Rai, and J. Kenney, "Minimizing age of information in vehicular networks," in Proc. IEEE SECON, June 2011.

Age of Information A measure of freshness of available information

 $\sigma(t):$ time stamp of last rcvd update

- Aol focuses on timeliness of delivered information
 - in some applications, knowledge at the receiver may be critical (e.g., actuation)
- o other metrics proposed to try to capture this aspect
 - age of incorrect information³

^{3.} A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020.

- Aol focuses on timeliness of delivered information
 - in some applications, knowledge at the receiver may be critical (e.g., actuation)
- o other metrics proposed to try to capture this aspect
 - age of incorrect information³

^{3.} A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020

- Aol focuses on timeliness of delivered information
 - in some applications, knowledge at the receiver may be critical (e.g., actuation)
- o other metrics proposed to try to capture this aspect
 - age of incorrect information³
 - query age of information⁴
 - AoI matters at time instants where receiver needs to use information, e.g. actuation

^{3.} A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020.

^{4.} F. Chiariotti, J. Holm, A. Kalor, B. Soret, S. Jensen, T. Pedersen, P. Popovski, "Query Aol: Freshness in pull-based communication," IEEE Trans. Commun., 2022.

- Aol focuses on timeliness of delivered information
 - in some applications, knowledge at the receiver may be critical (e.g., actuation)
- o other metrics proposed to try to capture this aspect
 - age of incorrect information³
 - query age of information⁴
 - $_{\circ}~$ Aol matters at time instants where receiver needs to use information, e.g. actuation
 - information theory inspired metrics

^{3.} A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020.

^{4.} F. Chiariotti, J. Holm, A. Kalor, B. Soret, S. Jensen, T. Pedersen, P. Popovski, "Query AoI: Freshness in pull-based communication," IEEE Trans. Commun., 2022.

mutual information^₅

- $I(X_t; W^t) = H(X_t) H(X_t | W^t)$
- if close to 0, received samples W^t carry little information and deemed obsolete

^{5.} Y. Sun and B. Cyr, "Information aging through queues: A mutual information perspective," in Proc. IEEE SPAWC Workshop, 2018.

^{6.} M. Rezaeian, B. Vo, J. S. Evans, "The optimal observability of partially observable Markov decision processes: Discrete state space," IEEE Trans. Autom. Control, 2010

^{7.} G. Chen, S. C. Liew, Y. Shao, "Uncertainty-of-information scheduling: A restless multiarmed bandit framework," IEEE Trans. Inf. Theory, 2022.

mutual information^₅

- $I(X_t; W^t) = H(X_t) H(X_t | W^t)$
- if close to $\mathbf{0},$ received samples W^t carry little information and deemed obsolete
- entropy on tracked process conditioned on received samples^{6,7}
 - $H(X_t \mid W^t)$
 - measure of uncertainty at the receiver on the current status of the source

^{5.} Y. Sun and B. Cyr, "Information aging through queues: A mutual information perspective," in Proc. IEEE SPAWC Workshop, 2018.

^{6.} M. Rezaeian, B. Vo, J. S. Evans, "The optimal observability of partially observable Markov decision processes: Discrete state space," IEEE Trans. Autom. Control, 2010

^{7.} G. Chen, S. C. Liew, Y. Shao, "Uncertainty-of-information scheduling: A restless multiarmed bandit framework," IEEE Trans. Inf. Theory, 2022.

Remote monitoring in random access channels Current status and open questions

- performance well-known in terms of traditional metrics (e.g., throughput, delay)
- o recent results characterized behavior in terms of Aol
 - ALOHA-based systems^{8,9,10,11}
 - modern random access schemes^{12,13}
- $\circ~$ first studies for age of incorrect information $^{\rm 14,15}$

o behavior in terms of other metrics largely unexplored

^{8.} S. Kaul, R. Yates, "Status updates over unreliable multiaccess channels," in Proc. IEEE ISIT, 2017

^{9.} R. Yates, S. Kaul, "Age of information in uncoordinated unslotted updating," in Proc. IEEE ISIT, 2020

^{10.} X. Chen, K. Gatsis, H. Hassani, S. Bidokhti, "Age of information in random access channels," in IEEE Trans. Inf. Theory, 2022

^{11.} O. Yavascan and E. Uysal, "Analysis of slotted ALOHA with an age threshold," IEEE J. Sel. Areas Commun., 2021.

^{12.} A. Munari, "Modern random access: an age of information perspective on irregular repetition slotted ALOHA," IEEE Trans. Commun., 2021.

^{13.} A. Munari, F. Lazaro, G. Durisi, G. Liva, "The dynamic behavior of frameless ALOHA: Drift analysis, throughput and age of information," IEEE Trans. Commun., 2023.

^{14.} A. Nayak, A. Kalor, F. Chiariotti, P. Popovski, "A decentralized policy for minimization of age of incorrect information in slotted ALOHA systems," in Proc. IEEE ICC., 2023

^{15.} A. Munari, "Monitoring IoT sources over random access channels: age of incorrect information and missed detection probability," in Proc. IEEE ICC, 2024.

o consider set of two-state Markov sources

o study behavior in terms of age of information and state estimation entropy

- consider set of two-state Markov sources
- $\circ\,$ study behavior in terms of age of information and state estimation entropy
 - random sampling and transmission strategy

o consider set of two-state Markov sources

- study behavior in terms of age of information and state estimation entropy
 - random sampling and transmission strategy
 - reactive sampling and transmission strategy

o consider set of two-state Markov sources

- $\circ\,$ study behavior in terms of age of information and state estimation entropy
 - random sampling and transmission strategy
 - reactive sampling and transmission strategy
- o analytical results via hidden Markov models and density evolution

o consider set of two-state Markov sources

• study behavior in terms of age of information and state estimation entropy

- random sampling and transmission strategy
- reactive sampling and transmission strategy

• analytical results via hidden Markov models and density evolution

• insights on impact of role played by these metrics in terms of protocol operations

Outline

(1) System Model and Preliminaries

2) State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion

 $\circ~M$ independent sources, modeled as two-state Markov processes of alphabet $\{0,1\}$

 $\circ~M$ independent sources, modeled as two-state Markov processes of alphabet $\{0,1\}$

- common channel to a receiver (slotted time)
 - at each slot, nodes decide whether to send packet containing current source value

 $\circ~M$ independent sources, modeled as two-state Markov processes of alphabet $\{0,1\}$

- o common channel to a receiver (slotted time)
 - at each slot, nodes decide whether to send packet containing current source value
- slotted ALOHA access, collision channel model
 - destructive collisions, singleton slots always decoded
 - no feedback nor retransmissions

o focus on reference source, whose evolution is described by random process

 $X_0 X_1 X_2 \ldots X_n \in \{0, 1\}$

o focus on reference source, whose evolution is described by random process

$$X_0 X_1 X_2 \ldots X_n \in \{0, 1\}$$

o receiver able to detect idle and collision slots, observes sequence

$$Y_0 \ Y_1 \ Y_2 \ \ldots \ Y_n \in \{0, 1, \mathtt{I}, \mathtt{C}, \ominus, \oplus\}$$

- I: idle slot, C: slot with collision
- \ominus , \oplus : observation of state (0 or 1) from another source

o focus on reference source, whose evolution is described by random process

$$X_0 X_1 X_2 \ldots X_n \in \{0, 1\}$$

o receiver able to detect idle and collision slots, observes sequence

$$Y_0 \ Y_1 \ Y_2 \ \ldots \ Y_n \in \{0, 1, \mathtt{I}, \mathtt{C}, \ominus, \oplus\}$$

- I: idle slot, C: slot with collision
- \ominus , \oplus : observation of state (0 or 1) from another source

• denote sequence of observations up to time n as $Y^n = [Y_0, Y_1, \dots, Y_n]$

- random transmission strategy
 - at each slot, a node transmits update with probability α

- random transmission strategy
 - at each slot, a node transmits update with probability α
- reactive transmission strategy
 - a node transmits update only if source has changed state

- random transmission strategy
 - at each slot, a node transmits update with probability α
- reactive transmission strategy
 - a node transmits update only if source has changed state
- reactive approach triggers key trade-offs
 - reduced traffic, avoiding transmission of duplicate information
 - in case of collision, receiver may remain with erroneous knowledge for long time

- random transmission strategy
 - at each slot, a node transmits update with probability α
- reactive transmission strategy
 - a node transmits update only if source has changed state
- reactive approach triggers key trade-offs
 - reduced traffic, avoiding transmission of duplicate information
 - in case of collision, receiver may remain with erroneous knowledge for long time
 - observation $Y_n \in \{\mathtt{I},\mathtt{C},\ominus,\oplus\}$ carries information on the source of interest
 - $X_{n-1} = 0$, state known at receiver
 - $\circ~Y_n=\ominus \rightarrow X_n=0:$ a state change would have induced a collision

 $\circ\,$ for a given sequence of observations $Y^n=y^n,$ uncertainty at the receiver on current state of the source measured by the entropy

$$\mathsf{h}(y^n) = \mathsf{H}\left(X_n \,|\, Y^n = y^n\right)$$

 $\circ\,$ for a given sequence of observations $Y^n=y^n,$ uncertainty at the receiver on current state of the source measured by the entropy

$$\mathsf{h}(y^n) = \mathsf{H}\left(X_n \,|\, Y^n = y^n\right)$$

single node, random transmission policy; $q_{10} = 0.2$, $q_{01} = 0.01$, i.e., $\pi_0 \simeq 0.95$, $\pi_1 \simeq 0.05$ $H(X) = -\pi_0 \log_2 \pi_0 - \pi_1 \log_2 \pi_1$

 $\circ\,$ for a given sequence of observations $Y^n=y^n,$ uncertainty at the receiver on current state of the source measured by the entropy

$$\mathsf{h}(y^n) = \mathsf{H}\left(X_n \,|\, Y^n = y^n\right)$$

 $\circ\,$ for a given sequence of observations $Y^n=y^n,$ uncertainty at the receiver on current state of the source measured by the entropy

$$\mathsf{h}(y^n) = \mathsf{H}\left(X_n \,|\, Y^n = y^n\right)$$

• we consider the expected value of the r.v. $H_n = h(Y^n)$

 $\mathsf{E}[H_n] = \mathsf{H}\left(X_n \,|\, Y^n\right)$

 $\circ\,$ for a given sequence of observations $Y^n=y^n,$ uncertainty at the receiver on current state of the source measured by the entropy

$$\mathsf{h}(y^n) = \mathsf{H}\left(X_n \,|\, Y^n = y^n\right)$$

• we consider the expected value of the r.v. $H_n = h(Y^n)$

$$\mathsf{E}[H_n] = \mathsf{H}\left(X_n \,|\, Y^n\right)$$

 $\circ\,$ in particular, we are interested in the limiting behavior as n grows large, giving the average state estimation entropy

$$H_{\infty} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mathsf{H}(X_n \,|\, Y^n)$$

Outline

(1) System Model and Preliminaries

2 State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion
Outline

1 System Model and Preliminaries

2 State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion

- $\,\circ\,$ SEE calculation requires tracking evolution of X_n from channel observations Y^n
- o statistical relation captured via hidden Markov models

- $\,\circ\,$ SEE calculation requires tracking evolution of X_n from channel observations Y^n
- $\circ\,$ statistical relation captured via hidden Markov models
 - hidden (non observable) Markov process, X_n

- SEE calculation requires tracking evolution of X_n from channel observations Y^n
- $\circ\,$ statistical relation captured via hidden Markov models
 - hidden (non observable) Markov process, X_n
 - observable process Y_n , driven by X_n , or by the transition $\left(X_{n-1},X_n\right)$

- SEE calculation requires tracking evolution of X_n from channel observations Y^n
- $\circ\,$ statistical relation captured via hidden Markov models
 - hidden (non observable) Markov process, X_n
 - observable process Y_n , driven by X_n , or by the transition $\left(X_{n-1}, X_n\right)$
 - source transition probabilities $p(x_n \mid x_{n-1})$, observation probabilities $p(y_n \mid x_n)$ known

- SEE calculation requires tracking evolution of X_n from channel observations Y^n
- o statistical relation captured via hidden Markov models
 - hidden (non observable) Markov process, X_n
 - observable process Y_n , driven by X_n , or by the transition (X_{n-1}, X_n)
 - source transition probabilities $p(x_n | x_{n-1})$, observation probabilities $p(y_n | x_n)$ known
 - joint distribution of observations and current state can be found recursively

- SEE calculation requires tracking evolution of X_n from channel observations Y^n
- o statistical relation captured via hidden Markov models
 - hidden (non observable) Markov process, X_n
 - observable process Y_n , driven by X_n , or by the transition (X_{n-1}, X_n)
 - source transition probabilities $p(x_n | x_{n-1})$, observation probabilities $p(y_n | x_n)$ known
 - joint distribution of observations and current state can be found recursively

$$P(x_n, y^n) = \sum_{x_{n-1}} P(x_n | x_{n-1}) P(y_n | x_n) P(x_{n-1}, y^{n-1})$$

Random transmission strategy

o channel access independent of source evolution

Random transmission strategy

- o channel access independent of source evolution
 - · observation does not depend on source transitions, only on current state

Random transmission strategy

- $\circ\,$ channel access independent of source evolution
 - observation does not depend on source transitions, only on current state

Random transmission strategy

- $\circ\,$ channel access independent of source evolution
 - · observation does not depend on source transitions, only on current state

o observation probabilities can easily be computed

•
$$\mathsf{P}[Y_n = I \mid X_n = x_n] = (1 - \alpha)^M$$

•
$$\mathsf{P}[Y_n = \ominus | X_n = x_n] = (M-1)\pi_0 \alpha (1-\alpha)^{M-1}$$

• $\mathsf{P}[Y_n = 0 | X_n = 0] = \alpha (1 - \alpha)^{M-1}$, $\mathsf{P}[Y_n = 0 | X_n = 1] = 0$

Random transmission strategy

- o channel access independent of source evolution
 - · observation does not depend on source transitions, only on current state
 - observation of I, \ominus , \oplus , C does not provide information on the state of the source

o observation probabilities can easily be computed

•
$$\mathsf{P}[Y_n = I \mid X_n = x_n] = (1 - \alpha)^N$$

•
$$\mathsf{P}[Y_n = \ominus | X_n = x_n] = (M-1)\pi_0 \alpha (1-\alpha)^{M-1}$$

• $\mathsf{P}[Y_n = 0 | X_n = 0] = \alpha (1 - \alpha)^{M-1}$, $\mathsf{P}[Y_n = 0 | X_n = 1] = 0$

Reactive Transmission Strategy

 for reactive strategy, observation depends on transition of the reference source, as well as on number of terminals in a given state

Reactive Transmission Strategy

 for reactive strategy, observation depends on transition of the reference source, as well as on number of terminals in a given state

Reactive Transmission Strategy

- for reactive strategy, observation depends on transition of the reference source, as well as on number of terminals in a given state
- $\circ\,$ hidden Markov model with state $\sigma_n=(X_n,S_n)$

Reactive Transmission Strategy

- for reactive strategy, observation depends on transition of the reference source, as well as on number of terminals in a given state
- $\circ\,$ hidden Markov model with state $\sigma_n=(X_n,S_n)$

- S_n : number of sources (other than reference one) in state 0 at time n
- channel output depends on state through conditional probability function $P(Y_n | \sigma_{n-1}, \sigma_n)$

• consider a posteriori probability (APP) logarithmic ratio

$$\lambda_n := \ln \frac{\mathsf{P}[X_n = 0 \mid Y^n = y^n]}{\mathsf{P}[X_n = 1 \mid Y^n = y^n]}$$

• consider a posteriori probability (APP) logarithmic ratio

$$\lambda_n := \ln \frac{\mathsf{P}[X_n = 0 \mid Y^n = y^n]}{\mathsf{P}[X_n = 1 \mid Y^n = y^n]}$$

• Lemma: The APP logarithmic ratio λ_n is a sufficient statistics for X_n given Y^n

•
$$X_n \to \Lambda_n \to Y^n$$
, i.e. $P(x_n \mid \lambda_n, y^n) = P(x_n \mid \lambda_n)$

• consider a posteriori probability (APP) logarithmic ratio

$$\lambda_n := \ln \frac{\mathsf{P}[X_n = 0 \mid Y^n = y^n]}{\mathsf{P}[X_n = 1 \mid Y^n = y^n]}$$

• Lemma: The APP logarithmic ratio λ_n is a sufficient statistics for X_n given Y^n

- $X_n \to \Lambda_n \to Y^n$, i.e. $P(x_n \mid \lambda_n, y^n) = P(x_n \mid \lambda_n)$
- proof sketch: Fisher-Neyman factorization th., writing $P(y^n | x_n) = a(x_n, \lambda_n)b(y^n)$, with $a(\cdot)$, $b(\cdot)$ non-negative functions

• consider a posteriori probability (APP) logarithmic ratio

$$\lambda_n := \ln \frac{\mathsf{P}[X_n = 0 \,|\, Y^n = y^n]}{\mathsf{P}[X_n = 1 \,|\, Y^n = y^n]}$$

• Lemma: The APP logarithmic ratio λ_n is a sufficient statistics for X_n given Y^n

- $X_n \to \Lambda_n \to Y^n$, i.e. $P(x_n \mid \lambda_n, y^n) = P(x_n \mid \lambda_n)$
- proof sketch: Fisher-Neyman factorization th., writing $P(y^n | x_n) = a(x_n, \lambda_n)b(y^n)$, with $a(\cdot)$, $b(\cdot)$ non-negative functions

$$\ln \frac{\mathsf{P}[X_n = 0 \mid Y^n = y^n]}{\mathsf{P}[X_n = 1 \mid Y^n = y^n]} = \ln \frac{\mathsf{P}[X_n = 0 \mid \Lambda_n = \lambda_n]}{\mathsf{P}[X_n = 1 \mid \Lambda_n = \lambda_n]}$$

 $\circ~$ recalling that $\mathsf{P}[X_n=0\,|\,\Lambda_n=\lambda_n]+\mathsf{P}[X_n=1\,|\,\Lambda_n=\lambda_n]=1,$ we get

$$\mathsf{P}[X_n = x_n \,|\, \Lambda_n = \lambda_n] = \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}}$$

• recalling that $\mathsf{P}[X_n = 0 | \Lambda_n = \lambda_n] + \mathsf{P}[X_n = 1 | \Lambda_n = \lambda_n] = 1$, we get

$$\mathsf{P}[X_n = x_n \,|\, \Lambda_n = \lambda_n] = \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}}$$

• by the data-processing inequality

$$\mathsf{h}(y^n) = \mathsf{H}(X_n \,|\, Y^n = y^n) = \mathsf{H}(X_n \,|\, \Lambda_n = \lambda_n)$$

$$\mathsf{P}[X_n = x_n \,|\, \Lambda_n = \lambda_n] = \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}}$$

• by the data-processing inequality

$$\mathbf{h}(y^n) = \mathbf{H}(X_n \mid Y^n = y^n) = \mathbf{H}(X_n \mid \Lambda_n = \lambda_n)$$
$$= \sum_{x_n \in \{0,1\}} \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}} \log_2 \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}} := \mathbf{h}(\lambda_n)$$

$$\circ$$
 recalling that $\mathsf{P}[X_n=0\,|\,\Lambda_n=\lambda_n]+\mathsf{P}[X_n=1\,|\,\Lambda_n=\lambda_n]=1$, we get

$$\mathsf{P}[X_n = x_n \,|\, \Lambda_n = \lambda_n] = \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}}$$

• by the data-processing inequality

$$h(y^n) = H(X_n | Y^n = y^n) = H(X_n | \Lambda_n = \lambda_n)$$
$$= \sum_{x_n \in \{0,1\}} \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}} \log_2 \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}} := h(\lambda_n)$$

- $\circ~\lambda_n$ suffices to compute uncertainty at receiver at time n
 - recursive calculation of λ_n as function of λ_{n-1} and observation y_n

Outline

(1) System Model and Preliminaries

2 State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion

Random transmission policy

 $\circ\,$ from forward recursion on HMM we have

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \mid x_n) P(x_n \mid x_{n-1}) P(x_{n-1}, y^{n-1})$$

Random transmission policy

o from forward recursion on HMM we have

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \mid x_n) P(x_n \mid x_{n-1}) P(x_{n-1}, y^{n-1})$$

• leaning on this, we obtain

$$\lambda_n = \ln \frac{\mathsf{P}[X_n = 0, Y^n = y^n]}{\mathsf{P}[X_n = 1, Y^n = y^n]} = \ln \frac{P(y_n \mid 0)}{P(y_n \mid 1)} + \ln \frac{q_{00} + q_{10}e^{-\lambda_{n-1}}}{q_{01} + q_{11}e^{-\lambda_{n-1}}} := f(y_n, \lambda_{n-1})$$

Random transmission policy

o from forward recursion on HMM we have

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \mid x_n) P(x_n \mid x_{n-1}) P(x_{n-1}, y^{n-1})$$

leaning on this, we obtain

$$\lambda_n = \ln \frac{\mathsf{P}[X_n = 0, Y^n = y^n]}{\mathsf{P}[X_n = 1, Y^n = y^n]} = \ln \frac{P(y_n \mid 0)}{P(y_n \mid 1)} + \ln \frac{q_{00} + q_{10}e^{-\lambda_{n-1}}}{q_{01} + q_{11}e^{-\lambda_{n-1}}} := f(y_n, \lambda_{n-1})$$

- all quantities are known
 - q_{00} , q_{01} , q_{10} , q_{11} are source transition probabilities
 - observation probabilities $P(y_n | x_n)$ derived earlier

Reactive transmission policy

• consider now reactive transmission strategy

Reactive transmission policy

- consider now reactive transmission strategy
- o following the same approach, we obtain

$$P(\sigma_n, y^n) = \sum_{\sigma_{n-1}} P(y_n \mid \sigma_{n-1}, \sigma_n) P(\sigma_n \mid \sigma_{n-1}) P(\sigma_{n-1}, y^{n-1})$$
$$\lambda_n = \ln \frac{\sum_{\sigma_n \in \{0\} \times S} P(\sigma_n, y^n)}{\sum_{\sigma_n \in \{1\} \times S} P(\sigma_n, y^n)}$$

Reactive transmission policy

- consider now reactive transmission strategy
- o following the same approach, we obtain

$$P(\sigma_n, y^n) = \sum_{\sigma_{n-1}} P(y_n \mid \sigma_{n-1}, \sigma_n) P(\sigma_n \mid \sigma_{n-1}) P(\sigma_{n-1}, y^{n-1})$$
$$\lambda_n = \ln \frac{\sum_{\sigma_n \in \{0\} \times S} P(\sigma_n, y^n)}{\sum_{\sigma_n \in \{1\} \times S} P(\sigma_n, y^n)}$$

• $P(y_n | \sigma_{n-1}, \sigma_n)$, $P(\sigma_{n-1}, \sigma_n)$ obtained from statistics of X_n and access strategy

Reactive transmission policy

- consider now reactive transmission strategy
- o following the same approach, we obtain

$$P(\sigma_n, y^n) = \sum_{\sigma_{n-1}} P(y_n \mid \sigma_{n-1}, \sigma_n) P(\sigma_n \mid \sigma_{n-1}) P(\sigma_{n-1}, y^{n-1})$$
$$\lambda_n = \ln \frac{\sum_{\sigma_n \in \{0\} \times S} P(\sigma_n, y^n)}{\sum_{\sigma_n \in \{1\} \times S} P(\sigma_n, y^n)}$$

• $P(y_n | \sigma_{n-1}, \sigma_n)$, $P(\sigma_{n-1}, \sigma_n)$ obtained from statistics of X_n and access strategy

• however, complexity of calculation grows with M^2 : impractical for larger networks

 \circ to simplify calculation of λ_n , introduce myopic surrogate model

- $\circ\,$ to simplify calculation of $\lambda_n,$ introduce myopic surrogate model
 - reference source operates following reactive strategy

- $\circ\,$ to simplify calculation of $\lambda_n,$ introduce myopic surrogate model
 - reference source operates following reactive strategy
 - all other sources follow random transmission strategy, with activation probability

 $\tilde{\alpha} = \pi_0 \, q_{01} + \pi_1 \, q_{10}$

- \circ to simplify calculation of λ_n , introduce myopic surrogate model
 - reference source operates following reactive strategy
 - all other sources follow random transmission strategy, with activation probability

 $\tilde{\alpha} = \pi_0 \, q_{01} + \pi_1 \, q_{10}$

 $\circ\,$ under this hypothesis, observation no longer depends on S_n

Recursive calculation of $\lambda_n,$ reactive case $_{\rm Myopic\ surrogate\ model}$

 $\circ\,$ for the myopic HMM, the recursion simplifies to

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \,|\, x_{n-1}, x_n) P(x_n \,|\, x_{n-1}) P(x_{n-1}, y^{n-1})$$

Recursive calculation of λ_n , reactive case $_{\rm Myopic\ surrogate\ model}$

o for the myopic HMM, the recursion simplifies to

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \,|\, x_{n-1}, x_n) P(x_n \,|\, x_{n-1}) P(x_{n-1}, y^{n-1})$$

$$\lambda_n = \ln \frac{\sum_{x_{n-1}} \mathsf{P}[Y_n = y_n \,|\, X_{n-1} = x_{n-1}, X_n = 0] \cdot q_{x_{n-1,0}} \exp(-x_{n-1}\lambda_{n-1})}{\sum_{x_{n-1}} \mathsf{P}[Y_n = y_n \,|\, X_{n-1} = x_{n-1}, X_n = 1] \cdot q_{x_{n-1,1}} \exp(-x_{n-1}\lambda_{n-1})}$$
$$:= g(y_n, \lambda_{n-1})$$

Recursive calculation of $\lambda_n,$ reactive case $_{\rm Myopic\ surrogate\ model}$

 $\circ\,$ for the myopic HMM, the recursion simplifies to

$$P(x_n, y^n) = \sum_{x_{n-1} \in \{0,1\}} P(y_n \mid x_{n-1}, x_n) P(x_n \mid x_{n-1}) P(x_{n-1}, y^{n-1})$$

$$\lambda_n = \ln \frac{\sum_{x_{n-1}} \mathsf{P}[Y_n = y_n \,|\, X_{n-1} = x_{n-1}, X_n = 0] \cdot q_{x_{n-1,0}} \exp(-x_{n-1}\lambda_{n-1})}{\sum_{x_{n-1}} \mathsf{P}[Y_n = y_n \,|\, X_{n-1} = x_{n-1}, X_n = 1] \cdot q_{x_{n-1,1}} \exp(-x_{n-1}\lambda_{n-1})}$$
$$:= g(y_n, \lambda_{n-1})$$

- complexity independent of the number of sources
- HMM gives in general an approximation, yet exact for symmetric sources $(q_{10} = q_{01})$

Outline

(1) System Model and Preliminaries

2 State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion

State Estimation Entropy Derivation Statistics of the APP logarithmic ratio

o to compute state estimation entropy, we are interested in

$$\mathsf{E}[H_n] = \mathsf{H}(X_n \,|\, Y^n) = \mathsf{H}(X_n \,|\, \Lambda_n) = \mathsf{E}[\mathsf{h}(\Lambda_n)]$$

State Estimation Entropy Derivation Statistics of the APP logarithmic ratio

o to compute state estimation entropy, we are interested in

$$\mathsf{E}[H_n] = \mathsf{H}(X_n \,|\, Y^n) = \mathsf{H}(X_n \,|\, \Lambda_n) = \mathsf{E}[\mathsf{h}(\Lambda_n)]$$

 $\,\circ\,$ analytical derivation of SEE available via probability distribution of r.v. Λ_n

State Estimation Entropy Derivation Statistics of the APP logarithmic ratio

o to compute state estimation entropy, we are interested in

$$\mathsf{E}[H_n] = \mathsf{H}(X_n \,|\, Y^n) = \mathsf{H}(X_n \,|\, \Lambda_n) = \mathsf{E}[\mathsf{h}(\Lambda_n)]$$

- $\circ\,$ analytical derivation of SEE available via probability distribution of r.v. Λ_n
- $\circ\,$ quantized density evolution, i.e. quantize values taken by λ_n

$$H(X_n | Y^n) = \sum_{\lambda_n} P(\lambda_n) h(\lambda_n)$$
$$h(\lambda_n) = \sum_{x_n \in \{0,1\}} \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}} \log_2 \frac{e^{-x_n \lambda_n}}{1 + e^{-\lambda_n}}$$

Quantized Density Evolution Recursive calculation of $P(\lambda_n, x_n)$

 $\circ\,$ distribution of Λ_n computed recursively, given distribution of Λ_{n-1} and conditional distribution of $Y_n\,|\,X_n$

 $\circ\,$ distribution of Λ_n computed recursively, given distribution of Λ_{n-1} and conditional distribution of $Y_n\,|\,X_n$

Quantized Density Evolution

Recursive calculation of $P(\lambda_n, x_n)$

 $\circ\,$ for the random transmission strategy

$$P(\lambda_n, x_n) = \sum_{\substack{x_{n-1} \in \{0,1\} \\ f(y_n, \lambda_{n-1}) = \lambda_n}} \sum_{\substack{y_n, \lambda_{n-1}: \\ f(y_n, \lambda_{n-1}) = \lambda_n}} P(\lambda_{n-1}, y_n, x_n, x_{n-1})$$
$$= \sum_{\substack{y_n, \lambda_{n-1}: \\ f(y_n, \lambda_{n-1}) = \lambda_n}} P(y_n | x_n) \sum_{\substack{x_{n-1} \in \{0,1\} \\ x_{n-1} \in \{0,1\}}} P(x_n | x_{n-1}) P(\lambda_{n-1}, x_{n-1})$$

Banff, 2024.03.12

A. Munari · State Estimation Entropy in Random Access Channels · State Estimation Entropy Analysis

Banff, 2024.03.12

- distribution of Λ_n computed recursively, given distribution of Λ_{n-1} and conditional distribution of $Y_n | X_n$
- for the random transmission strategy

$$P(\lambda_n, x_n) = \sum_{\substack{x_{n-1} \in \{0,1\} \\ f(y_n, \lambda_{n-1}) = \lambda_n}} \sum_{\substack{y_n, \lambda_{n-1}: \\ f(y_n, \lambda_{n-1}) = \lambda_n}} P(\lambda_{n-1}, y_n, x_n, x_{n-1})$$
$$= \sum_{\substack{y_n, \lambda_{n-1}: \\ f(y_n, \lambda_{n-1}) = \lambda_n}} P(y_n | x_n) \sum_{\substack{x_{n-1} \in \{0,1\}}} P(x_n | x_{n-1}) P(\lambda_{n-1}, x_{n-1})$$

o similar approach for reactive case, relying on myopic surrogate model

Outline

(1) System Model and Preliminaries

2 State Estimation Entropy Analysis

Hidden Markov Models and APP Logarithmic ratio

Recursive Calculation of λ_n

Density Evolution Analysis

Numerical Results and Discussion

Average AoI Performance

Random and reactive strategies

 $\circ\,$ for slotted ALOHA access, assuming i.i.d. behavior across slots, average AoI inversely proportional to throughput T

$$\Delta = \frac{1}{2} + \frac{M}{\mathsf{T}}$$

 $\,\circ\,$ minimal AoI attained for transmission probability 1/M

Average Aol Performance

Random and reactive strategies

 $\circ\,$ for slotted ALOHA access, assuming i.i.d. behavior across slots, average AoI inversely proportional to throughput T

$$\Delta = \frac{1}{2} + \frac{M}{\mathsf{T}}$$

- $\,\circ\,$ minimal AoI attained for transmission probability 1/M
- $\circ\,$ random transmission strategy shall be operated accordingly, setting $\alpha=1/M$

Average Aol Performance

Random and reactive strategies

 $\circ\,$ for slotted ALOHA access, assuming i.i.d. behavior across slots, average AoI inversely proportional to throughput T

$$\Delta = \frac{1}{2} + \frac{M}{\mathsf{T}}$$

- $\,\circ\,$ minimal AoI attained for transmission probability 1/M
- $\circ\,$ random transmission strategy shall be operated accordingly, setting $\alpha=1/M$
- o reactive transmission strategy: transmission probability driven by source statistics

$$\tilde{\alpha} = \pi_0 q_{01} + \pi_1 q_{10}$$

Average Aol Performance

Symmetric sources

A. Munari · State Estimation Entropy in Random Access Channels · State Estimation Entropy Analysis

Banff, 2024.03.12

Average State Estimation Entropy

Symmetric sources, random and reactive transmission policies

Average State Estimation Entropy

Symmetric sources, random and reactive transmission policies

Average State Estimation Entropy

Symmetric sources, random and reactive transmission policies

- SEE increases in larger networks
 - more congestion, higher loss probability
 - H_∞ tends to source entropy as M grows
- lower SEE when sources transition less often $(q_{10} = q_{01} = 0.01)$
 - fewer updates needed to track evolution
 - lower channel congestion (reactive strategy)
- reactive strategy offers better performance
 - only relevant updates are sent
 - for M=2, perfect knowledge at the receiver is achieved

Average State Estimation Entropy Asymmetric sources, $q_{10} = 0.1$, $q_{01} = 0.01$

number of sources, M

Concluding Remarks

- remote source monitoring in IoT systems
 - two-state Markov sources
 - slotted ALOHA-based channel access, random and reactive strategies
- analytical characterization of state estimation entropy
 - capture uncertainty at receiver
- different protocol operation insights when considering AoI and SEE
 - when freshness is of relevance, transmission strategy maximizing throughput is optimal
 - when uncertainty on source state is important, reactive strategy is convenient

Concluding Remarks

$\circ\,$ metric choice based on targeted application

- freshness relevant e.g., in tracking, monitoring (Aol valuable proxy for complex systems)
- uncertainty on source state relevant for, e.g., actuation
- results also for error probability, false alarm and missed detection probability¹⁶
- open research topic
 - identify more advanced, optimal policies
 - tracking of more practical, possibly correlated, source processes

^{16.} A. Munari, G. Cocco, G. Liva, "Remote Monitoring of Markov Sources over Random Access Channels: False Alarm and Detection Probability," in Proc. IEEE Asilomar 2023.

Additional Insights

State Estimation at the Receiver Estimation Error Probability

- o receiver aims at estimating the state of the reference source
 - denote by \widehat{X}_n the estimate at time n of the state X_n
- o evaluate performance in terms of state estimation error probability

$$P_e^{(n)} = \mathsf{P}\Big[\widehat{X}_n \neq X_n\Big]$$

• in particular, interested in average error probability

$$P_e = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P_e^{(n)}$$

State Estimation at the Receiver MAP and Decode&Hold

- \circ P_e minimized via maximum a posteriori (MAP) estimator
 - APP logarithmic ratio combined with threshold test
 - $\hat{x}_n = 0$ if $\lambda_n > 0$, $\hat{x}_n = 1$ if $\lambda_n < 0$

State Estimation at the Receiver MAP and Decode&Hold

- \circ P_e minimized via maximum a posteriori (MAP) estimator
 - · APP logarithmic ratio combined with threshold test
 - $\hat{x}_n = 0$ if $\lambda_n > 0$, $\hat{x}_n = 1$ if $\lambda_n < 0$
- o average error probability of MAP estimator follows from density evolution analysis

$$P_e = \lim_{n \to \infty} \sum_{\lambda_n \le 0} P(\lambda_n, 0) + \lim_{n \to \infty} \sum_{\lambda_n \ge 0} P(\lambda_n, 1)$$

State Estimation at the Receiver MAP and Decode&Hold

- \circ P_e minimized via maximum a posteriori (MAP) estimator
 - APP logarithmic ratio combined with threshold test
 - $\hat{x}_n = 0$ if $\lambda_n > 0$, $\hat{x}_n = 1$ if $\lambda_n < 0$
- o average error probability of MAP estimator follows from density evolution analysis

$$P_e = \lim_{n \to \infty} \sum_{\lambda_n \le 0} P(\lambda_n, 0) + \lim_{n \to \infty} \sum_{\lambda_n \ge 0} P(\lambda_n, 1)$$

- MAP estimator entails computational complexity that may be critical, e.g. battery-powered or computationally-limited receivers
 - introduce simpler decode and hold (D&H) estimator

Decode and Hold Estimator Definition and Trade-Offs

 decode and hold: update estimate only upon receiving update from source, otherwise keep last received value

$$\widehat{X}_n = \begin{cases} Y_n & \text{if } Y_n \in \{0,1\} \\ \widehat{X}_{n-1} & \text{if } Y_n \in \{\mathsf{I},\mathsf{C},\ominus,\oplus\} \,. \end{cases}$$

Decode and Hold Estimator Definition and Trade-Offs

 decode and hold: update estimate only upon receiving update from source, otherwise keep last received value

$$\widehat{X}_n = \begin{cases} Y_n & \text{if } Y_n \in \{0,1\}\\ \widehat{X}_{n-1} & \text{if } Y_n \in \{\mathtt{I},\mathtt{C},\ominus,\oplus\}\,. \end{cases}$$

- o simpler implementation, yet suboptimal performance
 - consider two-source network, reactive strategy
 - D&H in error as soon as a collision occurs
 - MAP estimator experiences no error: perfect knowledge out of collisions and idle slots

Decode and Hold Estimator

Markov Model, random transmission strategy

- error probability obtained by tracking Markov process (X_n, \widehat{X}_n)
- $\circ~$ for random strategy, defining $\omega = \alpha (1-\alpha)^{M-1}$

Decode and Hold Estimator Markov Model, random transmission strategy

- error probability obtained by tracking Markov process (X_n, \widehat{X}_n)
- $\circ\,$ for random strategy, defining $\omega=\alpha(1-\alpha)^{M-1}$
- o aperiodic, irreducible and thus ergodic chain
 - error probability can be derived from stationary distribution $\pi_{i,j}$, $(i,j) \in \{0,1\} \times \{0,1\}$

$$P_e = \pi_{0,1} + \pi_{1,0}$$

Decode and Hold Estimator

Markov Model, random transmission strategy

- error probability obtained by tracking Markov process (X_n, \widehat{X}_n)
- $\circ\,$ for random strategy, defining $\omega=\alpha(1-\alpha)^{M-1}$
- o aperiodic, irreducible and thus ergodic chain
 - error probability can be derived from stationary distribution $\pi_{i,j}$, $(i,j) \in \{0,1\} \times \{0,1\}$

$$P_e = \pi_{0,1} + \pi_{1,0}$$

o computing the stationary distribution, we get

$$P_e = \frac{2q_{01}q_{10}\left(1-\omega\right)}{\left(q_{01}+q_{10}\right)\left[\omega+(1-\omega)(q_{01}+q_{10})\right]}$$

Decode and Hold Estimator

Markov Model, reactive transmission strategy

- similar approach holds for reactive strategy (myopic approximation)
 - average activation probability $\tilde{\alpha} = \pi_0 \, q_{01} + \pi_1 \, q_{10}$

State Estimation Error Probability MAP and D&H, symmetric sources $(q_{10} = q_{01} = 0.01)$

State Estimation Error Probability MAP and D&H, asymmetric sources $(q_{10} = 0.01, q_{01} = 0.1)$

State Estimation Error Probability MAP and D&H

- $\circ~$ for symmetric sources, D&H matches MAP performance
 - difference only for low ${\cal M}$
 - · when more sources present, collisions become less informative
 - reactive strategy leads to better estimate

State Estimation Error Probability MAP and D&H

- $\circ~$ for symmetric sources, D&H matches MAP performance
 - difference only for low ${\cal M}$
 - · when more sources present, collisions become less informative
 - reactive strategy leads to better estimate
- $\circ~$ for asymmetric sources, D&H performs significantly worse
 - D&H may need long time to recover from an error
 - reactive strategy performs worse than random one
 - $_{\circ}\,$ random transmissions can lead to quicker recovery from erroneous estimate